MAC 2313 (Calculus III)
 Test 4 Review- Spring 2015

1. a) Let G be the solid defined by the inequalities: $\sqrt{x^{2}+y^{2}} \leq z \leq 20-x^{2}-y^{2}$. Find the coordinates of the centroid of G.b) Find the mass and center of gravity of the solid G enclosed by the portion of the sphere $x^{2}+y^{2}+z^{2}=2$ on or above the plane $z=1$ if the density is $\delta=\sqrt{x^{2}+y^{2}+z^{2}}$.
2. a) State the fundamental theorem of line integral. b) Let $F(x, y)=(2 x y+x) \vec{i}+\left(x^{2}+2 y\right) \vec{j}$. b1) Show that F is conservative. b2) Find a potential function φ for F. b3) Evaluate the line integral $\int_{\mathcal{C}}(2 x y+x) d x+\left(x^{2}+2 y\right) d y$ along the curve \mathcal{C} parametrized by $\vec{r}(t)=\sqrt{1+t} \vec{i}+\sin ^{-1} t \vec{j}, \quad 0 \leq t \leq 1$.
3. a) Set up, but do not evaluate, two iterated integrals equal to the surface integral $\iint_{\sigma} y^{2} z d S$, where σ is the portion of the cylinder $x^{2}+z^{2}=4$ in the first octant between the planes $y=0, y=6, x=z$, and $x=2 z$. b) Consider the parametric surface given by $\mathbf{r}(u, v)=u \vec{i}+u \cos v \vec{j}+u \sin v \vec{k}$ with $0 \leq u \leq 4$ and $0 \leq v \leq \pi$. i) Find the area S of σ. ii) Find the mass M of σ if its density is $\delta(x, y, z)=x^{2}+y^{2}+z^{2}$. iii) Evaluate the surface integral $\iint_{\sigma} x \sqrt{z} d S$ where σ is the portion of the paraboloid $z=x^{2}+y^{2}$ in the first octant between the planes $z=0$ and $z=4$. iv) a) Find an equation for the tangent plane to the parametric surface σ given by: $\vec{r}(u, v)=4 u \cos v \vec{i}+u^{2} \vec{j}+3 u \sin v \vec{k}$, at the point P corresponding to $(u, v)=(1, \pi / 2)$..
4. Let $F(x, y)=\left(x^{3} y+4 e^{-2 x}\right) \vec{i}+\left(\frac{x^{4}}{4}+y^{2}\right) \vec{j}$. a) Show that F is conservative. b) Find a potential function φ for F. c) Evaluate the line integral $\int_{\mathcal{C}}\left(x^{3} y+4 e^{-2 x}\right) d x+\left(\frac{x^{4}}{4}+y^{2}\right) d y$ along the curve \mathcal{C} parametrized by $\vec{r}(t)=\cos ^{3} t \vec{i}+\sin ^{3} t \vec{j}, \quad 0 \leq t \leq \pi$.
5. a) Let $\mathbf{F}(x, y, z)=\left(x^{2}-2 y x\right) \vec{i}+\left(3 y^{2}-2 y z\right) \vec{j}+\left(5 z^{2}-2 x z\right) \vec{k}$. Find $\operatorname{div} \mathbf{F}$ and curlF. Evaluate the line integral $\int_{\mathcal{C}} \operatorname{curl} \mathbf{F} \cdot \mathbf{d r}$, where \mathcal{C} is the triangle with vertices $(0,0),(0,2)$ and $(2,0)$.
6. Let \mathcal{C} be the curve given by $x=t, y=3 t^{2}, z=6 t^{3}, \quad 0 \leq t \leq 1$, and evaluate $\int_{\mathcal{C}} x y z^{2} d s$. b) Evaluate the line integral along \mathcal{C} given by $\mathcal{C}: x=t, y=t^{2}, z=3 t^{2}, 0 \leq t \leq 1, \int_{\mathcal{C}} \sqrt{1+30 x^{2}+10 y} d s$. c) Evaluate $\int_{\mathcal{C}} y d x+z d y-x d z$ along the helix $x=\cos (\pi t), \quad y=\sin (\pi t), \quad z=t$ from the point $(1,0,0)$ to $\left.(-1,0,1) . \mathrm{d}\right)$ Find the mass of a thin wire shaped in the form of the curve $x=e^{t} \cos t, y=e^{t} \sin t,(0 \leq t \leq 1)$ if the density function δ is proportional to the distance to the origin.
7. a) Find parametric equations for the paraboloid $z=x^{2}+y^{2}$ in terms of the parameters θ and ϕ, where (ρ, θ, ϕ) are spherical coordinates of a point on the surface. b) Find a parametric representation of the portion of the sphere $x^{2}+y^{2}+z^{2}=9$ on or above the plane $z=2$ in terms of the parameters r and θ, where (r, θ, z) are the cylindrical coordinates of a point on the surface.
8. a) Let $\mathbf{F}(x, y, z)=\sqrt{x^{2}+y^{2}} \vec{k}$. Find the flux of \mathbf{F} across σ, where σ is the portion of the cone $\vec{r}(u, v)=u \cos v \vec{i}+u \sin v \vec{j}+2 u \vec{k}$, with $0 \leq u \leq \sin v, \quad 0 \leq v \leq \pi$. b) Let $\mathbf{F}(x, y, z)=x \vec{i}+y \vec{j}+2 z \vec{k}$. Find the flux of \mathbf{F} across σ, where σ is the portion of the paraboloid below the plane $z=y$, oriented by downward unit normals.
9. Let $\mathbf{F}(x, y, z)=\left(x^{3}-e^{y}\right) \vec{i}+\left(y^{3}+\sin z\right) \vec{j}+\left(z^{3}-x y\right) \vec{k}$. Use the Divergence Theorem to find the flux of \mathbf{F} across σ, where:
a) σ is the boundary of the solid G, bounded above by the sphere $z=\sqrt{4-x^{2}-y^{2}}$ and below by the $x y$-plane, with outward orientation.
b) σ is the boundary of the cylindrical solid enclosed by $x^{2}+y^{2}=4, z=0$ and $z=1$ with outward orientation.
10. a) Use Green's theorem to evaluate the line integral $\int_{\mathcal{C}}\left(4 y+\cos \left(1+e^{\sin x}\right)\right) d x+\left(2 x-\sec ^{2} y\right) d y$, where \mathcal{C} is the circle $x^{2}+y^{2}=9$ going from $(0,3)$ to $(0,3)$ counterclockwise.
11. Review the Fundamental Theorem of Line Integral, Green's Theorem and the Divergence Theorem.
