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a b s t r a c t

We prove that every solution of a KdV–Burgers–Sivashinsky type equation blows up in the energy space,
backward in time, provided the solution does not belong to the global attractor. This is a phenomenon
contrast to the backward behavior of the periodic 2D Navier–Stokes equations studied by Constantin
et al. (1997), but analogous to the backward behavior of the Kuramoto–Sivashinsky equation discov-
ered by Kukavica and Malcok (2005). Also we study the backward behavior of solutions to the damped
driven nonlinear Schrödinger equation, the complex Ginzburg–Landau equation, and the hyperviscous
Navier–Stokes equations. In addition, we provide some physical interpretation of various backward be-
haviors of several perturbations of the KdV equation by studying explicit cnoidal wave solutions. Further-
more, we discuss the connection between the backward behavior and the energy spectra of the solutions.
The study of backward behavior of dissipative evolution equations is motivated by the investigation of
the Bardos–Tartar conjecture on the Navier–Stokes equations stated in Bardos and Tartar (1973).

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Consider a KdV–Burgers–Sivashinsky (KBS) type equation on
the torus T = [−

L
2 ,

L
2 ]:

ut − νuxx + uux − βu + γ uxxx = f , x ∈ T, (1.1)
with the initial condition u(0) = u0. We assume that ν ≥ 0, β ∈ R,
and γ ≠ 0. Also, we suppose that the time independent forcing
f and the initial data u0 both have spatial mean value zero, i.e.,

T fdx =


T u0dx = 0, and hence


T u(x, t)dx = 0 for all time t
within the lifespan of the solution u.

We define the spaces

H :=


ϕ ∈ L2per(T) :


T
ϕdx = 0


,

V :=


ϕ ∈ L2per(T) : ϕx ∈ L2per(T),


T
ϕdx = 0


.

We call a solution u(t) of (1.1) global if u(t) is defined for all
t ∈ R. The main result of this paper states that, if ν > 0, then
there does not exist a global solution of (1.1) in the energy space
H unless u belongs to the global attractor. Specifically, we have the
following theorem.
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Theorem 1.1. Consider the following two cases:

(i) Assume ν = 0 and f ∈ H. For any u0 ∈ H, (1.1) has a unique
global solution u(t) ∈ H for all t ∈ R.

(ii) Assume ν > 0 and f ∈ V ′. Let u(t) : [0,∞) → H be a solution
of (1.1) which does not belong to the global attractor. Then u(t)
cannot be extended to a global solution for all t ∈ R.

The study of the behavior of solutions to (1.1) backward in time
is motivated by the pioneering work [1], where Constantin, Foias,
Kukavica and Majda investigated the backward behavior of the so-
lution to the 2D periodic Navier–Stokes equations (NSE). Indeed,
they showed that the set of initial data for which the solution
exists for all negative time and has exponential growth is rather
rich (dense in H with the topology of (Ḣ1

per)
′ where H = {u ∈

L2per(T
2)2 : div u = 0,


T2 udx = 0}), which is a quite remarkable

result since it indicates that the backward behavior of the 2D peri-
odic NSE is closer to the corresponding linear dissipative equation.
Also their result provided a partial positive answer to a conjecture
in [2], where Bardos and Tartar conjectured that, for the 2D peri-
odic NSE, the solution semi-flow S(t)H is dense in the phase space
H for any fixed t > 0. On the other hand, the 2D Euler equations
are globally well-posed forward and backward in time, and the en-
ergy is conserved for smooth solutions. The result in [1] may be
rephrased as, if we add a viscosity to the 2D periodic Euler equa-
tions, which gives the NSE, then there is still a rich set of initial data
such that the solution can be extended to all negative times with
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the energy growing exponentially, i.e., adding a viscosity to the pe-
riodic 2D Euler equations fails to drive these solutions to blow up
backward in finite time.

We remark that a corollary of Theorem 1.1 (i.e. Corollary 2.7
in Section 2) implies that the solution semi-flow S(t)H of the KBS
equation (1.1)with ν > 0 is not dense inH for any t > 0. This result
is contrast to the Bardos–Tartar conjecture on the NSE mentioned
above [2].

Notice that, if we remove the viscosity from the KBS equation
(1.1), i.e. ν = 0, then it becomes

ut − uux − βu + γ uxxx = f , x ∈ T, (1.2)

which is a KdV type equation with a linear term −βu. It is well-
known that the real-valued KdV equation is globally well-posed in
H for t ∈ R (see, e.g., [3,4], and references therein; see also [5]
for a similar result concerning a coupled system of KdV). If β <
0, then forward in time, (1.2) is a weakly damped KdV equation
that possesses a global attractor in H [6,7]. On the other hand, if
β > 0, then −βu plays the role of a source term forward in time
as well as a weak damping backward in time. If we consider (1.2)
backward in timewithβ > 0, it is a dissipative systempossessing a
global attractor, which seemsmore ‘‘stable’’ than 2D periodic Euler
equations. So it could be reasonable to guess that the solution of the
KBS equation (1.1) (i.e. (1.2) plus a viscosity) might have a similar
behavior backward in time as the 2D periodic NSE. However, such
intuition turns out to be completely false. Indeed, Theorem1.1 tells
us that no solutions of (1.1), with ν > 0, can be extended to all
negative time unless they belong to the global attractor. Here, we
would like to remark that the different backward behavior of the
KBS equation (1.1) and the 2D periodic NSE might be related to
the rate of the energy cascade to small scales for the Burgers and
the KdV equations as well as for the Euler equations, respectively.
Furthermore, we stress that, for the backward blow-up of the
KBS equation (1.1), the viscosity plays a vital role, contrast to the
backward blow-up of the viscous Burgers equation. Indeed, the
inviscid Burgers equation can also blow up backward in finite time,
but the KBS equation without viscosity (i.e. the KdV type equation
(1.2)) is globally well-posed for all t ∈ R.

The proof of Theorem 1.1 follows the idea presented in [8].
It is shown in [8] that all solutions of the Kuramoto–Sivashinsky
equation off the global attractor blow up backward in finite
time. Notice that, the Kuramoto–Sivashinsky equation involves a
hyperviscosity tending to drive the energy increasing very fast
backward in time. However, the KBS equation (1.1) contains a
regular viscosity, and a dispersion distributing the energy, which
seems closer to the NSE. Nonetheless, the energy of the KBS
equation still increases too fast and blows up backward in finite
time, like the Kuramoto–Sivashinsky equation, due to the negative
viscosity. It can be viewed as adding the dispersion term uxxx to the
viscous Burgers equation fails to prevent solutions blowing up as
the time goes backwards.

In addition to the study of the KBS equation (1.1), we investi-
gate the backward behavior of solutions to some other typical dis-
sipative equations. Specifically, we show that any solution off the
global attractor, to the dampeddriven nonlinear Schrödinger equa-
tion, grows exponentially fast backward in time. Also, we prove
that all solutions to the complex Ginzburg–Landau equation of
certain parameter regime, blow up backward in finite time, un-
less they belong to the global attractor. Moreover, we discuss the
asymptotic behavior of solutions to a hyperviscous NSE, forward
and backward in time.

The viscous KdV equation is a special case of the KBS equation
by taking β = γ = 0 and f = 0 in (1.1). It is well-known that the
classical periodic KdV equation has explicit cnoidalwave solutions.
Also the solutions of the KdV are connected to the spectrum prob-
lem of certain Schrödinger operator. These nice properties of the
KdV equation provide us an opportunity to employ themodulation
asymptotic analysis to study the backward behavior of the viscous
KdV equation. Indeed, we give an evidence that the amplitude of
the cnoidal wave solution of the viscous KdV equation approaches
infinity backward in finite time, which is consistent with our result
on the backward blow-up of the energy. Furthermore, we attempt
to analyze the underlying mechanism for the backward blow-up
of the viscous KdV equation as well as the backward non-blowup
phenomenon of the 2D periodic NSE, by using the energy spectra
of solutions together with the Kolmogorov theory of turbulence.
These discussions from the physical point of view are novelties of
the manuscript and are major motivation for writing this article.

