MAC 2311 (Calculus I) Test 4 Review- Spring 2015

- 1. Find the absolute maximum and minimum values of f and state where they occur.
 - a) $f(x) = 2x^3 + 3x^2 12x$, $-3 \le x \le 2$, b) $f(x) = x 2\sin x$, $0 \le x \le \pi$,
 - c) $f(x) = \frac{x-2}{x+1}$, $-1 < x \le 5$.
- 2. Let $f(x) = x^2 + px + q$. Find all values of p and q such that f(1) = 3 is an extreme value of f on the interval [0,2]. Is this value a maximum or a minimum?
- 3. A rectangular field with an area of 3200 ft² is to be fenced off. Two opposite sides will use fencing costing \$1 per foot and the remaining sides will use fencing costing \$2 per foot. Find the dimensions of the field with least cost.
- 3. A rectangular box with a square base is to have a volume of 2000 cm³. It costs twice as much per square centimeter for the top and bottom as it does for the sides. Find the dimensions of least cost.
- 4. The shoreline of Circle Lake is a circle with diameter 2 mi. Nancy's training routine begins at point E on the Eastern shore of the lake. She jogs along the north shore to a point P, and then swims the straight line distance, if any, from P to the point W diametrically opposite E. Nancy swims at a rate of 2 mi/h and jogs a 8 mi/h. How far should Nancy jog in order to complete her training routine in a) the least amount of time? b) the greatest amount of time?
- 5. The function $s(t) = \frac{t^4}{4} \frac{7}{3}t^3 + 7t^2 8t + 1$, $t \ge 0$ denotes the position of a particle moving along a straight line, where s is in feet and t in seconds. a) find the velocity and acceleration functions. Find the position, velocity, speed, and acceleration at time t = 3, c) When is the particle stopped? d) When is the particle speeding up? Slowing down? e) Find the total distance traveled from time t = 0 to time t = 3. f) Give a schematic picture of the motion.
- 6. a) State the Mean-value theorem. b) Let $f(x) = x \tan^{-1} x$, $0 \le x \le 1$. Show that f satisfies all the requirements of the Mean-value theorem on the given interval, and all x_0 in (0,1) that satisfy the conclusion of the theorem. c) Use the MVT to show that $\sqrt{y} \sqrt{x} < \frac{y-x}{2\sqrt{x}}$, for all 0 < x < y. Derive from the last inequality that for all 0 < x < y, one has $\sqrt{xy} < \frac{x+y}{2}$. d) Use the MVT to prove:

 $\frac{x}{x^2+1} < \tan^{-1}x < x$, for all x > 0. e) An automobile travels 4 mi along a straight road in 5 min. Show that the speedometer reads exactly 48 mi/h at least once during the trip. f) Let $f(x) = x^{\frac{2}{3}}$, a = -1 and b = 8. i) Show that there is no x_0 in (a,b) such that $f'(x_0) = \frac{f(b) - f(a)}{b-a}$. ii) Explain why the result in i) does not contradict the MVT.

7. Evaluate each indefinite integral using algebraic manipulations or an appropriate substitution.

a)
$$\int (x^3 - 5x^2 + 7x - 8)\sqrt{x} \, dx$$
, b) $\int \frac{1}{1 + \cos(2t)} \, dt$, c) $\int \frac{1}{1 + \sin x} \, dx$, d) $\int \frac{1}{x\sqrt{x^2 - 1}} \, dx$
e) $\int \frac{1}{2\sqrt{1 - x^2}} - \frac{(x^4 + 3x^2 - 2)}{x^2 + 1} \, dx$, f) $\int \sin(2u)\cos(3u) \, du$, g) $\int x^2\sqrt{x + 2} \, dx$, h) $\int \frac{\sec x + \cos x}{3\cos x} \, dx$, i) $\int \frac{\sin(\sqrt{u})}{\sqrt{u}} \, du$, j) $\int \frac{\sec^2 x}{4 + \tan x} \, dx$, k) $\int e^u(1 + e^u)^{17} \, du$, l) $\int \frac{x^2}{1 + x^6} \, dx$, m) $\int \frac{y}{\sqrt{2y + 1}} \, dy$, n) $\int \frac{\sin \theta}{\cos^2 \theta + 1} \, d\theta$, o) $\int \frac{t}{t + 3} \, dx$, p) $\int \tan x \, dx$, q) $\int \frac{e^z}{4 + e^{2z}} \, dz$, r) $\int \sin(\sin \theta) \cos \theta \, d\theta$, s) $\int \frac{1}{\sqrt{9 - x^2}} \, dx$, t) $\int \cos(4t) \cos(7t) \, dt$, u) $\int \frac{t}{1 + \sqrt{t}} \, dt$, v) $\int \frac{\sqrt[4]{x}}{1 + \sqrt{x}} \, dx$,

8. Solve each initial-value problem.

a)
$$\frac{dy}{dx} = \frac{x^4 - 1}{x^2 + 1}$$
, $y(1) = \pi/2$, b) $\frac{dy}{dt} = \frac{1}{25 + 9t^2}$, $y(-5/3) = \pi/30$.

9. a) Find all values of t at which the parametric curve $x=3t^4-3t^2$, $y=t^3-4t$, has i) a horizontal tangent line, ii) a vertical tangent line. b) Show that the parametric curve $x=t^2-3t+5$, $y=t^3+t^2-10t+9$ intersects itself at the point (3,1), and find equations for the two tangent lines at the point of intersection. Also find the value of $\frac{d^2y}{dx^2}$ at the point of intersection. c) Eliminate the parameter in the equations of the curve $x=\sin^2 t$, $y=4\cos^2 t$, $(0 \le t \le \pi/2)$ sketch the curve, and indicate its orientation. d) Consider the parametric curve given by x=t, $y=1-t^2$, $1 \le t \le 2$. i) Find $\frac{dy}{dx}$. ii) Eliminate the parameter, and sketch that curve including its orientation.