MAS 3105 (Linear Algebra) Test 2, Friday June 05, 2015

 Name:
 PID:

 Remember that you won't get any credit if you do not show the steps to your answers. Total=105 points.

 1. [20] Find a basis for the null space and a basis for the column space of the matrix $A = \begin{pmatrix} -1 & 2 & -3 & 5 \\ 2 & 3 & 7 & 1 \\ 6 & 16 & 22 & 14 \end{pmatrix}$.

- a) In \mathbb{R}^3 , there exist four linearly independent vectors.
- b) If \mathbf{u}_1 , \mathbf{u}_2 , \mathbf{u}_3 are linearly independent in \mathbb{R}^5 , then they span \mathbb{R}^5 .
- c) If A is a 7×5 matrix, then A and A^T have the same rank.
- d) If U is the reduced row echelon form of a nonsingular matrix A, then A and U have the same column space.
- e) If If $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4$ span a subspace of \mathbb{R}^4 , then they are linearly independent.
- f) If A is a 12×12 nonsingular matrix, then A and A^T have the same nullity.
- g) If L is a linear operator on \mathbb{R}^n with ker $(L) = \{0_{\mathbb{R}^n}\}$, then $R(L) = \mathbb{R}^n$.
- h) If U and V are subspaces of a vector space E, then U + V is a subspace of E too.
- i) If A and B are similar matrices and A is singular, then B is also singular.
- j) If A and B are similar matrices, then A^T and B^T are also similar matrices.

^{2. [20]} State whether each of the following statement is true or false. No explanations needed.

3. [10] Let $\mathcal{M}_2 = \left\{ A = \begin{pmatrix} a & c \\ b & d \end{pmatrix}; a, b, c, d \in \mathbb{R} \right\}$ be the space of 2×2 matrices. Define on \mathcal{M}_2 a mapping L by $L(A) = A + A^T$. a) Show that L is linear. b) Find a basis for ker(L) and a basis for R(L).

 $L(x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + x_3\mathbf{v}_3) = (-x_1 + x_2 + 2x_3)\mathbf{v}_1 + (x_1 + 2x_2 - x_3)\mathbf{v}_2 + (2x_1 - x_2 + x_3)\mathbf{v}_3.$ a) Find the matrix representation M of L relative to the ordered basis $B = [\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3]$. b) Find the transition matrix T from the ordered basis B to the ordered basis $D = [\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3]$. c) Write down the matrix P of L with respect to the ordered basis D in terms of M, but do not attempt to find the entries of P. d) If $\mathbf{u} = 3\mathbf{v}_1 + 2\mathbf{v}_2 - \mathbf{v}_3$, find the coordinates of $L(\mathbf{u})$ in the ordered basis D.

^{4. [25]} Let $\mathbf{v}_1 = (-1, -2, 1)^T$, $\mathbf{v}_2 = (1, 3, 2)^T$, $\mathbf{v}_3 = (1, 1, 2)^T$, and $\mathbf{w}_1 = (-1, -3, 1)^T$, $\mathbf{w}_2 = (2, 3, 1)^T$ and $\mathbf{w}_3 = (1, 1, 3)^T$ be vectors in \mathbb{R}^3 . Let *L* be the linear operator defined on \mathbb{R}^3 by

- 5. [15] a) Let A and B be 6×9 matrices. If rank of A is 5, what is the dimension of N(A)? If the dimension of N(B) is 6, what is the rank of B? (Explain each answer to get full credit.)
- b) Use the Wronskian to show that the vectors 1, $e^x e^{-x}$, $e^x + e^{-x}$ are linearly independent in $C^2([0,1])$.

c) Complete the sentence: The vectors \mathbf{u}_1 , \mathbf{u}_2 , ..., \mathbf{u}_n form a basis for \mathbb{R}^n when the following two conditions are met:

6. [10] Let $\mathbf{u}_1 = (-1, 1, 1)^T$, $\mathbf{u}_2 = (2, a, 2)^T$ and $\mathbf{u} = (-1, a^2 + 2, 5)^T$ be vectors in \mathbb{R}^3 . For which values of a does the vector \mathbf{u} belong to $\text{Span}(\mathbf{u}_1, \mathbf{u}_2)$?

7. [5] Let L denote a linear operator on a vector space E. Let U denote a subspace of E. Set $L^{-1}(U) = \{v \in E; L(v) \in U\}$. Show that $L^{-1}(U)$ is a subspace of E.