Now we briefly survey some related works in the literature
concerning the backward behaviors of dissipative evolution equa-
tions. It is proved in [9] that the 2Dperiodic viscous Camassa–Holm
equations (also known as Navier–Stokes-α model [10]) has an
analogous backward behavior as the 2D periodic NSE. Some differ-
ent phenomenon has been discovered in [11] for Burgers’ original
model for turbulencewhich consists of a PDE coupledwith a nonlo-
cal ODE, and it was shown for this system, there are three possible
behaviors of a solution as t → −∞: it can be globally bounded,
grow exponentially fast, or grow faster than any exponential.

Recall that the 2D periodic NSE reads
ut − ν1u + (u · ∇)u + ∇p = f , x ∈ T2

div u = 0, (1.3)

with u(0) = u0. A main ingredient in studying the backward
behavior of solutions to (1.3) is a pair of orthogonality relations of
the form ((u · ∇)v, v)L2 = 0 and ((u · ∇)u,1u)L2 = 0, provided
u, v are periodic in two dimensional space and divergence free.
Such pair of orthogonality relations lead to a pair of energy and
enstrophy formula: 1

2
d
dt |u|

2
L2 +ν|∇u|2L2 = (f , u)L2 and

1
2

d
dt |∇u|2L2 +

ν|1u|2
L2

= −(f ,1u)L2 , which are identical to the corresponding
estimates for the linear Stokes equations (i.e. Eq. (1.3) with the
nonlinear term vanished), and are the essence for proving that
there is a rich set of initial data such that the solution to (1.3) exists
globally for all t ∈ R (see [1]). It is demonstrated in [12] how to
generate a second orthogonality property for Lorenz equations, by
finding an alternate linear operator.

In addition, see [13,14] for some related results on this topic.
Throughout, | · | and (·, ·) represent the norm and the inner

product in L2per(T) respectively, and ∥ · ∥ stands for the norm in
H1

per(T), i.e., ∥u∥
2

= |ux|
2
+ |u|2 for u ∈ H1

per(T). As usual, we set
A = −∂xx. Moreover, we will denote by c a dimensionless constant
that may change from line to line.

The paper is organized as follows. In Section 2 we shall prove
the main rigorous mathematical result of the paper: Theorem 1.1.
In Section 3, we investigate the backward behavior of solu-
tions to damped driven nonlinear Schrödinger equation, com-
plex Ginzburg–Landau equation, and hyperviscous Navier–Stokes
equations, as well as mentioning some open problems. Sec-
tion 4 provides an elegant physical interpretation of the backward
behavior of various perturbations of the KdV equation, and also
includes some interesting discussion about the relation of the
backward behavior of dissipative equations with the Kolmogorov
theory of energy spectra of turbulence. Appendix is devoted to
proving two results presented in Section 3.

2. Proof of Theorem 1.1

To begin with, let us consider the first part of Theorem 1.1,
i.e., ν = 0. Without the viscous term, (1.1) becomes a KdV type
equation (1.2). The global well-posedness of the real-valued KdV
equation ut + uux + uxxx = 0 in H has been established in
Bourgain’s seminal paper [4] (see [3] for an alternative proof).



36 Y. Guo, E.S. Titi / Physica D 306 (2015) 34–47
Note that the energy of the KdV equation is conserved. Adding a
linear perturbation −βu and a time-independent forcing f ∈ H to
the KdV equation (ending up with Eq. (1.2)) destroys the energy
conservation, but the global well-posedness in H for all t ∈ R is
still valid for (1.1). Indeed, taking the scalar product of (1.2) with u
yields

1
2

d
dt

|u|2 − β|u|2 = (f , u).

By assuming β > 0 and using Hölder’s, Young’s and Gronwall’s
inequalities, we deduce

|u(t)|2 ≤ e3βt |u0|
2
+

|f |2

3β2
(e3βt − 1), for t ≥ 0, (2.1)

and

|u(t)|2 ≤ eβt |u0|
2
−

1
β2
(eβt − 1)|f |2, for t ≤ 0. (2.2)

Notice that, (2.1) implies that the energy grows at most ex-
ponentially fast as t → +∞, while (2.2) shows that as the
time t goes backwards, the energy is uniformly bounded. In fact,
lim supt→−∞ u(t) ≤

1
β2

|f |2, and thus all trajectories of Eq. (1.2)
approach a global attractor in H as t → −∞, provided β > 0. By
switching the direction of the time, the same analysis holds true
for the case β < 0.

Now we prove the second part of Theorem 1.1, i.e., the case
ν > 0.

2.1. Asymptotic estimates for the long-time dynamics

In the second part of Theorem 1.1, we assume f ∈ V ′. In the
proof, for the sake of clarification, we assume β > 0, which is the
more interesting case. The case β ≤ 0 can be treated analogously
with less effort.

In order to study the behavior of solutions for evolutionary
equations forward or backward in time, a natural method is to
perform an a priori estimate of the energy, and for Eq. (1.1) the
energy is the L2-norm of the solution. A straightforward way of
estimating the energy |u| is to take the scalar product of the KBS
equation (1.1) with u:

1
2

d
dt

|u|2 + ν|ux|
2
− β|u|2 = (f , u) ≤

ν

2
|ux|

2
+

1
2ν

A−
1
2 f
2 .

It follows that

d
dt

|u|2 + (νλ1 − 2β)|u|2 ≤
1
ν

A−
1
2 f
2 , (2.3)

where the Poincaré inequality |ux|
2

≥ λ1|u|2 has been used, for any
u ∈ V . Here, λ1 is the first eigenvalue of the operator A = −∂xx, i.e.,
λ1 = (2π/L)2. Unless the viscosity ν is large (i.e., ν > 2β

λ1
which is

not an interesting case), the energy estimate (2.3) does not provide
a uniform bound on the L2-norm of u(t) for all time t . However,
intuitively the energy of the KBS equation (1.1) must be uniform
bounded since it involves the viscous term νuxx acting as a strong
dissipation. Notice that, a drawback of the above energy estimate
is that it does not take advantage of the nonlinear convection term
uux, which plays the role of a medium transferring energy from
lower to higher wave numbers to prevent the growth of low wave
number modes. Indeed, in the KBS equation (1.1), −βu amplifies
the lowerwave numberswhile the diffusion νuxx damps the higher
wave numbers, and the interaction between these two linear terms
are through the energy conducting uux.

In order to take advantage of the convection uux, we employ
themethod of Lyapunov functions (also called the background flow
method [15–18]). More precisely, we subtract u by an appropriate
gauge function φ and study |u − φ|, instead of directly estimating
the energy |u|. This technique was used in [19–23,8] for the
purpose of studying the Kuramoto–Sivashinsky equation (KSE). It
is worth mentioning that, in the case of odd functions, which is
an invariant space for the KSE (also for Eq. (1.1) with γ = 0), the
gauge function φ is simpler and was introduced in [23]. On the
other hand, the best asymptotic energy estimate with respect to
the length L for the KSEwas obtained in [24] (see also [25]) by using
different techniques.

Weadopt the gauge functionφwhichwasused in [21,8]. Similar
idea can be found in [19,20]. To construct the function φ, we need
to do some preparation. In fact, for every ϵ ∈ (0, L/2), there exists
a periodic non-negative smooth function bϵ : R → [0,∞) with
period L and supported in (−ϵ, ϵ) such that

(1)


T bϵ(x)dx = L;
(2) supx∈R bϵ(x) ≤ cL/ϵ;

(3) |bϵ | ≤ cL/ϵ
1
2 ;

(4) |b′
ϵ | ≤ cL/ϵ

3
2 .

An example of such function was given in [8]: if define η(x) =

L(ϵ − |x|)/ϵ2 for |x| ≤ ϵ, then bϵ can be obtained by mollifying
and periodically extending η to the whole real line. The following
Poincaré type inequality was proved in [21].

Proposition 2.1 ([21]). Let bϵ : R → [0,∞) be a periodic function
with period L such that supp bϵ∩[−

L
2 ,

L
2 ] ⊂ (−ϵ, ϵ),


T bϵ(x)dx = L,

and supx∈R bϵ(x) ≤ cL/ϵ. If


T bϵ(x)u(x)dx = 0, for some u ∈ V ,
then

T
bϵ(x)u2(x)dx ≤ c0ϵL


T
u2
x(x)dx, for some c0 > 0.

