On the controllability of some systems of wave equations.

Louis Tebou

Florida International University, Miami, USA

IM Seminar UNAM, Mexico City, MEXICO

October 02, 2014

Overview

Wave equations with internal coupling.

Overview

Wave equations with internal coupling.

Some open problems.

Overview

Wave equations with internal coupling.

Some open problems.

Wave equations with boundary coupling.

Notations

 Ω = bounded domain in \mathbb{R}^N , $N \ge 1$,

 Γ = boundary of Ω is smooth,

$$T > 0$$
, $Q = \Omega \times (0, T)$

 $\omega =$ nonvoid open subset in Ω .

a, b, c, d lie in $L^{\infty}(0, T; L^{s}(\Omega))$, $s \ge \max(2, N)$ for $N \ne 2$, and s > 2 for N = 2.

Controllability

Consider the controllability problems: Given (z^0, z^1) and (w^0, w^1) , and $\varepsilon > 0$, find a control h such that if (z, w) solves the system

$$\begin{cases} z_{tt} - \Delta z + az + cw = h1_{\omega} \text{ in } Q \\ w_{tt} - \Delta w + bz + dw = 0 \text{ in } Q \\ z = 0, \quad w = 0 \text{ on } \Sigma = \partial \Omega \times (0, T) \\ z(0) = z^{0}; \quad z_{t}(0) = z^{1} \quad w(0) = w^{0}; \quad w_{t}(0) = w^{1} \text{ in } \Omega, \end{cases}$$

Controllability

Consider the controllability problems: Given (z^0, z^1) and (w^0, w^1) , and $\varepsilon > 0$, find a control h such that if (z, w) solves the system

$$\begin{cases} z_{tt} - \Delta z + az + cw = h1_{\omega} \text{ in } Q \\ w_{tt} - \Delta w + bz + dw = 0 \text{ in } Q \\ z = 0, \quad w = 0 \text{ on } \Sigma = \partial \Omega \times (0, T) \\ z(0) = z^{0}; \quad z_{t}(0) = z^{1} \quad w(0) = w^{0}; \quad w_{t}(0) = w^{1} \text{ in } \Omega, \end{cases}$$

then (exact controllability)

$$z(T) = 0$$
, $z_t(T) = 0$, $w(T) = 0$, $w_t(T) = 0$ in Ω ,

Controllability

Consider the controllability problems: Given (z^0, z^1) and (w^0, w^1) , and $\varepsilon > 0$, find a control h such that if (z, w) solves the system

$$\begin{cases} z_{tt} - \Delta z + az + cw = h1_{\omega} \text{ in } Q \\ w_{tt} - \Delta w + bz + dw = 0 \text{ in } Q \\ z = 0, \quad w = 0 \text{ on } \Sigma = \partial \Omega \times (0, T) \\ z(0) = z^{0}; \quad z_{t}(0) = z^{1} \quad w(0) = w^{0}; \quad w_{t}(0) = w^{1} \text{ in } \Omega, \end{cases}$$

then (exact controllability)

$$z(T) = 0$$
, $z_t(T) = 0$, $w(T) = 0$, $w_t(T) = 0$ in Ω ,

or else (approximate controllability)

$$||z(T)||_1 + ||z_t(T)||_2 \le \varepsilon$$
, $||w(T)||_1 + ||w_t(T)||_2 \le \varepsilon$.

Remark

ullet For exact controllability, T and ω must be large enough.

Remark

- \bullet For exact controllability, ${\it T}$ and ω must be large enough.
- For approximate controllability, only *T* must be large enough.

Remark

- \bullet For exact controllability, ${\it T}$ and ω must be large enough.
- For approximate controllability, only T must be large enough.
- Lions' HUM reduces exact controllability to an inverse (observability) estimate for the adjoint system.

Observability estimates

Consider the coupled (adjoint) system

$$\begin{cases} u_{tt} - \Delta u + au + bv = 0 \text{ in } Q \\ v_{tt} - \Delta v + cu + dv = 0 \text{ in } Q \\ u = 0, \quad v = 0 \text{ on } \Sigma = \partial \Omega \times (0, T) \\ u(0) = u^0; \quad u_t(0) = u^1 \quad v(0) = v^0; \quad v_t(0) = v^1 \text{ in } \Omega. \end{cases}$$

The coupled system is well-posed in $H^1_0(\Omega) \times L^2(\Omega) \times L^2(\Omega) \times H^{-1}(\Omega)$.

Introduce the energies:

$$E_u(t) = \frac{1}{2} \int_{\Omega} \{ |u_t(x,t)|^2 + |\nabla u(x,t)|^2 \} dx,$$

$$\widehat{E}_{u}(t) = \frac{1}{2} \left(||u(.,t)||_{L^{2}(\Omega)}^{2} + ||u_{t}(.,t)||_{H^{-1}(\Omega)}^{2} \right).$$

For each $t \in [0, T]$, set

$$E(t) = E_u(t) + \widehat{E}_v(t), \quad \widehat{E}(t) = \widehat{E}_u(t) + \widehat{E}_v(t).$$

Introduce the function $m(x) = x - x^0$, where x^0 is an arbitrary point in \mathbb{R}^N . Set

$$R_1 = \max\{|m(x)|; x \in \bar{\Omega}\}.$$

Let ν be the unit normal pointing into the exterior of Ω , and set

$$\Gamma_0 = \{x \in \partial\Omega; \nu(x) \cdot m(x) > 0\}.$$

Theorem 1

Let ω and \mathcal{O} be neighborhoods of Γ_0 . Assume that $a, c, d \in L^{\infty}(0, T; L^s(\Omega))$, with s > 2 for $N \in \{1, 2\}$ and $s \geq N$ for $N \geq 3$. Let $b \in L^{\infty}(Q)$, and suppose that there exists $b_0 > 0$ such that $b(x, t) \geq b_0$ for almost every (x, t) in $\mathcal{O} \times (0, T)$.

