MAC 2313 (Calculus III)-U03
Test 2, Thursday February 28, 2008

Name:

Remember that no documents or graphing calculators are allowed during the test. Be as precise as possible in your work; you shall show all your work to deserve the full mark assigned to any question. Do not cheat, otherwise I will be forced to give you a zero and report your act of cheating to the University Administration. Good luck.

1. [26] Evaluate each integral.
a) $\int_{-1}^{1} \int_{x}^{x^{2}} \int_{0}^{\ln z} x e^{y} d y d z d x=$
b) $\int_{0}^{1} \int_{1}^{2}(x-2 z) d x d z=$
c) $\int_{\frac{1}{2}}^{1} \int_{x}^{\frac{1}{x}} x d y d x=$
d) $\int_{-1}^{1} \int_{0}^{\sqrt{1-y^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}}\left(x^{2}+y^{2}+z^{2}\right)^{\frac{-3}{4}} d z d x d y=$
2. [15] Use polar coordinates to evaluate $\int_{0}^{1} \int_{x^{2}}^{x} \sqrt{x^{2}+y^{2}} d y d x$. (Hint. First sketch the region of integration.)
3. [18] Let $x=u-v+w, y=v-w, z=w-u$. Find the jacobians $\frac{\partial(x, y, z)}{\partial(u, v, w)}$ and $\frac{\partial(u, v, w)}{\partial(x, y, z)}$
4. [15] Let $\vec{u}=2 \vec{i}-3 \vec{j}+\vec{k}$, and $\vec{v}=\vec{i}-\vec{j}+2 \vec{k}$. a) Find the angle θ between \vec{u} and \vec{v} to the nearest degree.
b) Find the component of \vec{u} that is parallel to \vec{v}, and the component of \vec{v} that is orthogonal to \vec{u}. c) Find the direction cosines of \vec{v}, and approximate the direction angles to the nearest degree.
5. [10] Use an appropriate order of integration to evaluate $\iint_{\mathcal{R}} y \sin (x y) d A$, where $\mathcal{R}=\{(x, y) ; 0 \leq x \leq 1,0 \leq$ $y \leq \pi / 4$
6. [16] Let $f(x, y)=x+y+z$. Use the Lagrange multipliers to find the maximum and minimum values of f subject to the constraint: $x^{2}+y^{2}-z^{2}=1$.