As in [21,8], we define a periodic smooth functionφα,ϵ : R → R
by

φα,ϵ(x) = αx − α

 x

0
bϵ(y)dy, (2.4)

where α > 0. Since bϵ is periodic with period L and


T bϵ(x)dx = L,
we see that φα,ϵ is also periodic with period L. Furthermore, by
using the properties of the function bϵ , simple calculation gives

|φα,ϵ | ≤ cαL
3
2 , (2.5)

|φ′

α,ϵ | ≤ cα

L

1
2 + L/ϵ

1
2


, (2.6)

|φ′′

α,ϵ | ≤ cαL/ϵ
3
2 . (2.7)

Also the following simple fact is useful: since φα,ϵ is periodic, its
L2-norm has translation invariance |φα,ϵ(x)| = |φα,ϵ(x + ξ)| for
any ξ ∈ R.

Theorem 2.2. For sufficiently large time t ≥ t1 which depends on
|u0|, the solution S(t)u0 of (1.1) enters a ball in H with the radius ρ
satisfying the following asymptotic relation with the length L and the
parameters ν , β , γ :

ρ ∼ L5/2, ρ ∼
1
ν2
, ρ ∼ β5/2, ρ ∼ γ . (2.8)

Remark 2.3. Theorem 2.2 shows that there exists an absorbing
ball for (1.1), so by the classical theory of attractors (see, e.g. [26]),
the KBS equation (1.1) possesses a global attractor.
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Proof. The approach follows the idea in [21,8].We aim to estimate

Fα,ϵ(t) := inf
ξ∈T


T
(u(x, t)− φα,ϵ(x + ξ))2dx.

To this end, for ξ ∈ R, we calculate

1
2

d
dt


T
(u(x, t)− φα,ϵ(x + ξ))2dx

=
1
2

d
dt

|u|2 −


T
ut(x, t)φα,ϵ(x + ξ)dx. (2.9)

The first term on the right-hand side of (2.9) can be estimated by
usual way. In fact, taking the scalar product of (1.1) with u yields

1
2

d
dt

|u|2 = −ν|ux|
2
+ β|u|2 + (f , u)

≤ −
3
4
ν|ux|

2
+ β|u|2 +

1
ν

A−
1
2 f
2 , (2.10)

by using the Cauchy–Schwarz and Young’s inequalities.
To calculate the last term on the right-hand side of (2.9), we

take the scalar product of (1.1) with φα,ϵ(x + ξ), and notice that
φ′
α,ϵ(x) = α − αbϵ(x),

− (ut , φα,ϵ(x + ξ)) = ν(ux, φ
′

α,ϵ(x + ξ))−
1
2
(u2, φ′

α,ϵ(x + ξ))

−β(u, φα,ϵ(x + ξ))+ γ (ux, φ
′′

α,ϵ(x + ξ))− (f , φα,ϵ(x + ξ))

≤
ν

4
|ux|

2
+ ν|φ′

α,ϵ |
2
−
α

2
|u|2

+
α

2


T
bϵ(x + ξ)u2(x, t)dx + β


|u|2 +

1
4
|φα,ϵ |

2


+
ν

4
|ux|

2
+
γ 2

ν
|φ′′

α,ϵ |
2
+

1
ν

A−
1
2 f
2 +

ν

4
|φ′

α,ϵ |
2

≤
ν

2
|ux|

2
−

α
2

− β


|u|2 +
1
ν

A−
1
2 f
2

+ cνα2(L + L2/ϵ)+ cβα2L3 +
cγ 2

ν
α2L2/ϵ3

+
α

2


T
bϵ(x + ξ)u2(x, t)dx, (2.11)

where we have used the estimate (2.5)–(2.7) in the last inequality.
Now, substituting (2.10) and (2.11) into (2.9) implies

1
2

d
dt


T
(u(x, t)− φα,ϵ(x + ξ))2dx

≤ −
ν

4
|ux|

2
−

α
2

− 2β


|u|2 +
2
ν

A−
1
2 f
2 + cνα2(L + L2/ϵ)

+ cβα2L3 +
cγ 2

νϵ3
α2L2 +

α

2


T
bϵ(x + ξ)u2(x, t)dx. (2.12)

Next we intend to apply Proposition 2.1 to estimate the
last term in (2.12). Recall that we have defined Fα,ϵ(t) =

infξ∈T


T(u(x, t)− φα,ϵ(x + ξ))2dx. Notice, for each fix t , the map-
ping ξ →


T(u(x, t)−φα,ϵ(x+ξ))

2dx is continuous andperiodic on
R. Thus,we can assume theminimumof


T(u(x, t)−φα,ϵ(x+ξ))

2dx
occurs at a point ξ ∗(t) ∈ T. Then ξ ∗(t)must satisfy

T
(u(x, t)− φα,ϵ(x + ξ ∗(t)))φ′

α,ϵ(x + ξ ∗(t))dx = 0.

Recall thatφα,ϵ is a periodic function, thus


T φα,ϵ(x+ξ
∗(t))φ′

α,ϵ(x+
ξ ∗(t))dx = 0. It follows that

T
u(x, t)φ′

α,ϵ(x + ξ ∗(t))dx = 0,
and by (2.4), this is equivalent to
T
u(x, t)(1 − bϵ(x + ξ ∗(t)))dx = 0.

Since we assume u has spatial mean value zero, one has
T
u(x, t)bϵ(x + ξ ∗(t))dx = 0.

Consequently, by Proposition 2.1 and keeping in mind that u and
bϵ are both periodic functions with the period L, we conclude that

T
u2(x, t)bϵ(x + ξ ∗(t))dx ≤ c0ϵL|ux|

2. (2.13)

Now we compute
d
dt +

Fα,ϵ(t) = lim sup
s→t+

Fα,ϵ(s)− Fα,ϵ(t)
s − t

= lim sup
s→t+


T(u(x, s)− φα,ϵ(x + ξ ∗(s)))2dx −


T(u(x, t)− φα,ϵ(x + ξ ∗(t)))2dx

s − t

≤ lim sup
s→t+


T(u(x, s)− φα,ϵ(x + ξ ∗(t)))2dx −


T(u(x, t)− φα,ϵ(x + ξ ∗(t)))2dx

s − t

=


d
dt


T
(u(x, t)− φα,ϵ(x + ξ))2dx


ξ=ξ∗(t)

≤


−
ν

2
+ αc0ϵL


|ux|

2
− (α − 4β)|u|2 +

4
ν

A−
1
2 f
2 + cνα2(L + L2/ϵ)

+ cβα2L3 +
cγ 2

νϵ3
α2L2,

where (2.12) and (2.13) were used to obtain the last inequality.
By choosing α ≥ 8β , and setting ϵ =

ν
2αc0L

, we obtain

d
dt +

Fα,ϵ(t) ≤ −
α

2
|u|2 +

4
ν

A−
1
2 f
2 + C0(α) (2.14)

where C0(α) = cνα2L + cα3L3 + cβα2L3 +
cγ 2

ν4
α5L5.

We shall look for an estimate on Fα,ϵ(t) by using (2.14). Indeed,

Fα,ϵ(t) = inf
ξ∈T


T
(u(x, t)− φα,ϵ(x + ξ))2dx ≤ 2|u(t)|2 + 2|φα,ϵ |2.

It follows that

−
α

2
|u(t)|2 ≤ −

α

4
Fα,ϵ(t)+

α

2
|φα,ϵ |

2
≤ −

α

4
Fα,ϵ(t)+ cα3L3,

where (2.5) was used. Substituting the above inequality into (2.14)
yields

d
dt +

Fα,ϵ(t) ≤ −
α

4
Fα,ϵ(t)+ cα3L3 +

4
ν

A−
1
2 f
2 + C0(α).