Theorem 1

Let ω and $\mathcal O$ be neighborhoods of Γ_0 . Assume that $a,\ c,\ d\in L^\infty(0,T;L^s(\Omega))$, with s>2 for $N\in\{1,\ 2\}$ and $s\geq N$ for $N\geq 3$. Let $b\in L^\infty(Q)$, and suppose that there exists $b_0>0$ such that $b(x,t)\geq b_0$ for almost every (x,t) in $\mathcal O\times(0,T)$. For every $T>2R_1$, there exists a positive constant C and a cut-off

For every $T > 2R_1$, there exists a positive constant C and a cut-off function $r \in \mathcal{D}^2((0,T))$ such that for all $(u^0,u^1) \in H^1_0(\Omega) \times L^2(\Omega)$, and $(v^0,v^1) \in L^2(\Omega) \times H^{-1}(\Omega)$, one has the observability estimate:

$$E(0) \leq C \int_0^T r \int_{\omega} (|u_t|^2 + |u|^2) \, dx dt$$

for the corresponding solution pair (u, v) of the adjoint system.

Theorem 1

Let ω and $\mathcal O$ be neighborhoods of Γ_0 . Assume that $a,\ c,\ d\in L^\infty(0,T;L^s(\Omega))$, with s>2 for $N\in\{1,\ 2\}$ and $s\geq N$ for $N\geq 3$. Let $b\in L^\infty(Q)$, and suppose that there exists $b_0>0$ such that $b(x,t)\geq b_0$ for almost every (x,t) in $\mathcal O\times(0,T)$. For every $T>2R_1$, there exists a positive constant C and a cut-off

For every $T > 2R_1$, there exists a positive constant C and a cut-off function $r \in \mathcal{D}^2((0,T))$ such that for all $(u^0,u^1) \in H_0^1(\Omega) \times L^2(\Omega)$, and $(v^0,v^1) \in L^2(\Omega) \times H^{-1}(\Omega)$, one has the observability estimate:

$$E(0) \leq C \int_0^T r \int_{\omega} (|u_t|^2 + |u|^2) \, dx dt$$

for the corresponding solution pair (u, v) of the adjoint system.

It follows from this theorem and Lions' HUM that our initial system is exactly controllable with $h = ((ru_t)_t - ru)$ as a control.

• Dáger (2006), $\Omega = (0, 1)$, $T \ge 4$, $b = -1_{\mathcal{O}}$, all other *l.o.t* vanish. Proved a weaker estimate; see Theorem 2 in the sequel.

- Dáger (2006), $\Omega = (0, 1)$, $T \ge 4$, $b = -1_{\mathcal{O}}$, all other *l.o.t* vanish. Proved a weaker estimate; see Theorem 2 in the sequel.
- Tebou (2008), multi-d, $b = -1_{\mathcal{O}}$, all other *l.o.t* vanish.

- Dáger (2006), $\Omega = (0, 1)$, $T \ge 4$, $b = -1_{\mathcal{O}}$, all other *l.o.t* vanish. Proved a weaker estimate; see Theorem 2 in the sequel.
- Tebou (2008), multi-d, $b = -1_{\mathcal{O}}$, all other *l.o.t* vanish.
- Rosier-de Teresa (2011), $\Omega = (0,1)$, $T \ge 4$, $b = -a(x)^2$, $a \in L^{\infty}(\Omega)$, all other *l.o.t* vanish.

- Dáger (2006), $\Omega = (0, 1)$, $T \ge 4$, $b = -1_{\mathcal{O}}$, all other *l.o.t* vanish. Proved a weaker estimate; see Theorem 2 in the sequel.
- Tebou (2008), multi-d, $b = -1_{\mathcal{O}}$, all other *l.o.t* vanish.
- Rosier-de Teresa (2011), $\Omega = (0,1)$, $T \ge 4$, $b = -a(x)^2$, $a \in L^{\infty}(\Omega)$, all other *l.o.t* vanish.
- Alabau-Leautaud (2012), c=b, d=a are smooth enough, and $||b||_{\infty}$ is small, ω and $\mathcal O$ may have empty intersection, and both satisfy

(GCC) [Bardos-Lebeau-Rauch, 1988, 1992]: every ray of geometric optics enters ω , (resp. \mathcal{O}) in a time less than T. But the controllability time blows up as the norm of the coupling function b goes to zero; this is not natural. One would expect the controllability cost to blow up as the coupling goes to zero, but not the controllability time.

- Dáger (2006), $\Omega = (0, 1)$, $T \ge 4$, $b = -1_{\mathcal{O}}$, all other *l.o.t* vanish. Proved a weaker estimate; see Theorem 2 in the sequel.
- Tebou (2008), multi-d, $b = -1_{\mathcal{O}}$, all other *l.o.t* vanish.
- Rosier-de Teresa (2011), $\Omega = (0,1)$, $T \ge 4$, $b = -a(x)^2$, $a \in L^{\infty}(\Omega)$, all other *l.o.t* vanish.
- Alabau-Leautaud (2012), c=b, d=a are smooth enough, and $||b||_{\infty}$ is small, ω and $\mathcal O$ may have empty intersection, and both satisfy
 - **(GCC)** [Bardos-Lebeau-Rauch, 1988, 1992]: every ray of geometric optics enters ω , (resp. \mathcal{O}) in a time less than T. But the controllability time blows up as the norm of the coupling function b goes to zero; this is not natural. One would expect the controllability cost to blow up as the coupling goes to zero, but not the controllability time.
- Dehman-Leautaud-Lerousseau (2012), a=c=d=0.

