MAC 2313 (Calculus III) Test 3, Thursday November 30, 2006

Name:

PID:

Remember that no documents or calculators are allowed during the test. Be as precise as possible in your work; you shall show all your work to deserve the full mark assigned to any question. Do not cheat, otherwise I will be forced to give you a zero and report your act of cheating to the University Administration. Good luck.

1. [26] Evaluate each integral.
a)
$$\int_0^1 \int_0^{\pi} \int_2^3 z^2 (2r+1) \sin \theta \, dz d\theta dr =$$

b) $\int_0^1 \int_1^2 (x^2 - y^2) \, dx \, dy =$

d) $\int_0^2 \int_0^z \int_y^{\sqrt{y}} 2x \, dx dy dz =$

2. [10] Use polar coordinates to evaluate $\int_0^1 \int_0^x \sqrt{x^2 + y^2} \, dy dx. \left(\int \sec^n x \, dx = \frac{\sec^{n-2} x \tan x}{n-1} + \frac{n-2}{n-1} \int \sec^{n-2} x \, dx, \int \sec x \, dx = \ln|\sec x + \tan x| + C. \right)$

3. [12] Let $F(x,y) = xy \overrightarrow{i} + yz \overrightarrow{j} + zx \overrightarrow{k}$. Find div F, and curl F.

4. [12] Evaluate the line integral $\int_{\mathcal{C}} -y \, dx + x \, dy$ along the curve shown on the figure.

5. [15] Let $F(x,y) = (y \sin x - \cos y)\vec{i} + (x \sin y - \cos x)\vec{j}$. Show that F is conservative, and find a potential function φ for F. Evaluate the line integral $\int_{\mathcal{C}} (y \sin x - \cos y) dx + (x \sin y - \cos x) dy$ along the curve \mathcal{C} parametrized by $r(t) = \tan(\pi t/4)\vec{i} + \tan^{-1}t\vec{j}$, $0 \le t \le 1$.

6. [7] Use Green's theorem to evaluate the line integral $\int_{\mathcal{C}} (2 \tan^{-1}(y/x)) dx + \ln(x^2 + y^2) dy$ along the curve \mathcal{C} parametrized by $r(t) = (3 + 2\cos t)\vec{i} + (1 + 3\sin t)\vec{j}$, $0 \le t \le 2\pi$.

7. [18] Let f(x, y) = xy. Use the Lagrange multipliers to find the maximum and minimum values of f subject to the constraint: $2x^2 + 3y^2 = 1$.

8. [Bonus, 10] State and prove the fundamental theorem of line integral.