By Gronwall’s inequality, we deduce, for t ≥ t0,

Fα,ϵ(t) ≤ e−
α
4 (t−t0)Fα,ϵ(t0)+

4
α


1 − e−

α
4 (t−t0)


×


cα3L3 +

4
ν

A−
1
2 f
2 + C0(α)


. (2.15)

This implies

lim sup
t→∞

Fα,ϵ(t) ≤
4
α


cα3L3 +

4
ν

A−
1
2 f
2 + C0(α)


.

Consequently,

lim sup
t→∞

|u(t)|2 ≤
8
α


cα3L3 +

4
ν

A−
1
2 f
2 + C0(α)


+ 2|φα,ϵ |2

≤
8
α


cα3L3 +

4
ν

A−
1
2 f
2 + C0(α)


by virtue of (2.5), where α ≥ 8β .
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Finally, if we choose α = 8β , then for t sufficiently large, u(t)
enters a ball in H with the radius

ρ2
:= c


β2L3 +

1
νβ

A−
1
2 f
2 + νβ2L + β3L3 +

γ 2

ν4
β5L5


. (2.16)

For simplifying the expression of ρ, we can assume ν ≤ 1 and
L, β, γ ≥ 1, then

ρ2
= c


1
νβ

A−
1
2 f
2 +

γ 2

ν4
β5L5


.

This gives ρ ∼ L5/2, ρ ∼
1
ν2
, ρ ∼ β5/2, ρ ∼ γ . The proof of

Theorem 2.2 is complete. �

Remark 2.4. By virtue of (2.16), we see that the dispersion γ uxxx
in the KBS equation (1.1) tends to amplify the size of the absorbing
ball. In particular, if we remove γ uxxx from the KBS, then ρ ∼ L3/2
(instead of ρ ∼ L5/2 for the KBS). This agrees with the estimate in
Theorem 2 [21] for the Burgers–Sivashinsky equation ut + uux =

u + uxx.

Remark 2.5. By switching t and t0 in (2.15), we obtain, for t ≤ t0,

Fα,ϵ(t) ≥ e
α
4 (t0−t)Fα,ϵ(t0)−

4
α


e
α
4 (t0−t)

− 1


×


cα3L3 +

4
ν

A−
1
2 f
2 + C0(α)


. (2.17)

Assume u(t) : R → H is a global solution outside the global
attractor. By the theory of attractors (see, e.g. [26]), we know that
|u(t)| is not universal bounded for all t ∈ R. Therefore, Fα,ϵ(t)
is not uniformly bounded on R. So, we can choose t0 such that
Fα,ϵ(t0) > 4

α
(cα3L3 +

4
ν
|A−

1
2 f |2 + C0(α)), and for such t0, (2.17)

implies that

lim inf
t→−∞

log Fα,ϵ(t)
|t|

≥
α

4
.

It follows that

lim inf
t→−∞

log |u(t)|
|t|

≥
α

4
.

Since α ≥ 8β is an arbitrary large number, we conclude that the
growth rate of |u(t)| as t → −∞ is faster than exponential, if we
assume u(t) is a global solution on R outside the global attractor.
In the next section, we shall show that in fact, for the KBS equation
(1.1) with ν > 0, there does not exist a global solution outside the
global attractor.

2.2. Blow-up of solutions backward in finite time

This subsection is devoted to completing the proof of Theo-
rem 1.1. We shall show that, if ν > 0, then any solution u(t) :

[0,∞) → H of (1.1) outside the global attractor cannot be ex-
tended to a global solution on R. Our argument follows the ap-
proach in [8]. First let us prove the following lemma.

Lemma 2.6. Assume ν > 0 and f ∈ V ′. Let α ≥ 8β and R ≥
4( 4ν |A−

1
2 f |2+C0(α))
α

 1
2

. Assume that u(t) : [t1, t2] → H is a solution

of (1.1) such that |u(t1)| ≤ 2R and |u(t)| ≥ R for t1 ≤ t ≤ t2. Then

t2 − t1 ≤
30
α

+
cαL3

R2
.

Proof. Recall Fα,ϵ(t) = infξ∈T


T(u(x, t) − φα,ϵ(x + ξ))2dx. It
follows that

Fα,ϵ(t1) ≤ 2(|u(t1)|2 + |φα,ϵ |
2) ≤ 8R2

+ cα2L3, (2.18)

where we have used (2.5).
Notice that the inequality (2.14) states d

dt +
Fα,ϵ(t) ≤ −

α
2 |u|2 +

4
ν
|A−

1
2 f |2 + C0(α). Integrating between t1 and t2 and using the fact

|u(t)| ≥ R for t1 ≤ t ≤ t2, we infer

Fα,ϵ(t2)− Fα,ϵ(t1)

≤


−
α

2
R2

+


4
ν

A−
1
2 f
2 + C0(α)


(t2 − t1). (2.19)

Combining (2.18) and (2.19) yields

Fα,ϵ(t2) ≤ 8R2
+ cα2L3

+


−
α

2
R2

+


4
ν

A−
1
2 f
2 + C0(α)


(t2 − t1). (2.20)

On the other hand, since Fα,ϵ(t) =


T(u(x, t) − φα,ϵ(x +

ξ ∗(t)))2dx, then by (2.5) we have

Fα,ϵ(t2) ≥
1
2
|u(t2)|2 − |φα,ϵ |

2
≥

1
2
R2

− cα2L3. (2.21)

It follows from (2.20) and (2.21) that

1
2
R2

− cα2L3 ≤ 8R2
+ cα2L3

+


−
α

2
R2

+


4
ν

A−
1
2 f
2 + C0(α)


(t2 − t1).

This implies

t2 − t1 ≤

15
2 R2

+ cα2L3

α
2 R

2 −


4
ν

A−
1
2 f
2 + C0(α)


≤

30R2
+ cα2L3

αR2

=
30
α

+
cαL3

R2
,

due to the fact 1
4αR

2
≥

4
ν
|A−

1
2 f |2 + C0(α) from assumption. �

Now we can complete the proof of the second part of Theorem
(1.1): the blow-up of solutions of the KBS equation (1.1) backward
in finite time, if ν > 0.

Proof of Theorem 1.1(ii). Assume that there exists a global
solution u(t) : R → H which does not belong to the global at-
tractor. By Remark 2.5, |u(t)| grows faster than exponentially back-
ward in time. Then, there exists a sequence of times {tj}∞j=0 with
tj+1 ≤ tj, such that |u(tj+1)| ≤ 2j+1R0 and |u(t)| ≥ 2jR0 for
tj+1 ≤ t ≤ tj, j = 0, 1, 2, . . . , where R0 > 0 will be chosen later.

By taking R = 2jR0 in Lemma 2.6, we have, if 4j−1R2
0αj ≥

4
ν
|A−

1
2 f |2 + C0(αj) and αj ≥ 8β , then

∞
j=0

(tj − tj+1) ≤ 30
∞
j=0

1
αj

+

∞
j=0

cαjL3

4jR2
0
. (2.22)

Nowwecarefully select the values ofαj andR0 to force the right-
hand side of (2.22) to be finite. We choose αj = 2j/2

·8βR1/4
0 . Recall

C0(α) = cνα2L + cα3L3 + cβα2L3 +
cγ 2

ν4
α5L5. Then, C0(αj) =

c(2jνβ2R1/2
0 L + 23j/2β3R3/4

0 L3 + 2jβ3R1/2
0 L3 +

γ 2

ν4
25j/2β5R5/4

0 L5). In



Y. Guo, E.S. Titi / Physica D 306 (2015) 34–47 39
order tomatch the requirement 4j−1R2
0αj ≥

4
ν
|A−

1
2 f |2+C0(αj)with

αj = 2j/2
· 8βR1/4

0 , for all j = 0, 1, 2, . . . , i.e.,

R
9
4
0 ≥

2
νβ

A−
1
2 f
2 · 2−

5
2 j + c


2−

3
2 jνβR

1
2
0 L

+ 2−jβ2R
3
4
0 L

3
+ 2−

3
2 jβ2R

1
2
0 L

3
+
γ 2

ν4
β4R

5
4
0 L

5

,

for all j = 0, 1, 2, . . . , a sufficient condition is

R0 ≥
2
νβ

A−
1
2 f
2 + c · max


νβL, β2L3,

γ 2

ν4
β4L5


+ 1. (2.23)

With αj = 2j/2
· 8βR1/4

0 and R0 satisfying (2.23), we obtain from
(2.22) that
∞
j=0

(tj − tj+1) ≤
15
4

∞
j=0

1

2j/2βR1/4
0

+

∞
j=0

c2j/2βR1/4
0 L3

4jR2
0

= C


1

βR1/4
0

+
βL3

R7/4
0


.