No smallness assumption is made on the potentials.

- No smallness assumption is made on the potentials.
- The controllability time is the same as for a single wave equation.

- No smallness assumption is made on the potentials.
- The controllability time is the same as for a single wave equation.
- 3 It seems that the coerciveness assumption on the coupling function *b* cannot be dropped; in particular, if *b* is zero, then one cannot estimate *v* in terms of *u*.

- No smallness assumption is made on the potentials.
- The controllability time is the same as for a single wave equation.
- It seems that the coerciveness assumption on the coupling function *b* cannot be dropped; in particular, if *b* is zero, then one cannot estimate *v* in terms of *u*.
- One may fairly wonder whether the observability estimate in Theorem 1 may be replaced with

$$E(0) \leq C \int_0^T r \int_{\omega} |u_t|^2 dx dt.$$

But as noted in the case of a single wave equation, that estimate is false in general, but holds under some constraints on the potential.

Proof of Theorem 1: key ideas

Energy estimates show

$$E(0) \leq C \int_{Q_0} \{|u_t|^2 + |\nabla u|^2 + |v|^2\} dxdt,$$

where Q_0 is an appropriate subset of Q.

Proof of Theorem 1: key ideas

Energy estimates show

$$E(0) \leq C \int_{Q_0} \{|u_t|^2 + |\nabla u|^2 + |v|^2\} dxdt,$$

where Q_0 is an appropriate subset of Q.

 Duyckaerts-Zhang-Zuazua + Fu-Yong-Zhang Carleman estimates show

$$\begin{array}{l} \int_{Q_0} (|u_t|^2 + |\nabla u|^2 + |v|^2) \ dxdt \leq e^{-\mu\lambda} E(0) + C \int_0^T r^2 \int_{\omega_0} |v|^2 \ dxdt \\ + C \int_0^T r \int_{\omega} (|u_t|^2 + |u|^2) \ dxdt \end{array}$$

for every large enough $\lambda > 0$, and some fixed $\mu > 0$.

• Using a localizing arguments, one derives

$$\int_0^T r^2 \int_{\omega_0} |v|^2 \, dx dt \le C \int_0^T r \int_{\omega} (|u_t|^2 + |u|^2) \, dx dt + e^{-\mu \lambda} E(0).$$

Using a localizing arguments, one derives

$$\textstyle \int_0^T r^2 \int_{\omega_0} |v|^2 \, dx dt \leq C \int_0^T r \int_{\omega} (|u_t|^2 + |u|^2) \, dx dt + e^{-\mu \lambda} E(0).$$

• Choosing λ large enough, one gets:

$$E(0) \leq C \int_0^T r \int_{\omega} (|u_t|^2 + |u|^2) \, dx dt.$$

Theorem 2.

Let ω , \mathcal{O} , a, d and s be as in Theorem 1, and suppose that $b \in L^{\infty}(0, T; L^{s}(\Omega))$, $c \in L^{\infty}(Q)$, and there exists $b_0 > 0$ such that $b(x, t) \geq b_0$ for almost every (x, t) in $\mathcal{O} \times (0, T)$.

Theorem 2.

Let ω , \mathcal{O} , a, d and s be as in Theorem 1, and suppose that $b \in L^{\infty}(0, T; L^{s}(\Omega))$, $c \in L^{\infty}(Q)$, and there exists $b_0 > 0$ such that $b(x, t) \ge b_0$ for almost every (x, t) in $\mathcal{O} \times (0, T)$. For every $T > 2R_1$, there exists a positive constant C_0 such that for all $(x_0^0, x_1^1) \in L^2(\Omega)$

For every $I > 2H_1$, there exists a positive constant C_0 such that for all $(u^0, u^1) \in L^2(\Omega) \times H^{-1}(\Omega)$, and $(v^0, v^1) \in H_0^1(\Omega) \times L^2(\Omega)$, one has the observability estimate:

$$\widehat{E}(0)^2 \leq C_0 \left(\int_0^T \int_{\omega} |u|^2 dx dt \right) (\widehat{E}_u(0) + E_v(0))$$

for all solution pair (u, v) of the adjoint system.

Proof of Theorem 2: Main ideas

Step 1. Prove the energy estimates

0

$$\widehat{E}(t) \leq C_0 \widehat{E}(\tau), \quad \forall \tau, t \in [0, T],$$

Proof of Theorem 2: Main ideas

Step 1. Prove the energy estimates

•

$$\widehat{E}(t) \leq C_0 \widehat{E}(\tau), \qquad \forall \tau, t \in [0, T],$$

0

$$\int_{T_0}^{T_0'} h \widehat{E}(t) dt \le C_0 \int_{Q_0} \{|u|^2 + |v|^2\} dx dt,$$

where *h* is an appropriate cut-off function.

Step 2. Derive from Step 1

$$\widehat{E}(0) \leq C_0 \int_{Q_0} \{|u|^2 + |v|^2\} dxdt.$$

Step 2. Derive from Step 1

$$\widehat{E}(0) \leq C_0 \int_{Q_0} \{|u|^2 + |v|^2\} dxdt.$$

Step 3. Duyckaerts-Zhang-Zuazua Carleman estimate yields

$$\begin{array}{l} \int_{Q_0} (|u|^2 + |v|^2) \, dx dt \leq e^{-\mu\lambda} \widehat{E}(0) + C_0 \int_0^T \int_{\omega} |u|^2 \, dx dt \\ + C_0 \int_0^T r^2 \int_{\omega_0} |v|^2 \, dx dt, \end{array}$$

for some constant $\mu > 0$, and every large enough λ .

