MAC 2311 (Calculus I)

Test 2 Review

Name:
PID:

Remember that no documents or calculators are allowed during the exam. Be as precise as possible in your work; you shall show all your work to deserve the full mark assigned to any question. Guessing the correct answers won't earn you any credits. Do not cheat, otherwise I will be forced to give you a zero and report your act of cheating to the University administration. Good Luck!

1. [32] Find the derivative of each of the following functions (Show all your work, and simplify your answers as much as possible; you will not get any credit(s) by guessing the correct answer(s).)
a) $f(x)=\frac{2 x}{x^{2}-3 x+1}$
b) $g(x)=x^{3} \ln \left(1+x^{2}\right)$
c) $h(x)=\tan ^{-1}\left(x^{4}\right)$
d) $k(x)=3^{\cos x}-e^{\left(-2 x^{3}+5 x^{2}-3 x+7\right)}$
e) Use the logarithmic differentiation technique to find $\frac{d y}{d x}$ if $y=(x+\tan x)^{\sin x}$.
f) Use the implicit differentiation technique to find $\frac{d y}{d x}$ if $x y+x^{2} \cos (y)=1$.
g) $p(x)=(2 x+7)^{9}(3 x-5)^{6}$
h) $m(x)=\frac{1+x^{2}}{\cot x+\csc x}$
i) $n(x)=\log _{2 x-4}(5 x+3)$
j) Find all values of x at which the line that is tangent to $y=3 x-\tan x$ is parallel to the line $y-x=2$.
2. [6] Use the definition of the derivative to evaluate the limits
a) $\lim _{x \rightarrow 2} \frac{\sec (\pi x / 8)-\sqrt{2}}{x-2}=$
b) $\lim _{x \rightarrow 1} \frac{x^{11}-1}{x-1}=$
3. [5] Let $y=2 x^{2}-3$. a) Find the average rate of change of y with respect to x on the interval $[-1,2]$. b) Find the instantaneous rate of change of y with respect to x at $x_{0}=-1$.
4. [5] a) Write down the two definitions for $f^{\prime}\left(x_{0}\right)$. b) Use any of those definitions to find $f^{\prime}(1)$ if $f(x)=\sqrt{x}$. c) Use part b) to find the equation of the tangent line to the curve $y=\sqrt{x}$ at $x=1$.
5. [5] If $f(x)= \begin{cases}3 x^{2}-5, & x>-1 \\ 5 x^{3}+3, & x \leq-1 .\end{cases}$
a) Show that f is continuous at $x=-1$. b) Is f differentiable at $x=-1$? You must carefully explain your answer to get any credits.
6. [34] Find the derivative of each of the following functions (Show all your work, and simplify your answers as much as possible; you will not get any credit by guessing the correct answer(s).)
a) $f(x)=-4 x^{3}-\frac{8}{\sqrt[4]{x}}+\frac{7}{x^{5}}$
b) $g(x)=\frac{4 x-5}{x^{2}+x+1}$
c) $h(x)=x^{3} \sin \left(x^{2}\right)$
d) $k(x)=\sec ^{2}\left(e^{\sin x}\right)-\tan ^{2}\left(e^{\sin x}\right)$
e) $l(x)=\sin ^{-1}(3 x)-3 \tan ^{-1}\left(e^{\cos x}\right)$
f) $m(x)=\cos (\cos x)$
g) Use the logarithmic differentiation technique to find the derivative of $p(x)=\left(x-e^{x}\right)^{\sin x}$.
h) Use the implicit differentiation technique to find $\frac{d y}{d x}$ if $x+y^{2}-\sin (x y)=2$. Find an equation for the tangent line to the curve $x+y^{2}-\sin (x y)=2$ at the point $(2,0)$.
i) Suppose that a function f is differentiable at $x=2$, and $\lim _{x \rightarrow 2} \frac{x^{3} f(x)-24}{x-2}=28$. Find $f(2)$ and $f^{\prime}(2)$.
j) Find all values of x at which the tangent line to the curve $y=2 x^{3}-x^{2}$ is perpendicular to the line $x+4 y=10$.
7. [10] Decide whether the statement is true or false. No explanation needed.
a) If $f(x)=\frac{\sin x}{g(x)}$, then $f^{\prime}(x)=\frac{\cos x}{g^{\prime}(x)}$.
b) $\frac{d}{d x}(\ln (f(x)))=\frac{1}{f(x)}$.
c) If $f(x)=h(\cos x)$, then $f^{\prime}(x)=h^{\prime}(-\sin x)$.
d) If f is differentiable at -7 , then f is continuous at -7 .
e) If f is continuous at 2 , then f is differentiable at 2 .
f) If $g(x)=e^{\cos x}$, then $g^{\prime}(x)=e^{\cos x}$.
g) If $k(x)=\cos ^{2}\left(x^{2}\right)+\sin ^{2}\left(x^{3}\right)$, then $k^{\prime}(x)=0$.
h) If $p(x)=f(x) \tan x$, then $p^{\prime}(x)=f^{\prime}(x) \sec ^{2} x$.
i) If $\lim _{x \rightarrow-1} \frac{f(x)-f(-1)}{x+1}=-2$, then $\lim _{h \rightarrow 0} \frac{f(-1+h)-f(-1)}{h}=-2$.
j) If $m(x)=e^{6}$, then $m^{\prime}(x)=6 e^{5}$.