This can be interpreted as: if |u(t0)| ≥ R0, and let the time t goes
backwards, then the lifespan of the solution backward in time from
t = t0 is shorter than C( 1

βR1/40
+

βL3

R7/40
). Therefore, there does not

exist a global solution u(t) : R → H of (1.1) unless u belongs to
the global attractor. �

We remark that the proof of Theorem 1.1 implies that S(t)H is
not dense in H for any t > 0, where S(t) is the solution semigroup
of the KBS equation (1.1) with ν > 0. This fact is contrast to the
Bardos–Tartar conjecture on the 2D NSE [2]. More precisely, we
have the following result.

Corollary 2.7. Assume ν > 0 and f ∈ V ′. For any t ′ > 0, there exist
r(t ′) > 0 such that |S(t)u0| < r(t ′), for all u0 ∈ H, and all t ≥ t ′,
where S(t) is the solution semigroup of the KBS equation (1.1).

Proof. The result can be directly obtained by the following
statement in the proof of Theorem 1.1: if u(t) is a solution of (1.1)
with |u(t0)| ≥ R0, then the lifespan of this solution backward in
time starting at t = t0 is shorter than C( 1

βR1/40
+

βL3

R7/40
). Now, given

any t ′ > 0, we choose r(t ′) sufficiently large so that C( 1
βr(t ′)1/4

+

βL3

r(t ′)7/4
) < t ′. Then, for any u0 ∈ H , the energy |S(t)u0| < r(t ′) for

all t ≥ t ′, i.e., the trajectories of all solutions stay in a ball of radius
r(t ′) in H for all t ≥ t ′. �

3. Additional examples

In this section we discuss the backward behavior of another
three dissipative evolution equations, in order to shed light on
different types of backward blow-upmechanism.We alsomention
some open problems as well.

3.1. Damped driven nonlinear Schrödinger equation

In this subsection we consider the 1D damped driven nonlinear
Schrödinger equation on torus (circle)

iut + uxx + |u|2u + iλu = f , x ∈ T, (3.1)

where λ > 0, so that iλu is aweak damping. The conservation form
of this equation (λ = 0 and f = 0) has been extensively studied
as a fundamental equation in modern mathematical physics (see,
e.g. [27,28]). For the case λ > 0 and f ∈ L2per(T), it is shown in [29]
that (3.1) is globally well-posed in H1

per(T) for t ∈ R and possesses
a weak attractor in H1

per(T), and this result has been improved
in [30] that the weak attractor is in fact a global attractor A in
the usual strong topology sense, and that it has finite Hausdorff
and fractal dimensions. Also, it is shown in [31] that the global
attractor A of (3.1) is smooth (i.e. C∞) provided the forcing term is
smooth. Furthermore, it is proved in [32], by employing the Gevrey
class technique, that A is in fact contained in a subclass of the
real analytic functions provided the driving term f is real analytic.
Finally, a recent work [33] shows that A is embedded in the long-
time dynamics of a determining form (an ODE), and there is a
one-to-one identification with the trajectories in A and the steady
states of the determining form.

The backward behavior of the solution u(t) of (3.1), with u0 ∈

H1
per(T), can be described as follows: if u(t) does not belong to the

global attractor, then as t → −∞, the L2-norm of u(t) grows
exponentially fast, while theH1-normgrows atmost exponentially
in time. In particular, we have the following:

Theorem 3.1. Assume f ∈ L2per(T). Let u(t) be a global solution
of (3.1) in H1

per(T) for all t ∈ R, with the initial data u0 ∈ H1
per(T),

such that u does not belong to the global attractor. Then

c1e−
1
2 λt ≤ |u(t)| ≤ C1e−

3
2 λt , as t → −∞, (3.2)

where c1 and C1 depends on |u0|, |f | and λ. In addition, the behavior
of the energy E(t) backward in time satisfies

E(t) := |ux(t)|2 −
1
2
|u(t)|4L4 ≤ C2e−3λt , as t → −∞,

where C2 depends on ∥u0∥, |f | and L. Furthermore,

∥u(t)∥ ≤ C3e−
9
2 λt , as t → −∞,

where C3 depends on |u0|, |f | and λ.

Proof. See Appendix. �

Finally, we point out that our purpose of discussing equation
(3.1) is to introduce the backward behavior of solutions for a typical
nonlinear dispersive equation with a linear damping: the solution
can be extended to all t ∈ R and it grows exponentially backward
in time.

3.2. Complex Ginzburg–Landau equation

In this subsection we consider the complex Ginzburg–Landau
equation:

ut − (a + bi)uxx − δu + (α + βi)|u|2u = 0, in T, (3.3)

where a ≥ 0, and b, δ, α, β are all real-valued. Roughly speaking,
this is a strongly dissipative version of (3.1).

First of all, we notice that, if a = α = 0, then Eq. (3.3) reduces to
a nonlinear Schrödinger equationwith a linear perturbation,which
is globally well-posed for t ∈ R. We have discussed this case in
Section 3.1.

Next, we study a typical parameter regime for Eq. (3.3): a > 0,
α > 0. In this case, Eq. (3.3) is globally well-posed forward in
time and has nontrivial asymptotic behavior, which has been ex-
tensively studied in the literature (see, e.g. [34–37] and references
therein). The backward behavior of the solution to (3.3) in this pa-
rameter regime can be investigated straightforwardly. Indeed, we
have the following:
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Theorem 3.2. Assume a > 0 and α > 0. Let u(t) : [0,∞) → L2(T)
be a solution of (3.3) which does not belong to the global attractor.
Then u(t) cannot be extended to a global solution of (3.3) for all t ∈ R,
i.e., any extension of u(t) backward in time blows up in finite time.

Proof. Wemultiply (3.3)with ū and integrate overT, and then take
the real part. It follows that

1
2

d
dt

|u|2 + a|ux|
2
− δ|u|2 + α|u|4L4 = 0. (3.4)

Since a ≥ 0, we obtain

1
2

d
dt

|u|2 ≤ δ|u|2 − α|u|4L4 ≤ δ|u|2 −
α

L
|u|4,

by the Cauchy–Schwarz inequality. By setting s = −t and y = |u|2,
one has
dy
ds

≥ −2δy +
2α
L

y2.

Hence, if y(s0) > δL
α
, then y(s) blows up at some finite time s =

s1 > s0. �

Theorem 3.2 states that any solution u to (3.3) off the global at-
tractor blows up backward in finite time with respect to the L2(T)
norm, provided a > 0, α > 0. We stress here, since we drop
the viscosity in the above estimate, the backward blow-up in the
case is solely due to the nonlinearity, and it does not result from
the presence of the viscosity. This is a totally different mechanism,
contrast to the backward blow-up phenomenon of the KBS equa-
tion (1.1), which is caused by two forces: the cascade of energy to
small scales by the nonlinearity uux, as well as the amplification
of higher modes by the viscosity. In a word, our purpose for dis-
cussing Eq. (3.3) is to point out a backward blow-up mechanism
for certain dissipative PDEs, which is completely due to the effect
of the nonlinearity.

Another typical parameter regime for (3.3) is that a > 0, α <
0. Under this scenario, Eq. (3.3) is locally well-posed forward in
time, and by referring to the energy identity (3.4), we see that the
nonlinear term acts as a source forward in time, which can lead
the solution to blow up in finite time [38] (see also [39,40] for
other results concerning finite time blow-up of similar equations).
On the other hand, for the CGLE defined in the whole space Rd,
the blow-up phenomenon has been carefully discussed in [41–43],
etc. However, since α < 0, we see that the nonlinearity tends to
damp the energy as the time goes backwards, thus the life span
of solutions backward in time might be a subtle problem, which
deserves a future study.