Step 2. Derive from Step 1

$$\widehat{E}(0) \leq C_0 \int_{Q_0} \{|u|^2 + |v|^2\} dxdt.$$

Step 3. Duyckaerts-Zhang-Zuazua Carleman estimate yields

$$\begin{split} \int_{Q_0} (|u|^2 + |v|^2) \, dx dt & \leq e^{-\mu \lambda} \widehat{E}(0) + C_0 \int_0^T \int_{\omega} |u|^2 \, dx dt \\ & + C_0 \int_0^T r^2 \int_{\omega_0} |v|^2 \, dx dt, \end{split}$$

for some constant $\mu > 0$, and every large enough λ .

Step 4. Use a localizing argument to obtain:

$$\int_0^T r^2 \int_{\omega_0} |v|^2 dx dt \leq C_0 \widetilde{E}(0)^{\frac{1}{2}} \left(\int_0^T \int_{\omega} |u|^2 dx dt \right)^{\frac{1}{2}},$$

with
$$\widetilde{E}(0) = \widehat{E}_u(0) + E_v(0)$$
.

Let $a, b, c, d \in L^s(\Omega)$, with s as in Theorem 1. Let ω, \mathcal{O} , be as in Theorem 1, and suppose that there exists $b_0 > 0$ such that $b(x) \ge b_0$ for almost every x in \mathcal{O} .

Let $a, b, c, d \in L^s(\Omega)$, with s as in Theorem 1. Let ω, \mathcal{O} , be as in Theorem 1, and suppose that there exists $b_0 > 0$ such that $b(x) \ge b_0$ for almost every x in \mathcal{O} .

Further assume that either:

$$a \ge 0$$
, $d \ge 0$, $2a - |b + c| \ge 0$, and $2d - |b + c| \ge 0$, a.e. $x \in \Omega$

or else

$$a \ge 0$$
, $d \ge 0$, a.e. $x \in \Omega$, $1 - C_s^2 |b + c|_s > 0$, and $\lambda_0^2 - |b + c|_s > 0$,

Let $a, b, c, d \in L^s(\Omega)$, with s as in Theorem 1. Let ω, \mathcal{O} , be as in Theorem 1, and suppose that there exists $b_0 > 0$ such that $b(x) \ge b_0$ for almost every x in \mathcal{O} .

Further assume that either:

$$a \ge 0$$
, $d \ge 0$, $2a - |b + c| \ge 0$, and $2d - |b + c| \ge 0$, a.e. $x \in \Omega$

or else

$$a \ge 0$$
, $d \ge 0$, a.e. $x \in \Omega$, $1 - C_s^2 |b + c|_s > 0$, and $\lambda_0^2 - |b + c|_s > 0$,

where λ_0^2 is the first eigenvalue of the operator $-\Delta$ under Dirichlet boundary conditions, and C_s denotes the best constant in the Sobolev inequality:

$$||w||_{\frac{2s}{s-2}}^2 \leq C_s^2 \int_{\Omega} |\nabla w(x)|^2 dx, \quad \forall w \in H_0^1(\Omega).$$

Assume the conditions just stated. For every $T>2R_1$, there exists a positive constant C_0 such that for all $(u^0,u^1)\in H^1_0(\Omega)\times L^2(\Omega)$, and $(v^0,v^1)\in (H^2(\Omega)\cap H^1_0(\Omega))\times H^1_0(\Omega)$, one has the observability estimate:

$$(E_u(0) + E_v(0))^2 \le C_0 \left(\int_0^T \int_{\omega} |u_t|^2 dx dt \right) (E_u(0) + \check{E}_v(0))$$

for all solution pair (u, v) of the adjoint system, and where $2\check{E}_{v}(0) = ||v^{0}||_{H^{2}(\Omega)}^{2} + ||v^{1}||_{H^{1}(\Omega)}^{2}$.

Sketch of the proof of Theorem 3

For this proof, we shall use Theorem 2, and the following result

Lemma

Let a, b, c, and d be given as in Theorem 3. Then there exists a positive constant $C_0 = C_0(\Omega, b + c)$ such that

$$||-\partial_{i}(b_{ij}(x)\partial_{j}u)+au+bv||_{H^{-1}(\Omega)}^{2}+||-\partial_{i}(b_{ij}(x)\partial_{j}v)+cu+dv||_{H^{-1}(\Omega)}^{2}$$

$$\geq C_{0}\int_{\Omega}\{b_{ij}(x)\partial_{j}u\partial_{i}u+b_{ij}(x)\partial_{j}v\partial_{i}v\}\,dx,\quad\forall u,v\in H_{0}^{1}(\Omega).$$

Sketch of the proof of Theorem 3

For this proof, we shall use Theorem 2, and the following result

Lemma

Let a, b, c, and d be given as in Theorem 3. Then there exists a positive constant $C_0 = C_0(\Omega, b + c)$ such that

$$||-\partial_{i}(b_{ij}(x)\partial_{j}u)+au+bv||_{H^{-1}(\Omega)}^{2}+||-\partial_{i}(b_{ij}(x)\partial_{j}v)+cu+dv||_{H^{-1}(\Omega)}^{2}$$

$$\geq C_{0}\int_{\Omega}\{b_{ij}(x)\partial_{j}u\partial_{i}u+b_{ij}(x)\partial_{j}v\partial_{i}v\}\,dx,\quad\forall u,v\in H_{0}^{1}(\Omega).$$

