MAS 3105 (Linear Algebra)
 Test 2, Friday June 05, 2015

Name:
PID:
Remember that you won't get any credit if you do not show the steps to your answers. Total=105 points.

1. [20] Find a basis for the null space and a basis for the column space of the matrix $A=\left(\begin{array}{cccc}-1 & 2 & -3 & 5 \\ 2 & 3 & 7 & 1 \\ 6 & 16 & 22 & 14\end{array}\right)$.
2. [20] State whether each of the following statement is true or false. No explanations needed.
a) In \mathbb{R}^{3}, there exist four linearly independent vectors.
b) If $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ are linearly independent in \mathbb{R}^{5}, then they span \mathbb{R}^{5}.
c) If A is a 7×5 matrix, then A and A^{T} have the same rank.
d) If U is the reduced row echelon form of a nonsingular matrix A, then A and U have the same column space.
e) If If $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4}$ span a subspace of \mathbb{R}^{4}, then they are linearly independent.
f) If A is a 12×12 nonsingular matrix, then A and A^{T} have the same nullity.
g) If L is a linear operator on \mathbb{R}^{n} with $\operatorname{ker}(L)=\left\{0_{\mathbb{R}^{n}}\right\}$, then $R(L)=\mathbb{R}^{n}$.
h) If U and V are subspaces of a vector space E, then $U+V$ is a subspace of E too.
i) If A and B are similar matrices and A is singular, then B is also singular.
j) If A and B are similar matrices, then A^{T} and B^{T} are also similar matrices.
3. [10] Let $\mathcal{M}_{2}=\left\{A=\left(\begin{array}{ll}a & c \\ b & d\end{array}\right) ; a, b, c, d \in \mathbb{R}\right\}$ be the space of 2×2 matrices. Define on \mathcal{M}_{2} a mapping L by $L(A)=A+A^{T}$. a) Show that L is linear. b) Find a basis for $\operatorname{ker}(L)$ and a basis for $\mathrm{R}(L)$.
4. [25] Let $\mathbf{v}_{1}=(-1,-2,1)^{T}, \mathbf{v}_{2}=(1,3,2)^{T}, \mathbf{v}_{3}=(1,1,2)^{T}$, and $\mathbf{w}_{1}=(-1,-3,1)^{T}, \mathbf{w}_{2}=(2,3,1)^{T}$ and $\mathbf{w}_{3}=(1,1,3)^{T}$ be vectors in \mathbb{R}^{3}. Let L be the linear operator defined on \mathbb{R}^{3} by

$$
L\left(x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+x_{3} \mathbf{v}_{3}\right)=\left(-x_{1}+x_{2}+2 x_{3}\right) \mathbf{v}_{1}+\left(x_{1}+2 x_{2}-x_{3}\right) \mathbf{v}_{2}+\left(2 x_{1}-x_{2}+x_{3}\right) \mathbf{v}_{3}
$$

a) Find the matrix representation M of L relative to the ordered basis $B=\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right]$. b) Find the transition matrix T from the ordered basis B to the ordered basis $D=\left[\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}\right]$. c) Write down the matrix P of L with respect to the ordered basis D in terms of M, but do not attempt to find the entries of P. d) If $\mathbf{u}=3 \mathbf{v}_{1}+2 \mathbf{v}_{2}-\mathbf{v}_{3}$, find the coordinates of $L(\mathbf{u})$ in the ordered basis D.
5. [15] a) Let A and B be 6×9 matrices. If rank of A is 5 , what is the dimension of $N(A)$? If the dimension of $N(B)$ is 6 , what is the rank of B ? (Explain each answer to get full credit.)
b) Use the Wronskian to show that the vectors $1, e^{x}-e^{-x}, e^{x}+e^{-x}$ are linearly independent in $C^{2}([0,1])$.
c) Complete the sentence: The vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$ form a basis for \mathbb{R}^{n} when the following two conditions are met:
6. [10] Let $\mathbf{u}_{1}=(-1,1,1)^{T}, \mathbf{u}_{2}=(2, a, 2)^{T}$ and $\mathbf{u}=\left(-1, a^{2}+2,5\right)^{T}$ be vectors in \mathbb{R}^{3}. For which values of a does the vector \mathbf{u} belong to $\operatorname{Span}\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right)$?
7. [5] Let L denote a linear operator on a vector space E. Let U denote a subspace of E. Set $L^{-1}(U)=\{v \in E ; L(v) \in U\}$. Show that $L^{-1}(U)$ is a subspace of E.

