MAC 2313 (Calculus III) Test 3 Review

Test 3 will cover sections 13.9,14.1 to 14.3, 14.5 and 14.6.

1. Find the point B on the plane x + 2y + 3z = 12 that is closest to the point A(1, 2, -3). Find the distance between A and B.

2. A space probe in the shape of the ellipsoid $4x^2 + y^2 + 4z^2 = 16$ enters the Earth's atmosphere and its surface begins to heat. After one hour, the temperature at the point (x, y, z) on the probe's surface is $T(x, y, z) = 8x^2 + 4yz - 16z + 600$. Find the hottest point on the probe's surface.

3. a) Find the point on the sphere $x^2 + y^2 + z^2 = 4$ farthest from the point D(1, -1, 1). b) Find the minimum distance from the surface $x^2 + y^2 - z^2 = 1$ to the origin.

4. Evaluate each integral.

a) $\int \int_{R} e^{s} \ln t \, dA$; R = region in the first quadrant of the st-plane that lies above the curve $s = \ln t$ from t = 1 to $t = 2. \text{ b) } \int_0^R \int_x^R \frac{\sin y}{y} \, dy dx. \text{ c) } \int_0^2 \int_0^{4-x^2} \frac{xe^{2y}}{4-y} \, dy dx. \text{ d) } \int_0^{\ln 2} \int_{e^y}^2 e^{x+y} \, dx dy. \text{ e) } \int_{-1}^1 \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \ln(x^2+y^2+1) \, dy dx.$ 5. Find the volume of the given solid G.

a) G = solid in the first octant bounded by the coordinate planes, the cylinder $x^2 + y^2 = 4$ and the plane y + z = 3. b) G = solid bounded above by the cylinder $x^2 + z^2 = 4$, below by the xy-plane and laterally by the cylinder $x^2 + y^2 = 4$. c) G = solid below the cone $z = \sqrt{x^2 + y^2}$, inside the cylinder $x^2 + y^2 = 2y$, and above z = 0. d) G = solid inside the sphere $r^2 + z^2 = 4$ and outside the cylinder $r = 2 \cos \theta$.

6. Evaluate each triple integral a) $\int_{1}^{3} \int_{x}^{x^{2}} \int_{0}^{\ln z} xe^{y} dy dz dx$. b) $\int_{1}^{2} \int_{z}^{2} \int_{0}^{y\sqrt{3}} \frac{y}{x^{2}+y^{2}} dx dy dz$. c) $\int_{0}^{2\pi} \int_{0}^{\frac{\pi}{4}} \int_{0}^{a \sec \phi} \rho^{2} \sin \phi \, d\rho d\phi d\theta$. d) $\int_{-1}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} e^{-(x^{2}+y^{2}+z^{2})^{\frac{3}{2}}} dz dy dx$. e) $\int_{0}^{2} \int_{0}^{\sqrt{4-y^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{\sqrt{8-x^{2}-y^{2}}} z^{2} dz dx dy$.

7. Write down an equivalent integral using the order of integration provided, but do not evaluate.

a)
$$\int_0^2 \int_0^{4-x^2} \int_0^x \frac{\sin(2z)}{4-z} \, dy \, dz \, dx; \, xyz \text{ and } xzy. b) \int_0^4 \int_0^{4-y} \int_0^{\sqrt{z}} f(x,y,z) \, dx \, dz \, dy; \, zyx \text{ and } yxz.$$

8. Use spherical coordinates to find the volume of the solid G.

a) G = solid within the cone $\phi = \pi/4$ and between the spheres $\rho = 1$ and $\rho = 2$. b) G = solid within the sphere $x^2 + y^2 + z^2 = 9$, outside the cone $z = \sqrt{x^2 + y^2}$. c) G = solid enclosed by the sphere $x^2 + y^2 + z^2 = 8$, and the planes z = 0 and $z = \sqrt{2}$. d) G = solid bounded above by the cone $z = 4 - \sqrt{x^2 + y^2}$ and below by the cone $z = \sqrt{x^2 + y^2}$. e) G = solid enclosed by the cylinder $x^2 + y^2 = 3$ and the planes z = 1 and z = 3.

9. Use cylindrical coordinates to find the volume of the solid: a) that is inside the sphere $r^2 + z^2 = 20$, but not above the paraboloid $z = r^2$. b) bounded above by the paraboloid $z = 8 - x^2 - y^2$ and below by the cone $z = \sqrt{x^2 + y^2}$. c) inside the cylinder $x^2 + y^2 = 4$, below the cone $z = 6 - \sqrt{x^2 + y^2}$ and above the xy-plane. d) inside the surface $r^2 + z^2 = 4$ and outside the surface $r = 2\cos\theta$.

10. Evaluate each integral using polar coordinates

a)
$$\int_0^2 \int_0^{\sqrt{2x-x^2}} \sqrt{x^2+y^2} \, dy \, dx$$
. b) $\int_0^a \int_0^{\sqrt{a^2-y^2}} \frac{dx \, dy}{(1+x^2+y^2)^{\frac{3}{2}}}$. c) $\int_0^1 \int_y^{\sqrt{y}} \sqrt{x^2+y^2} \, dx \, dy$.