Set $\hat{w} = u_t$ and $\hat{z} = v_t$. Then these functions solve the system

$$\begin{cases} \hat{w}_{tt} - \partial_i(b_{ij}(x)\partial_j\hat{w}) + a\hat{w} + b\hat{z} = 0 \text{ in } Q \\ \hat{z}_{tt} - \partial_i(b_{ij}(x)\partial_j\hat{z}) + c\hat{w} + d\hat{z} = 0 \text{ in } Q \\ \hat{w} = 0, \quad \hat{z} = 0 \text{ on } \Sigma = \partial\Omega \times (0, T) \\ \hat{w}(0) = u^1 \in L^2(\Omega); \quad \hat{w}_t(0) = \partial_i(b_{ij}(x)\partial_ju^0) - au^0 - bv^0 \in H^{-1}(\Omega) \\ \hat{z}(0) = v^1 \in H^1_0(\Omega); \quad \hat{z}_t(0) = \partial_i(b_{ij}(x)\partial_jv^0) - cu^0 - dv^0 \in L^2(\Omega). \end{cases}$$

$$\widehat{E}_{\hat{w},\hat{z}}(t) = \widehat{E}_{\hat{w}}(t) + \widehat{E}_{\hat{z}}(t) \quad \forall t \in [0,T].$$

$$\widehat{E}_{\hat{w},\hat{z}}(t) = \widehat{E}_{\hat{w}}(t) + \widehat{E}_{\hat{z}}(t) \quad \forall t \in [0,T].$$

Thanks to Theorem 2, one has:

$$\widehat{E}_{\hat{w},\hat{z}}(0)^2 \leq C_0 \left(\int_0^T \int_\omega |\hat{w}|^2 dx dt\right) (\widehat{E}_{\hat{w}}(0) + E_{\hat{z}}(0)).$$

$$\widehat{E}_{\widehat{W},\widehat{z}}(t) = \widehat{E}_{\widehat{W}}(t) + \widehat{E}_{\widehat{z}}(t) \quad \forall t \in [0,T].$$

Thanks to Theorem 2, one has:

$$\widehat{E}_{\hat{w},\hat{z}}(0)^2 \leq C_0 \left(\int_0^T \int_{\omega} |\hat{w}|^2 dx dt \right) (\widehat{E}_{\hat{w}}(0) + E_{\hat{z}}(0)).$$

Some elementary calculations show that

$$\widehat{E}_{\hat{w}}(0) + E_{\hat{z}}(0) \leq C_0(E_u(0) + \check{E}_v(0)),$$

$$\widehat{E}_{\hat{w},\hat{z}}(t) = \widehat{E}_{\hat{w}}(t) + \widehat{E}_{\hat{z}}(t) \quad \forall t \in [0,T].$$

Thanks to Theorem 2, one has:

$$\widehat{E}_{\hat{w},\hat{z}}(0)^2 \leq C_0 \left(\int_0^T \int_{\omega} |\hat{w}|^2 dx dt \right) (\widehat{E}_{\hat{w}}(0) + E_{\hat{z}}(0)).$$

Some elementary calculations show that

$$\widehat{E}_{\hat{w}}(0) + E_{\hat{z}}(0) \leq C_0(E_u(0) + \check{E}_v(0)),$$

while the above Lemma yields

$$\widehat{E}_{\hat{w},\hat{z}}(0) \geq C_0(E_u(0) + E_v(0)).$$

$$\widehat{E}_{\hat{w},\hat{z}}(t) = \widehat{E}_{\hat{w}}(t) + \widehat{E}_{\hat{z}}(t) \quad \forall t \in [0,T].$$

Thanks to Theorem 2, one has:

$$\widehat{E}_{\hat{w},\hat{z}}(0)^2 \leq C_0 \left(\int_0^T \int_{\omega} |\hat{w}|^2 dx dt \right) (\widehat{E}_{\hat{w}}(0) + E_{\hat{z}}(0)).$$

Some elementary calculations show that

$$\widehat{E}_{\hat{w}}(0) + E_{\hat{z}}(0) \leq C_0(E_u(0) + \check{E}_v(0)),$$

while the above Lemma yields

$$\widehat{E}_{\hat{w},\hat{z}}(0) \geq C_0(E_u(0) + E_v(0)).$$

Hence

$$(E_u(0)+E_v(0))^2 \leq C_0 \left(\int_0^T \int_{\omega} |u_t|^2 dx dt\right) (E_u(0)+\check{E}_v(0)).$$

Suppose that the hypotheses of Theorem 3 hold. For every $T>2R_1$, there exists a positive constant $C=C(\Omega,\omega,\mathcal{O},T,N,s,a,b,c,d)$ such that for all $(u^0,u^1)\in (H^2(\Omega)\cap H^1_0(\Omega))\times H^1_0(\Omega)$, and $(v^0,v^1)\in H^1_0(\Omega)\times L^2(\Omega)$, one has the observability estimate:

$$\check{E}_{u}(0) + E_{v}(0) \leq C \int_{0}^{T} r \int_{\omega} \{|u_{t}|^{2} + |u_{tt}|^{2}\} dxdt.$$

1 Do we have $E(u; 0) + \widehat{E}(v; 0) \le C \int_0^T r \int_{\omega} |u_t(x, t)|^2 dxdt$, with no smallness assumption on the couplings?

- ① Do we have $E(u; 0) + \widehat{E}(v; 0) \le C \int_0^T r \int_{\omega} |u_t(x, t)|^2 dxdt$, with no smallness assumption on the couplings?
- ② Are the analogues of Theorems 1 to 4 valid for $\omega \cap \mathcal{O} = \emptyset$, assuming ω and \mathcal{O} both satisfy the Bardos-Lebeau-Rauch geometric control condition (GCC), and no smallness assumptions are made on the couplings?

