MAC 2313 (Calculus III)
Test 2, Thursday October 26, 2006

Name:

PID:
Remember that no documents or calculators are allowed during the test. Be as precise as possible in your work; you shall show all your work to deserve the full mark assigned to any question. Do not cheat, otherwise I will be forced to give you a zero and report your act of cheating to the University Administration. Good luck.

1. [12] Determine whether each of the following limit exits.
a) $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+2 y^{2}}$
b) $\lim _{(x, y, z) \rightarrow(0,0,0)} \frac{x y z}{x^{2}+y^{2}+z^{2}}$
2. [12] Let $f(x, y)=\left\{\begin{array}{l}\frac{x y}{x^{2}+y^{2}}, \quad(x, y) \neq(0,0), \\ 0, \quad(x, y)=(0,0) .\end{array}\right.$

Find $f_{x}(0,0)$, and $f_{y}(0,0)$. Is f differentiable at $(0,0)$?
3. [10] Consider the surface $x z+2 y z^{2}-z y^{2}=1$. a) Find an equation for the tangent plane to the surface at the point $P(1,2,1)$. b) Find the parametric equations of the line normal to the surface at P.
4. [18] a) Find the velocity, the speed, and the acceleration, all of them at time $t=\pi / 2$, of a particle moving along the curve $r(t)=e^{t} \vec{i}+e^{t} \sin (t) \vec{j}+e^{t} \cos (t) \vec{k}$. b) What is the curvature of that curve at each time t ?
5. [9+6] a) If $w^{3}+x \cos (y z)=x$, use implicit differentiation to find w_{x}, w_{y}, and w_{z}. b) If $f(x, y, z)=y \cos (x z)$, find a local linear approximation L of the function f at $P(0,1,0)$, and use it to approximate $f(0.1,1.1,0.1)$.
6. [15] a) If $x=u v, y=u^{2}-v^{2}, z=u^{2}+v^{2}$, and $w=\ln (1+x+y+z)$, find w_{u}, w_{v}. Express your answers in terms of u and v. b) If $f(x, y, z)=x y z$, find the directional derivative of f at $P(1,1,1)$ in the direction from P to $Q(1,2,-1)$.
7. [20] Let $f(x, y)=-x^{3}+6 x+y^{4}-2 y^{2}$. Find all the critical points of f and classify each of them as a local maximum, a local minimum, or a saddle point.

