MAC 2312 (Calculus II) - Answers
Test 3, Wednesday November 23, 2016
Name:
FID:
Remember that no documents or calculators are allowed during the test. Be as precise as possible in your work; no credits will be awarded to unexplained answers. Do not cheat, otherwise I will be forced to give you a zero and report your act of cheating to the University Administration.

1. [10] Use multiplication to find the first three nonzero terms of the Maclaurin series for $f(x)=e^{x} \cos \left(x^{2}\right)$.

$$
\begin{aligned}
& e^{x}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\cdots \\
& \cos \left(x^{2}\right)=1-\frac{x^{4}}{2}+\frac{x^{8}}{24}+\cdots, \quad e^{x} \cos \left(x^{2}\right)=\left(1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}\right)\left(1-\frac{x^{4}}{2}+\frac{x^{8}}{24}+-\right) \\
& e^{x} \cos \left(x^{2}\right)=1+x+\frac{x^{2}}{2}+\cdots .
\end{aligned}
$$

2. [10] Find the Taylor polynomial of order four for $f(x)=\sin (x / 2)$ about $x=\pi$.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{2} \cos (x / 2), \quad f^{\prime \prime}(x)=-\frac{1}{4} \sin (x / 2), f^{(3)}(x)=-\frac{1}{8} \cos (x / 2) \\
f^{\prime(4)}(x) & =\frac{1}{16} \sin (x / 2) \\
f(\pi) & =1, f^{\prime}(\pi)=0, f^{\prime \prime}(\pi)=-\frac{1}{4}, f^{(3)}(\pi)=0, f^{(4)}(\pi)=\frac{1}{16} \\
p_{4}(x) & =f(\pi)+f^{\prime}(\pi)(x-\pi)+\frac{f^{\prime \prime}(\pi)}{2}(x-\pi)^{2}+\frac{f^{(3)}(\pi)}{6}(x-\pi)^{3}+\frac{f^{(4)}(\pi)}{24}(x-\pi)^{4} \\
& =1-\frac{(x-\pi)^{2}}{8}+\frac{(x-\pi)^{4}}{16(24)}
\end{aligned}
$$

7. [10] Determine the radius of convergence and the interval of convergence of the power series $\sum_{k=1}^{\infty} \frac{(-1)^{k}(x-2)^{k}}{k 4^{k}}$.

$$
\begin{aligned}
P= & \lim _{k \rightarrow \infty} \frac{(x-2)^{k+1}}{(k+1) 4^{k+1}} \cdot \frac{k 4^{k}}{|x-2|^{k}}=\frac{1 x-2}{4} \lim _{k \rightarrow \infty} \frac{k}{k+1}=\frac{|x-2|}{4}<1 \rightarrow 1 x-21<4 \\
& \operatorname{son} R=4-4<x-2<4 \rightarrow x<6
\end{aligned}
$$

At $x=-2: \sum_{k=1}^{\infty} \frac{(-1)^{k}(-4)^{k}}{k 4^{k}}=\sum_{k=1}^{\infty} \frac{4^{k}}{k 4^{k}}=\sum_{k=1}^{\infty} \frac{1}{k}$, diverges; harmonic series
At $x=6: \sum_{k=1}^{\infty} \frac{(-1)^{k} 4^{k}}{k 4^{k}}=\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k}$, converges; A.S.T.
So $I_{c}=(-2,6]$.
8. [8] Show that the series $\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k^{4}}$ satisfies the requirements of the alternating series test. Find a. value of n for which the $n^{\text {th }}$ partial sum is ensured to approximate the series to within three-decimal place accuracy.
Set

$$
\begin{aligned}
& S_{n}=\sum_{k=1}^{n} \frac{(-1)^{k}}{k^{4}}, s=\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k^{4}} \\
& \left|s_{n}-s\right| \leq \frac{1}{(n+1)^{4}} \cdot\left|s_{n}-5\right| \leq 5\left(10^{-4}\right) \text { if } \frac{1}{(n+1)^{4}} \leq 5\left(10^{-4}\right) \rightarrow \frac{10^{4}}{5} \leq(n+1)^{4} \\
& \rightarrow \sqrt[4]{\frac{104}{5}} \leq n+1 \rightarrow \frac{10}{\sqrt[4]{5^{4}}}-1 \leq n .
\end{aligned}
$$

9. [8] Use cylindrical shells to find the volume of the solid that results when the region enclosed by the curves $x=0, y=x^{3}$, and $y=8$, is revolved about the y-axis. You must sketch the region and indicate the axis of revolution.