- **1** Do we have $E(u; 0) + \widehat{E}(v; 0) \leq C \int_0^T r \int_{\mathcal{U}} |u_t(x, t)|^2 dxdt$, with no smallness assumption on the couplings?
- **2** Are the analogues of Theorems 1 to 4 valid for $\omega \cap \mathcal{O} = \emptyset$. assuming ω and \mathcal{O} both satisfy the Bardos-Lebeau-Rauch geometric control condition (GCC), and no smallness assumptions are made on the couplings?
- What about different principal operators? A similar result holds for two wave equations coupled in cascade internally when the two operators are proportional & Ω is a compact C^{∞} manifold with no boundary; in particular it is shown by

Dehman-Leautaud-Lerousseau that if $\omega \cap \mathcal{O}$ satisfies GCC, then:

$$\widehat{E}(u;0) + E_{-2}(v;0) \leq C \int_0^T \int_{\omega} |u(x,t)|^2 dxdt,$$

where
$$2E_{-2}(v;0) = ||v^0||_{H^{-2}(\Omega)}^2 + ||v^1||_{H^{-3}(\Omega)}^2$$
.

- ① Do we have $E(u; 0) + \widehat{E}(v; 0) \le C \int_0^T r \int_{\omega} |u_t(x, t)|^2 dxdt$, with no smallness assumption on the couplings?
- ② Are the analogues of Theorems 1 to 4 valid for $\omega \cap \mathcal{O} = \emptyset$, assuming ω and \mathcal{O} both satisfy the Bardos-Lebeau-Rauch geometric control condition (GCC), and no smallness assumptions are made on the couplings?
- **3** What about different principal operators? A similar result holds for two wave equations coupled in cascade internally when the two operators are proportional & Ω is a compact C^{∞} manifold with no boundary; in particular it is shown by Dehman-Leautaud-Lerousseau that if $\omega \cap \mathcal{O}$ satisfies GCC, then:

$$\widehat{E}(u;0) + E_{-2}(v;0) \le C \int_0^T \int_{\Omega} |u(x,t)|^2 dxdt,$$

where
$$2E_{-2}(v;0) = ||v^0||_{H^{-2}(\Omega)}^2 + ||v^1||_{H^{-3}(\Omega)}^2$$
.

What about boundary controllability?

Controllability

Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a continuously differentiable function with

$$\limsup_{|s|\to\infty}\frac{|f(s)|}{|s|(\log|s|)^{\alpha}}=\beta_0,$$

for some $\beta_0 > 0$, and some $0 \le \alpha < 3/2$. Consider now the controllability problem: Given y^0 , $\tilde{y}^0 \in H^1_0(\Omega)$, and y^1 , $\tilde{y}^1 \in L^2(\Omega)$; q^0 , $\tilde{q}^0 \in L^2(\Omega)$, and q^1 , $\tilde{q}^1 \in H^{-1}(\Omega)$; and $\xi \in L^2(Q)$, can we find a control $v \in L^2(0,T;L^2(\omega))$ such that the corresponding solution pair (y_0,q) of the cascade system:

$$\begin{cases} y_{0tt} - \Delta y_0 + f(y_0) = \xi + v \chi_{\omega} \text{ in } Q \\ q_{tt} - \Delta q + f'(y_0)q = 0 \text{ in } Q \\ y_0 = 0, \quad q = \frac{\partial y_0}{\partial \nu_B} \chi_{\Gamma_0} \text{ on } \Sigma = \partial \Omega \times (0, T) \\ y_0(0) = y^0; \quad y_{0t}(0) = y^1, \quad q(0) = q^0; \quad q_t(0) = q^1 \text{ in } \Omega, \end{cases}$$

satisfies:

$$y_0(.,T) = \tilde{y}^0, \quad y_{0t}(.,T) = \tilde{y}^1, \quad q(.,T) = \tilde{q}^0, \quad q_t(.,T) = \tilde{q}^1 \text{ in } \Omega?$$

For this system we have the controllability result:

Assume that ω is a neighborhood of Γ_0 . For every $T>2R_1$, and for all $y^0\in H^1_0(\Omega),\,y^1\in L^2(\Omega),\,q^0\in L^2(\Omega)$ and $q^1\in H^{-1}(\Omega)$, there exists a control $v\in L^2(0,T;L^2(\omega))$ such that

$$y_0(.,T) = \tilde{y}^0, \quad y_{0t}(.,T) = \tilde{y}^1, \quad q(.,T) = \tilde{q}^0, \quad q_t(.,T) = \tilde{q}^1 \text{ in } \Omega.$$

To prove Theorem 5, we're going to follow the classical algorithm for solving control problems for nonlinear distributed systems:

linearize the control problem,

Assume that ω is a neighborhood of Γ_0 . For every $T>2R_1$, and for all $y^0\in H^1_0(\Omega),\,y^1\in L^2(\Omega),\,q^0\in L^2(\Omega)$ and $q^1\in H^{-1}(\Omega)$, there exists a control $v\in L^2(0,T;L^2(\omega))$ such that

$$y_0(.,T) = \tilde{y}^0, \quad y_{0t}(.,T) = \tilde{y}^1, \quad q(.,T) = \tilde{q}^0, \quad q_t(.,T) = \tilde{q}^1 \text{ in } \Omega.$$

To prove Theorem 5, we're going to follow the classical algorithm for solving control problems for nonlinear distributed systems:

- 1 linearize the control problem,
- 2 solve the linear control problem,

Assume that ω is a neighborhood of Γ_0 . For every $T>2R_1$, and for all $y^0\in H^1_0(\Omega),\,y^1\in L^2(\Omega),\,q^0\in L^2(\Omega)$ and $q^1\in H^{-1}(\Omega)$, there exists a control $v\in L^2(0,T;L^2(\omega))$ such that

$$y_0(.,T) = \tilde{y}^0, \quad y_{0t}(.,T) = \tilde{y}^1, \quad q(.,T) = \tilde{q}^0, \quad q_t(.,T) = \tilde{q}^1 \text{ in } \Omega.$$

To prove Theorem 5, we're going to follow the classical algorithm for solving control problems for nonlinear distributed systems:

- Iinearize the control problem,
- 2 solve the linear control problem,
- use a fixed-point theorem to derive the controllability of the nonlinear problem from that of the linearized system.