3.3. Hyperviscous Navier–Stokes equations

We have mentioned in the introduction that, in studying
the backward behavior of the 2D periodic NSE [1], a pair of
orthogonality relations of the form ((u · ∇)v, v) = 0 and ((u ·

∇)u,1u) = 0 is critical. Also, similar orthogonality relations are
valid for the 2D periodic Navier–Stokes-α model [9]. However,
consider the 2D periodic hyperviscous NSEut + ν∆2u + (u · ∇)u + ∇p = f , x ∈ T2,

div u = 0,
u(0) = u0,

(3.5)

with mean value zero assumption on u0, f and u. Notice that the
scalar product of the nonlinear and linear terms of (3.5), i.e. ((u ·

∇)u,∆2u), does not necessarily vanish, so the technique presented
in [1] seems not directly applicable to (3.5). Thus, the backward
behavior of Eq. (3.5) is an interesting problem to investigate.
One may first consider a simpler case f = 0. In the absence of
external forces, the energy satisfies 1

2
d
dt |u|

2
+ ν|1u|2 = 0, then

by the Poincaré inequality, we see that the energy |u(t)| decays to
zero at least exponentially in time, as t → ∞, and the system has
a trivial attractor. In fact, one can show a stronger result: the decay
forward in time is exactly of exponential type, i.e., |u(t)| cannot
decrease faster than exponentially as t → ∞. Concerning the 2D
or 3D NSE on bounded or periodic domain without forcing, the
same exponential decay result is also valid, which was proved by
Foias and Saut in [44], and more precisely they showed that the
ratio of the enstrophy over the energy converges to an eigenvalue
of the Stokes operator as t → ∞. A similar result also holds for
the solution of (3.5) with f = 0, i.e., the ratio |1u(t)|2/|u(t)|2 is
convergent to an eigenvalue of the bi-Laplacian as t → ∞.

In order to state the following result, we define the space
H := closure of V in L2per(T

2) where V = {ϕ = trigonometric
polynomials with values in R2

: div ϕ = 0,


T2 ϕdx = 0}. The
well-posedness of (3.5) for t ∈ [0,∞)with u0 ∈ H is classical.

Theorem 3.3. Let f = 0 and u0 ∈ H , then the solution u of
(3.5) satisfies

e−b(t−t0)|u(t0)| ≤ |u(t)| ≤ e−νλ21(t−t0)|u(t0)|,
for t ≥ t0 > 0, (3.6)

where b = ν
|Au(t0)|2

|u(t0)|2
exp


cν−

3
2 λ−2

1 |u(t0)|2

and λ1 = (2π/L)2.

Proof. The proof follows the approach in [44]. For the sake of
completion, we provide the proof in the Appendix. �

Remark 3.4. Assume that there exists a global solution u(t), t ∈ R,
of (3.5) with f = 0. By switching t and t0 in (3.6), we obtain

|u(t)| ≥ eνλ
2
1(t0−t)

|u(t0)|, for − ∞ < t ≤ t0 < ∞.

This shows that the energy |u(t)| of a nonzero global solution u
grows at least exponentially fast as the time t goes backwards.
Thus, there are three possibilities of the backward-in-time
behaviors of the solution u, that is, |u(t)| increases exactly of
exponential type as t → −∞, or faster than exponential, or
blow up backward in finite time. Here, concerning the 2D periodic
hyperviscous NSE (3.5), we state a similar conjecture to the one of
Bardos–Tartar [2]: S(t)H is dense inH for every t > 0, where S(t)
is the solution semigroup of (3.5). In fact, we can propose a slightly
stronger conjecture for (3.5): the set of all u0 ∈ H for which S(t)u0
is a global solution for t ∈ R is dense in H .

Finally, we point out that, for the 2D periodic hyperviscous NSE
(3.5) without forcing, i.e., f = 0, there exists a class of initial data
u0 for which the solution S(t)u0 of (3.5) is global, for all t ∈ R, such
that the energy |S(t)u0| grows exponentially fast as t → −∞.
In order to construct these explicit solutions we write (3.5) with
f = 0 in the equivalent vorticity-stream formulation (see, e.g. [45])

ωt + ν∆2ω + J(ψ,1ψ) = 0, x ∈ T2, (3.7)

where the vorticityω := curl u,ψ is the stream function satisfying
u = ∇

⊥ψ := (−ψx2 , ψx1)
tr , and the Jacobian J(ψ,1ψ) := ψx1 ψx2

1ψx1 1ψx2

. Let us define, for any fixed β ∈ N,

ψ0(x) =


k∈Z2, |k|2=β


ak cos


2πk
L

· x


+ bk sin

2πk
L

· x

,

x ∈ T2,

where ak and bk are arbitrary real numbers. Notice that ψ0 is a
steady state of the 2D Euler equation ωt + J(ψ,1ψ) = 0 on T2,
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due to the fact J(ψ0,1ψ0) = 0 (see, e.g. [45]). Inspired by these
steady state solutions of the Euler equation, we see that

ψ(x, t) = e−16π4β2νt/L4ψ0(x)

is an explicit solution of (3.7), since for this particular stream
function, one has J(ψ,1ψ) = 0, and the vorticity

ω(x, t) = 1ψ(x, t) =
4πβ
L2

e−16π4β2νt/L4ψ0(x).

Also, we can calculate the velocity

u0 = ∇
⊥ψ0

=




k=(k1,k2)∈Z2, |k|2=β


akk2 sin


2πk
L

· x


− bkk2 cos

2πk
L

· x



k=(k1,k2)∈Z2, |k|2=β


−akk1 sin


2πk
L

· x


+ bkk1 cos

2πk
L

· x

 .

Since (3.7) is equivalent to (3.5) with f = 0, we have that

u(x, t) = ∇
⊥ψ = e−16π4β2νt/L4u0

is an explicit global solution of (3.5) with f = 0, for all t ∈ R. Obvi-
ously, the L2-norm |u(t)| = e−16π4β2νt/L4

|u0| grows exponentially
fast backward in time. In otherwords, there exists a family of initial
data u0, constructed above, for which the solution S(t)u0 of (3.5) is
global, for all t ∈ R, with the L2-norm growing exponentially fast
backward in time. However, it is an open problemwhether that the
set of initial data, for which the solution of (3.5) can be extended
to all t ∈ R, is dense in H .

4. Discussion

In this section we would like to provide some discussion for
the purpose of understanding the different backward behaviors
of the 2D periodic NSE and the KBS equation (1.1). In Section 4.1,
we will consider a special case of the KBS equation: the viscous
KdV equation, and demonstrate that a cnoidal-like wave solution
(periodic soliton) blows up backward in time. In Section 4.2
we employ the energy spectra and argue, using Kolmogorov
turbulence theory, in an attempt to explain why the solutions of
the 2D periodic NSE can be extended to a global solution, for all
t ∈ R, for a rich set of initial data, but any solution outside the
global attractor of the KBS equation (1.1), with ν > 0, must blow
up backward in finite time. Our discussion is intended to shed
more light on the nature of this phenomenon using physical non-
rigorous arguments.

4.1. Physical interpretation of backward behaviors of perturbed KdV

We aim to discuss the backward blow-up of the KBS equation
(1.1) using perturbation arguments on explicit solutions. For the
sake of simplicity, we set β = 0, f = 0 and ν > 0 in (1.1), the
equation becomes a viscous perturbation of the KdV equation

ut − νuxx + uux + γ uxxx = 0, in T = [−L/2, L/2], (4.1)

with the spatial mean value zero assumption on u. We have shown
that all of the nonzero solutions of (4.1) blow up backward in
finite time. It is well-known that the existence of the soliton
solutions for KdV represents a balance between the dispersion and
nonlinearity. Adding a viscous term to the KdV equation affects
such balance, the viscosity dissipates the kinetic energy and tends
to diminish the soliton forward in time. However, backward in
time, the viscosity acts as a source that may intensify the soliton,
and cause the deformation of its shape, leading to higher amplitude
and shrinking width. Thus the blow-up of the soliton backward
in time may result from the amplitude of the perturbed soliton
approaching infinity.

