MAC 2312 (Calculus II)
Test 2, Wednesday April 11, 2012

Name:

 PID:Remember that no documents or calculators are allowed during the test. Be as precise as possible in your work; no credits will be awarded for unexplained answers. Do not cheat, otherwise I will be forced to give you a zero and report your act of cheating to the University Administration. Good luck.

1. [10] Use division to find the first three nonzero terms of the Maclaurin series for $f(x)=\frac{e^{x}}{\cos x}$.
2. [10] Find the Taylor polynomial of order four for $f(x)=\ln x$ about $x=2$.
3. [10] Decide whether each statement is true or false.
a) If the series $\sum\left|u_{k}\right|$ converges, then the series $\sum u_{k}$ converges.
b) If the series $\sum u_{k}$ converges, then $\lim _{k \rightarrow \infty} u_{k}=0$.
c) If $\lim _{k \rightarrow \infty} \sqrt[k]{\left|u_{k}\right|}=1$, then the series $\sum u_{k}$ converges conditionally.
d) Every alternating series converges.
e) If $0<a_{k} \leq b_{k}$ for all $k \geq 1$, and $\sum a_{k}$ converges, then $\sum b_{k}$ converges too.
4. [10] a) Use a popular Maclaurin series to find the Maclaurin series for $f(x)=\sin \left(x^{2}\right)$. b) Use the Maclaurin series obtained in a) to evaluate the integral $\int_{0}^{\pi} \sin \left(x^{2}\right) d x$.
5. [8] Sketch the region enclosed by the curves $y=2 x, y=4-x, y=0$, and find its area.
6. [12] a) Use cylindrical shells to find the volume of the solid generated when the region enclosed by the curves $y=1 / \sqrt{x^{2}+1}, x=0, x=1, y=0$, is revolved about the y-axis.
b) Find the area of the surface that results when the curve $y=\sqrt{x}, 1 \leq x \leq 2$, is revolved about the x-axis.
7. [10] Determine the radius of convergence and the interval of convergence of the power series $\sum_{k=1}^{\infty} \frac{(-1)^{k}(x+5)^{k}}{3^{k} \sqrt{k}}$.
8. [8] Use the integral test to decide whether the infinite series $\sum_{k=1}^{\infty} \frac{k}{k^{2}+3}$ converges or diverges.
9. [6] Find an upper bound on the absolute error if the series $\sum_{k=1}^{\infty} \frac{(-1)^{k}}{\sqrt[4]{k}}$ is approximated by its $n^{t h}$ partial sum s_{n} with $n=9999$.
10. [8] Find the exact length of the arc of the curve $x=\sqrt{1-y^{2}}, 0 \leq y \leq 1 / 2$.
11. [8] A cylindrical tank of radius 4 ft and height 12 ft is to be filled to five-sixth with water. Find the work required to pump the water in through an opening located at the bottom of the tank. (Remember that the weight density of water is $62.4 \mathrm{lb} / \mathrm{ft}^{3}$.)