• Zuazua (1990-1991), HUM + Schauder fixed-point (linear growth)

- Zuazua (1990-1991), HUM + Schauder fixed-point (linear growth)
- Zuazua (1993), HUM + Leray-Schauder (1d, superlinear growth allowed)

- Zuazua (1990-1991), HUM + Schauder fixed-point (linear growth)
- Zuazua (1993), HUM + Leray-Schauder (1d, superlinear growth allowed)
- Lasiecka-Triggiani (1991), global inversion theorem (Lipschitz),

- Zuazua (1990-1991), HUM + Schauder fixed-point (linear growth)
- Zuazua (1993), HUM + Leray-Schauder (1d, superlinear growth allowed)
- Lasiecka-Triggiani (1991), global inversion theorem (Lipschitz),
- Cannarsa-Komornik-Loreti (1999), 1d, iterated log, improves Zuazua (1993),

- Zuazua (1990-1991), HUM + Schauder fixed-point (linear growth)
- Zuazua (1993), HUM + Leray-Schauder (1d, superlinear growth allowed)
- Lasiecka-Triggiani (1991), global inversion theorem (Lipschitz),
- Cannarsa-Komornik-Loreti (1999), 1d, iterated log, improves Zuazua (1993),
- Li-Zhang (2000), Carleman estimates, superlinear growth allowed,

- Zuazua (1990-1991), HUM + Schauder fixed-point (linear growth)
- Zuazua (1993), HUM + Leray-Schauder (1d, superlinear growth allowed)
- Lasiecka-Triggiani (1991), global inversion theorem (Lipschitz),
- Cannarsa-Komornik-Loreti (1999), 1d, iterated log, improves Zuazua (1993),
- Li-Zhang (2000), Carleman estimates, superlinear growth allowed,
- Martinez-Vancostenoble (2003), 1d, arbitrarily short time,

- Zuazua (1990-1991), HUM + Schauder fixed-point (linear growth)
- Zuazua (1993), HUM + Leray-Schauder (1d, superlinear growth allowed)
- Lasiecka-Triggiani (1991), global inversion theorem (Lipschitz),
- Cannarsa-Komornik-Loreti (1999), 1d, iterated log, improves Zuazua (1993),
- Li-Zhang (2000), Carleman estimates, superlinear growth allowed,
- Martinez-Vancostenoble (2003), 1d, arbitrarily short time,
- Fu-Yong-Zhang (2007), Carleman estimates, hyperbolic equations,

- Zuazua (1990-1991), HUM + Schauder fixed-point (linear growth)
- Zuazua (1993), HUM + Leray-Schauder (1d, superlinear growth allowed)
- Lasiecka-Triggiani (1991), global inversion theorem (Lipschitz),
- Cannarsa-Komornik-Loreti (1999), 1d, iterated log, improves Zuazua (1993),
- Li-Zhang (2000), Carleman estimates, superlinear growth allowed,
- Martinez-Vancostenoble (2003), 1d, arbitrarily short time,
- Fu-Yong-Zhang (2007), Carleman estimates, hyperbolic equations,

The linear controllability problem

Set

$$g(s) = \begin{cases} (f(s) - f(0))/s, & \text{if } s \neq 0 \\ f'(0), & \text{if } s = 0. \end{cases}$$

Let $w \in L^{\infty}(0, T; L^{2}(\Omega))$. Set $a(x,t) = g(w(x,t)), \quad b(x,t) = f'(w(x,t))$. The nonlinear controlled cascade system may be linearized as:

$$\begin{cases} y_{0tt} - \Delta y_0 + a(x,t)y_0 = -f(0) + \xi + v\chi_{\omega} \text{ in } Q \\ q_{tt} - \Delta q + b(x,t)q = 0 \text{ in } Q \\ y_0 = 0, \quad q = \frac{\partial y_0}{\partial \nu_B} \chi_{\Gamma_0} \text{ on } \Sigma \\ y_0(0) = y^0; \quad y_{0t}(0) = y^1; \quad q(0) = q^0; \quad q_t(0) = q^1 \text{ in } \Omega \end{cases}$$

We shall find a control v so that:

$$y(T) = \tilde{y}^0$$
; $y_t(T) = \tilde{y}^1$, $q(T) = \tilde{q}^0$; $q_t(T) = \tilde{q}^1$ in Ω .