To demonstrate this argument more clearly, we shall look at an
explicit periodic soliton solution of the KdV equation and employ a
standard perturbation argument. Let us consider the classical KdV
equation

ut + uux + uxxx = 0, in T. (4.2)

It was discovered by Gardner, Greene, Kruskal, and Miura in their
seminalwork [46,47] that, ifu is a solution of theKdV (4.2), then the
eigenvalues of the Schrödinger operator ∂xx +

1
6u are independent

of time. Specifically, suppose that there exist λ(t) and a function
ψ(x, t) ∈ H2(T), with


T ψ

2(x)dx = 1, satisfying
∂xx +

1
6
u

ψ = λψ, in T, (4.3)

then λ(t) is a constant in time. This can be seen readily by a formal
argument [46]. Indeed, a straightforward manipulation of (4.3)
implies

∂

∂x
(ψxR − ψRx) = −ψ2


λt −

1
6
(ut + uux + uxxx)


, (4.4)

where R(x, t) := ψt −
1
6uxψ + ( 13u + 4λ)ψx. Since u is a solution

of (4.2), then (4.4) is reduced to

∂

∂x
(ψxR − ψRx) = −ψ2λt . (4.5)

Integrating (4.5) in T, by using the periodicity of ψ and u, as well
as the square integrability of ψ , we infer that λt = 0, i.e., λ(t) is
invariant in time.

By employing the technique mentioned above, a perturbation
of the KdV equation can be analyzed. The method is standard and
can be found in [48–50]. Indeed, let us consider a perturbed KdV:

ũt + ũũx + ũxxx = ϵq, in T, (4.6)

where ϵ > 0 is small and q(x, t) may depend on ũ. The goal is
to find the evolution of the eigenvalues of the operator ∂xx +

1
6 ũ

provided ũ is a solution of (4.6). To this end, we consider the
equation
∂xx +

1
6
ũ

ψ̃ = λ̃ψ̃, in T, with


T
ψ̃2(x)dx = 1. (4.7)

Exactly the same as (4.4), we have

∂

∂x
(ψ̃xR̃ − ψ̃ R̃x) = −ψ̃2


λ̃t −

1
6
(ũt + ũũx + ũxxx)


, (4.8)

where we define R̃(x, t) = ψ̃t −
1
6 ũxψ̃ + ( 13 ũ + 4λ̃)ψ̃x. By

substituting (4.6) into (4.8), it follows that

∂

∂x
(ψ̃xR̃ − ψ̃ R̃x) = ψ̃2


λ̃t −

1
6
ϵq

. (4.9)

Unlike the situation of the classical KdV equation (4.2), here
an eigenvalue λ̃(t) is no longer invariant in time. Indeed, by
integrating (4.9) over T and using the periodicity of ψ̃ and ũ, it
follows that

λ̃t


T
ψ̃2dx =

1
6
ϵ


T
ψ̃2qdx. (4.10)

Since


T ψ̃
2dx = 1, then

λ̃t =
1
6
ϵ


T
ψ̃2qdx. (4.11)
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Note that (4.11) shows that an eigenvalue λ̃(t)may evolve slowly
within a short time provided ϵ is small.

Next we look at a typical explicit periodic solution of the KdV
equation defined in the torus T = [−

L
2 ,

L
2 ]. Take the initial

data to be u0 = 12m0l20 cn2(l0x,m0), where m0 ∈ (0, 1) is the
elliptic parameter for the Jacobi elliptic function cn(x,m0). Here,
we requirem0 and l0 to satisfy the relation

l0 =
1
L

 2π

0

1
1 − m0 sin2 θ

dθ (4.12)

so that the period of u0(x) is L, due to the definition cn(x,m0) =

cos(φ) where x =
 φ
0

1√
1−m0 sin2 θ

dθ . With this initial data u0, the

unique solution of the KdV equation (4.2) is

u(x, t) = 12m0l20 cn2(l0(x − c0t),m0), (4.13)

where c0 = 4(2m0 − 1)l20 (see, e.g., [49,51]). This is the so-called
‘‘cnoidal’’ wave solution (periodic soliton) derived by Korteweg
and de Vries in their 1895 paper [52] in which they proposed
the KdV equation. Concerning the spectral problem (4.3) with the
cnoidal wave solution u given in (4.13), we find an eigenvalue

λ = (2m0 − 1)l20, (4.14)

with the corresponding eigenfunction

ψ(x, t) =


l0
Cm0

cn(l0(x − c0t),m0), (4.15)

where Cm0 =
 Km0 /2
−Km0 /2

cn2(x,m0)dx, where Km0 =
 2π
0

1√
1−m0 sin2 θ

dθ is the period of the elliptic function cn(x,m0). With this
definition of ψ , one has


T ψ

2(x)dx = 1.
For the same initial data u0 = 12m0l20 cn2(l0x,m0), we now

investigate the solution ũ of the perturbed KdV equation (4.6)
provided ũ(x, 0) = u0. Since ϵ > 0 is very small, we expect the
solution ũ of (4.6) to be a small perturbation of the KdV solution
(4.13), at least for a short time, in the sense that,

ũ(x, t) ≈ 12ml2 cn2(l(x − ct),m), (4.16)

where l(t) =
1
L

 2π
0

1√
1−m(t) sin2 θ

dθ and c(t) = 4(2m(t)− 1)l2(t),

with 0 < m(t) < 1, such that l(0) = l0 and m(0) = m0. As a
result, for the spectral problem (4.7), it is expected that there exists
an eigenvalue λ̃ with the corresponding eigenfunction ψ̃ , which
are small perturbation of λ and ψ , defined in (4.14) and (4.15),
respectively, i.e.,

λ̃(t) ≈ (2m(t)− 1)l2(t), (4.17)

with the corresponding eigenfunction

ψ̃(x, t) ≈


l
Cm

cn(l(x − ct),m), (4.18)

where Cm(t) =
 Km/2
−Km/2

cn2(x,m(t))dx, where

Km(t) =
 2π
0

1√
1−m(t) sin2 θ

dθ is the period of the elliptic function

cn(x,m(t)).
In order to find out how the shape of the cnoidal-like wave

solution ũ changes in time for the perturbed KdV equation (4.6)
with small perturbation ϵq, we study some typical perturbations.
4.1.1. The damped KdV equation
First set q = −ũ in (4.6), i.e., we consider the KdV equationwith

a small linear damping

ũt + ũũx + ũxxx = −ϵũ, in T. (4.19)

Eq. (4.19) is a special case of a more general equation ut + uux +

uxxx = −Γ (t)u, which models a wave moving over an uneven
bottom [53,54,50]. By (4.16), q = −ũ ≈ −12ml2 cn2(l(x − ct),m),
then we substitute this along with (4.17) and (4.18) into (4.11) to
obtain

∂t [(2m − 1)l2] ≈
−2ϵml2

Cm

 Km/2

−Km/2
cn4(x,m)dx. (4.20)

In order to see the evolution of l(t) more clearly, we consider the
situation inwhich the elliptic parameterm is very close to 1, so that
m is almost invariant in short time compared to the change of l, and
then the Jacobi elliptic function cn(x,m) can be approximated by
the hyperbolic function sech(x). Under such scenario, we obtain
from (4.20) that

∂t l ≈ −ϵC̃ l, with l(0) = l0, (4.21)

where l0 is given in (4.12), and C̃ =


R sech4(x)dx
 

R sech2(x)

dx
−1

=
2
3 . Notice that (4.21) implies l(t) ≈ e−ϵC̃ t l0, i.e., for-

ward in time, l(t) decreases to zero exponentially fast. On the other
hand, backward in time, l(t) increases with an approximately ex-
ponential rate, i.e., the amplitude 12ml2 of the cnoidal wave (4.16)
grows exponentially with an exponentially fast shrinking width
∼1/l. Moreover, the propagation speed c(t) = 4(2m(t) − 1)l2(t)
of the cnoidal wave also increases exponentially backward in time.
Furthermore, by (4.16) it follows that the energy |ũ(t)|2 ∼ l3(t),
which increases exponentially fast backward in time. Notice that
this finding is consistent with the L2 energy estimate of (4.19), i.e.,
|ũ(t)|2 = e−2ϵt

|u0|
2. In addition, from (4.16) we see that |ũx(t)|2 ∼

l5(t) also tends to grow exponentially backward in time.

