MAC 2313 (Calculus III)

Test 4 Review: This test covers sections 14.4, 14.8, 15.1, 15.2, 15.3, 15.4, 15.5 and 15.6

1. a) Let G be the solid defined by the inequalities: $\sqrt{x^2 + y^2} \le z \le 20 - x^2 - y^2$. Find the coordinates of the centroid of G. b) Find the mass and center of gravity of the solid G enclosed by the portion of the sphere $x^2 + y^2 + z^2 = 2$ on or above the plane z = 1 if the density is $\delta = \sqrt{x^2 + y^2 + z^2}$.

2. a) State the fundamental theorem of line integral. b) Let $F(x,y) = (2xy + x)\vec{i} + (x^2 + 2y)\vec{j}$. b1) Show that F is conservative. b2) Find a potential function φ for F. b3) Evaluate the line integral $\int_{\mathcal{C}} (2xy + x) dx + (x^2 + 2y) dy$ along the curve \mathcal{C} parametrized by $\vec{r}(t) = \sqrt{1 + t \vec{i}} + \sin^{-1} t \vec{j}$, $0 \le t \le 1$.

3. a) Set up, but do not evaluate, two iterated integrals equal to the surface integral $\int \int_{\sigma} y^2 z dS$, where σ is the portion of the cylinder $x^2 + z^2 = 4$ in the first octant between the planes y = 0, y = 6, x = z, and x = 2z. b) Consider the parametric surface given by $\mathbf{r}(u, v) = u \vec{i} + u \cos v \vec{j} + u \sin v \vec{k}$ with $0 \le u \le 4$ and $0 \le v \le \pi$. i) Find the area S of σ . ii) Find the mass M of σ if its density is $\delta(x, y, z) = x^2 + y^2 + z^2$. iii) Evaluate the surface integral $\int \int_{\sigma} x \sqrt{z} dS$ where σ is the portion of the paraboloid $z = x^2 + y^2$ in the first octant between the planes z = 0 and z = 4. iv) a) Find an equation for the tangent plane to the parametric surface σ given by: $\overrightarrow{r}(u, v) = 4u \cos v \overrightarrow{i} + u^2 \overrightarrow{j} + 3u \sin v \overrightarrow{k}$, at the point P corresponding to $(u, v) = (1, \pi/2)$.

4. Let $F(x,y) = (x^3y + 4e^{-2x})\overrightarrow{i} + (\frac{x^4}{4} + y^2)\overrightarrow{j}$. a) Show that F is conservative. b) Find a potential function φ for F. c) Evaluate the line integral $\int_{\mathcal{C}} (x^3y + 4e^{-2x}) dx + (\frac{x^4}{4} + y^2) dy$ along the curve \mathcal{C} parametrized by $\overrightarrow{r}(t) = \cos^3 t\overrightarrow{i} + \sin^3 t\overrightarrow{j}$, $0 \le t \le \pi$.

5. a) Let $\mathbf{F}(x, y, z) = (x^2 - 2yz)\overrightarrow{i} + (3y^2 - 2yz)\overrightarrow{j} + (5z^2 - 2xz)\overrightarrow{k}$. Find div**F** and curl**F**. Evaluate the line integral $\int_{\mathcal{C}} \operatorname{curl} \mathbf{F} \cdot \mathbf{dr}$, where \mathcal{C} is the triangle with vertices (0, 0, 2), (0, 2, 0) and (2, 0, 0).

6. Let C be the curve given by x = t, $y = 3t^2$, $z = 6t^3$, $0 \le t \le 1$, and evaluate $\int_C xyz^2 ds$. b) Evaluate the line integral along C given by C: x = t, $y = t^2$, $z = 3t^2$, $0 \le t \le 1$, $\int_C \sqrt{1 + 30x^2 + 10y} ds$. c) Evaluate $\int_C ydx + zdy - xdz$ along the helix $x = \cos(\pi t)$, $y = \sin(\pi t)$, z = t from the point (1,0,0) to (-1,0,1). d) Find the mass of a thin wire shaped in the form of the curve $x = e^t \cos t$, $y = e^t \sin t$, $(0 \le t \le 1)$ if the density function δ is proportional to the distance to the origin.

7. a) Find parametric equations for the paraboloid $z = x^2 + y^2$ in terms of the parameters θ and ϕ , where (ρ, θ, ϕ) are spherical coordinates of a point on the surface. b) Find a parametric representation of the portion of the sphere $x^2 + y^2 + z^2 = 9$ on or above the plane z = 2 in terms of the parameters r and θ , where (r, θ, z) are the cylindrical coordinates of a point on the surface.

8. a) Let $\mathbf{F}(x, y, z) = \sqrt{x^2 + y^2} \vec{k}$. Find the flux of \mathbf{F} across σ , where σ is the portion of the cone $\vec{r}(u, v) = u \cos v \vec{i} + u \sin v \vec{j} + 2u \vec{k}$, with $0 \le u \le \sin v$, $0 \le v \le \pi$. b) Let $\mathbf{F}(x, y, z) = x \vec{i} + y \vec{j} + 2z \vec{k}$. Find the flux of \mathbf{F} across σ , where σ is the portion of the paraboloid below the plane z = y, oriented by downward unit normals.

9. Let $\mathbf{F}(x, y, z) = (x^3 - e^y) \overrightarrow{i} + (y^3 + \sin z) \overrightarrow{j} + (z^3 - xy) \overrightarrow{k}$. Use the Divergence Theorem to find the flux of \mathbf{F} across σ , where:

a) σ is the boundary of the solid G, bounded above by the sphere $z = \sqrt{4 - x^2 - y^2}$ and below by the xy-plane, with outward orientation.

b) σ is the boundary of the cylindrical solid enclosed by $x^2 + y^2 = 4$, z = 0 and z = 1 with outward orientation.

10. a) Use Green's theorem to evaluate the line integral $\int_{\mathcal{C}} (4y + \cos(1 + e^{\sin x})) dx + (2x - \sec^2 y) dy$, where \mathcal{C} is the circle $x^2 + y^2 = 9$ going from (0,3) to (0,3) counterclockwise.

11. Review the Fundamental Theorem of Line Integral, Green's Theorem and the Divergence Theorem.