To this end, introduce the adjoint system:

$$\begin{cases} p_{tt} - \Delta p + b(x,t)p = 0 \text{ in } Q \\ z_{tt} - \Delta z + a(x,t)z = 0 \text{ in } Q \\ p = 0, \quad z = \frac{\partial p}{\partial \nu_B} \chi_{\Gamma_0} \text{ on } \Sigma \\ p(T) = p^0; \quad p_t(T) = p^1, \quad z(T) = z^0; \quad z_t(T) = z^1 \text{ in } \Omega \end{cases}$$

For $(p^0, p^1) \in H^1_0(\Omega) \times L^2(\Omega)$, we have $p \in C([0, T]; H^1_0(\Omega)) \cap C^1([0, T]; L^2(\Omega))$, and $z \in C([0, T]; L^2(\Omega)) \cap C^1([0, T]; H^{-1}(\Omega))$. For every $t \in [0, T]$, define the energy

$$E(p;t) = \frac{1}{2} \left(||p_t(.,t)||_{L^2(\Omega)}^2 + \int_{\Omega} |\nabla p(x,t)|^2 dx \right).$$

Thanks to Lions' H.U.M, the linear controllability problem will be solved once we prove the following observability estimate:

Proposition

Let ω be a neighborhood of Γ_0 , and let $T>2R_1$. Let $\varepsilon>0$ with $(N-2)\varepsilon<4$. There exists

$$K_{\varepsilon} = \exp\left[C_{\varepsilon}(1+||a||_{\infty,l_{\varepsilon}}^{\frac{2}{3-2\theta_{\varepsilon}}}+||b||_{\infty,l_{\varepsilon}}^{\frac{2}{3-2\theta_{\varepsilon}}})\right]$$

such that for all $(p^0, p^1) \in H_0^1(\Omega) \times L^2(\Omega)$ and all $(z^0, z^1) \in L^2(\Omega) \times H^{-1}(\Omega)$:

$$E(p;T)+\widehat{E}(z;T)\leq K_{\varepsilon}\int_{0}^{T}\int_{\omega}|z(x,t)|^{2}dxdt,$$

where $C_{\varepsilon} = C_{\varepsilon}(\varepsilon, \Omega, \omega, T, b_{ij}) > 0$, $I_{\varepsilon} = 2 + 4\varepsilon^{-1}$, $\theta_{\varepsilon} = \varepsilon N/(4 + 2\varepsilon)$, and $||.||_{\infty,r} = ||.||_{L^{\infty}(0,T;L^{r}(\Omega))}$.

Proof of Proposition: key elements

Step 1. Establish the energy estimate

$$E(p;t) \leq E(p;s) \exp\left(\left. C_{\varepsilon} \left(1 + ||b||_{\infty,l_{\varepsilon}}^{\frac{1+\theta_{\varepsilon}}{2}} \right) |t-s| \right), \quad \forall s,t \in [0,T].$$

Proof of Proposition: key elements

Step 1. Establish the energy estimate

$$E(p;t) \leq E(p;s) \exp\left(C_{\varepsilon}\left(1+||b||_{\infty,l_{\varepsilon}}^{\frac{1+\theta_{\varepsilon}}{2}}\right)|t-s|\right), \quad \forall s,t \in [0,T].$$

Step 2. Use the Duyckaerts-Zhang-Zuazua (boundary) Carleman estimate and Step 1 to derive the boundary observability estimate

$$E(p;T) \leq e^{C_{\varepsilon}(1+||b||_{\infty,l_{\varepsilon}}^{\frac{2}{3-2\theta_{\varepsilon}}})} \int_{0}^{T} r^{2} \int_{\Gamma_{0}} \left| \frac{\partial p(\gamma,t)}{\partial \nu_{B}} \right|^{2} d\gamma dt.$$

Proof of Proposition: key elements

Step 1. Establish the energy estimate

$$E(p;t) \leq E(p;s) \exp\left(C_{arepsilon}\left(1+||b||_{\infty,l_{arepsilon}}^{rac{1+ heta_{arepsilon}}{2}}
ight)|t-s|
ight), \quad orall s, t \in [0,T].$$

Step 2. Use the Duyckaerts-Zhang-Zuazua (boundary) Carleman estimate and Step 1 to derive the boundary observability estimate

$$E(p;T) \leq e^{C_{\varepsilon}(1+||b||_{\infty,l_{\varepsilon}}^{\frac{2}{3-2\theta_{\varepsilon}}})} \int_{0}^{T} r^{2} \int_{\Gamma_{0}} \left| \frac{\partial p(\gamma,t)}{\partial \nu_{B}} \right|^{2} \, d\gamma dt.$$

Step 3. Use a localizing argument to derive the partial estimate

$$E(p;T) \leq K_{\varepsilon} \int_{0}^{T} \int_{\omega} |z(x,t)|^{2} dxdt.$$

Step 4. Use the Duyckaerts-Zhang-Zuazua internal observability estimate to get

$$\widehat{E}(z;T) \leq K_{\varepsilon} \int_{0}^{T} \int_{\mathbb{R}^{d}} |z(x,t)|^{2} dxdt + C(\Omega,T) \int_{0}^{T} \int_{\Gamma_{0}} \left| \frac{\partial p(\gamma,t)}{\partial \nu_{B}} \right|^{2} d\gamma dt.$$

Step 4. Use the Duyckaerts-Zhang-Zuazua internal observability estimate to get

$$\widehat{E}(z;T) \leq K_{\varepsilon} \int_{0}^{T} \int_{\omega} |z(x,t)|^{2} dx dt + C(\Omega,T) \int_{0}^{T} \int_{\Gamma_{0}} \left| \frac{\partial p(\gamma,t)}{\partial \nu_{B}} \right|^{2} d\gamma dt.$$

Step 5. Use Lions'inequality

$$\int_0^T \int_{\Gamma_0} \left| \frac{\partial p(\gamma, t)}{\partial \nu_B} \right|^2 \, d\gamma dt \le K_{\varepsilon} E(p; T),$$

in Step 4, and combine the result with Step 3 to get the claimed estimate.

Louis Tebou (FIU, Miami, USA)

П

And if anyone thinks that he knows anything, he knows nothing yet as he ought to know.

THANKS!