$$
\begin{aligned}
V & =\int_{0}^{2} 2 \pi x\left(8-x^{3}\right) d x \\
& =\int_{0}^{2} 2 \pi x\left(8-x^{3}\right) d x \\
& =2 \pi\left[4 x^{2}-\frac{x^{2}}{5}\right]_{0}^{2}=2 \pi\left[4 x^{2}-\frac{x^{5}}{5}\right]_{0}^{2} \\
& =\frac{2 \pi}{5}\left(16-\frac{32}{5}\right) \\
& =\frac{96 \pi}{5}
\end{aligned}
$$

3. [10] Find the area of the surface generated by revolving the curve $y=x^{3}, 0 \leq x \leq 1$ about the x-axis.

$$
\begin{aligned}
\int=2 \int_{0}^{1} x^{3} \sqrt{1+\left(3 x^{2}\right)^{2}} d x & =2 \pi \int_{0}^{1} x^{3} \sqrt{1+9 x^{4}} d x ; \quad u=1+9 x^{4} ; d u=36 x^{3} d x \\
& =\frac{2 \pi}{36} \int_{1}^{10} \sqrt{4} d u=\frac{\pi}{18}\left[\frac{2}{3} u^{3 / 2}\right]_{1}^{10}=\frac{\pi}{27}(10 \sqrt{10}-1)
\end{aligned}
$$

4. [10] a) Use a popular Maclaurin series to find the Maclaurin series for $f(x)=\frac{1}{1-x^{2}}$, and specify its interval of convergence. b) Find the derivative function f^{\prime} of f, and use the Maclaurin series obtained in part a) and a well-known theorem to write down the Maclaurin series for f^{\prime}. c) Use the result in b) to derive the sum of the series $\sum_{k=1}^{\infty} \frac{k}{2^{2 k-2}}$.
a) $\frac{1}{1-x}=\sum_{k=0}^{\infty} x^{k k}$, so $\frac{1}{1-x^{2}}=\sum_{k=0}^{\infty} x^{2 k}, \quad I_{c}=(-1,1)$
b) $f^{\prime}(x)=\frac{2 x}{\left(1-x^{2}\right)^{2}}=\frac{d}{d x} \sum_{k=0}^{\infty} x^{2 k} \xlongequal[\infty]{=} \sum_{k=1}^{\infty} \frac{d}{d x}\left(x^{2} k\right)=\sum_{k=1}^{\infty} 2 k x^{2 k-1}$
c) For $x=\frac{1}{2}, \sum_{k=1}^{\infty} 2 k\left(\frac{1}{2}\right)^{2 k-1}=\sum_{k=1}^{\infty} \frac{2 k}{2^{2 k-1}}=\sum_{k=1}^{\infty} \frac{k}{2^{2 k-2}}=f^{\prime}(1 / 2)=\frac{1}{\left(\frac{3}{4}\right)^{2}}=\frac{16}{9}$
5. [8] Sketch the region enclosed by the curves $x=0, y=x^{2}, x+y=6$, and find its area.

6. [12] a) Find the exact length of the arc of the parametric curve $x=t^{2}, y=t^{3}, 1 \leq t \leq 2$.

$$
\begin{aligned}
& u=4+9 t^{2} \\
& d u=18 t d t
\end{aligned}
$$

$$
\begin{array}{rlrl}
L & =\int_{1}^{2} \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t & x^{\prime}(t)=2 t, y^{\prime}(t)=3 t^{2} \\
& \left.=\int_{1}^{2} \sqrt{4 t^{2}+9 t^{4}} d t=\int_{1}^{2} t \sqrt{4+9 t^{2}} d t=\frac{1}{18} \int_{13}^{40} \sqrt{4} d u=\frac{1}{18} \cdot \frac{2}{3} u^{3 / 2}\right]_{13}^{40}
\end{array}
$$

b) Find the volume of the solid that results when the region enclosed by the curves $x=0, y=x^{2}$, and $y=6-x$ is revolved about the x-axis. See $P b 5$

$$
\begin{aligned}
V=\pi \int_{0}^{2}(6-x)^{2}-x^{4} d x & =\pi\left[-\frac{(6-x)^{3}}{3}-\frac{x^{5}}{5}\right]_{0}^{2} \\
& =\pi\left[\frac{-4^{3}+6^{3}}{3}-\frac{2^{5}}{5}\right]^{2}
\end{aligned}
$$