4.1.2. The viscous KdV equation
Next we set q = ũxx in (4.6), i.e., we consider the viscous KdV

equation

ũt + ũũx + ũxxx = ϵũxx, in T. (4.22)

By using (4.16), we calculate

q = ũxx ≈ −24ml4[3m cn4(l(x − ct),m)
+ (2 − 4m) cn2(l(x − ct),m)+ m − 1].

Substituting this formula along with (4.17) and (4.18) into (4.11)
gives

∂t [(2m − 1)l2] ≈ −
4ϵml4

Cm

 Km/2

−Km/2
cn2(x,m)[3m cn4(x,m)

+ (2 − 4m) cn2(x,m)+ m − 1]dx. (4.23)

Analogously as above, we consider the case that the elliptic
parameter m is very close to 1 so that m is almost invariant in
short time compared to the change of l, and then cn(x,m) can be
approximated by sech(x). Thus, (4.23) implies

∂t l ≈ −ϵC̃1l3 (4.24)

where C̃1 = 2


R sech4(x)[3 sech2(x)− 2]dx
 

R sech2(x)dx
−1

=
8
15 . It follows that l(t) decreases to zero forward in time. In

addition, we see from (4.24) that l(t) tends to approach infinity
backward in finite time, i.e., the amplitude 12ml2 of the cnoidal
wave (4.16) grows very fast with a rapidly shrinking width ∼1/l
and a fast accelerating wave speed c = 4(2m − 1)l2, which may
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lead to a backward blow-up. Also, we obtain from (4.16) that the
energy |ũ(t)|2 ∼ l3(t), tending to blow up backward in time. This
finding indicates the mechanism of singularity formulation, and
it is consistent with the rigorous mathematical result in Theorem
1(ii) that the energy of the viscous KdV (4.22) blows up backward
in time.

4.1.3. The viscous Benjamin–Bona–Mahony type of equation
Finally, in order to test the robustness of the asymptotic

argument presented in this section, wewould like to study another
perturbation of the KdV equation. In particular, we set q = ũxx +

ũxxt in (4.6), and then the equation becomes

ũt + ũũx + ũxxx = ϵ(ũxx + ũxxt), in T. (4.25)

Eq. (4.25) is a viscous Benjamin–Bona–Mahony (BBM) type of
equation. The original BBM equation, ut + ux + uux − uxxt = 0,
was proposed as a modification of the KdV equation for modeling
long surface gravity waves [55]. The energy identity of (4.25) reads

1
2

d
dt
(|ũ|2 + ϵ|ũx|

2) = −ϵ|ũx|
2.

This implies, with the Poincaré inequality, that the energy |ũ|2 +

ϵ|ũx|
2 decreases to zero exponentially fast forward in time, while

grows exponentially fast backward in time. Now we use our
perturbation argument to study the evolution of the shape of the
cnoidalwave for (4.25). Similar to arguments introduced above,we
assume that the elliptic parameter m is very close to 1 so that m is
almost invariant in short time compared to the change of l, and
in this case, cn(x,m) can be approximated by sech(x). Then, after
straightforward calculations, we obtain

−2lt ≈ 2ϵC̃2l3 + 32ϵC̃3l6 + lt(8ϵC̃2l2 − 8ϵC̃4l2 + 64ϵC̃3l5t),

where

C̃2 =


R
sech4(x)[3 sech2(x)− 2]dx =

8
15

;

C̃3 =


R
sech4(x) tanh(x)[3 sech2(x)− 1]dx = 0;

C̃4 =


R
sech4(x) tanh(x)[3 sech2(x)− 1]xdx =

1
5
.

It follows that

∂t l ≈ −
8ϵl3

20ϵl2 + 15
.

On one hand, this implies that l(t) decreases to zero forward
in time. On the other hand, backward in time, for large l, the
amplitude 12ml2 of the cnoidal wave (4.16) grows approximately
exponentially fast with exponentially fast shrinking width ∼1/l,
which is consistent with exponential growth of the energy
backward in time.

4.2. Energy spectra

In this section,wewould like to argue that the various backward
behaviors of different dissipative equations are connected to their
energy spectra as well as the Kolmogorov turbulence theory. We
stress that our arguments are mainly physically oriented, rather
than a rigorous mathematical treatment.

4.2.1. The viscous KdV equation
In the previous discussion, we have given some evidence that, if

we take the cnoidal wave to be the initial value of the viscous KdV
equation (4.1), then as the time goes backwards, the amplitude∼l2
of the cnoidal wave grows fast with its width∼

1
l shrinking rapidly,

and as a result, the solution may get close to a Dirac delta function.
Since the Fourier transform of a Dirac delta function is a constant,
we realize that the energy spectrum E1D

k of the solution u, defined
as E1D

k = |ûk|
2, for k ∈ Z \ {0}, is approximately invariant with

respect to k, for the spatial scales L
|k| sufficiently larger than the

width ∼
1
l of the cnoidal wave (see [56]). Now, by setting s = −t ,

we consider the energy identity of the viscous KdV (4.1), backward
in time,

1
2

d
ds

|u(s)|2 = ν|ux(s)|2 = ν


k∈Z\{0}

k2E1D
k (s)

≈ ν


C


0<|k|≤kmax(s)

k2 +


|k|>kmax(s)

k2E1D
k (s)


. (4.26)

Notice that kmax(s) ∼ l(s)L, where L is the length of the domain T.
Recall we have argued in Section 4.1.2 that l(s) tends to blow up
in finite time, thus kmax(s) increases very fast, which leads to a fast
growth of d

ds |u(s)|
2 due to (4.26), ending up with an energy blow-

up in finite time.

4.2.2. The Burgers equation
The KBS equation (1.1) is also related to the Burgers equation.

In fact, by setting β = γ = 0 and f = 0 in (1.1), it reduces to
the Burgers equation ut − νuxx + uux = 0, and we have proved
that all of its nonzero solutions blow up backward in finite time. It
is well-known that the Burgers spectrum behaves like E1D

k ∼ k−2

(see [57]). An energy formula analogous to (4.26) indicates the
energy tends to grow very fast as the time goes backwards, leading
to a finite time blow-up.

4.2.3. The 2D Navier–Stokes equations
Next we attempt to discuss the relation between the Kol-

mogorov turbulence theory and the backward behavior of 2D NSE.
The Richardson energy cascade theory [58] states that the energy
transfers among eddies with similar sizes only, and the rate of the
energy injection at large scales is equal on average to the energy
dissipation rate at small scales, so that a statistically steady turbu-
lent state forms. Far away from the source and sink, there is an in-
ertial range, inwhich the turbulence properties only depend on the
energy cascade rate. Based on a simple dimensional argument, in
1941, Kolmogorov and Obukhov [59–61] derived a celebrated re-
sult of the energy spectrum for the 3D turbulence Eκ ∼ Cϵϵ

2
3 κ−

5
3

provided the wavenumber κ ≥ 0 is in an inertial range, and ϵ is
the energy cascade rate (equal to the energy dissipation rate).

On the other hand, the 2D incompressible ideal flow conserves
two quadratic quantities, energy and enstrophy, and thus the 2D
turbulence possesses a dual cascade behavior [62]: inverse energy
cascade and direct enstrophy cascade, i.e., the energy is transferred
from small to large vortices, while the enstrophy is transferred
to small scales. By a dimensional argument, the inverse energy
cascade spectrum is identical to the 3D turbulence spectrum
mentioned above, but the enstrophy cascade spectrum reads Eκ ∼

Cηη
2
3 κ−3, which is called the Kraichnan spectrum [62], where

η is the enstrophy cascade rate, and the isotropic spectrum for
each κ ≥ 0 is defined by Eκ := 2πκ|ûκ |2, with the isotropic
assumption |ûκ | = |ûκ⃗ | for all κ⃗ ∈ R2 with |κ⃗| = κ . A more
precise version of the Kraichnan spectrum with a log correction
is suggested in [63]. The Kraichnan dual-cascade picture was
recently confirmed numerically in [64]. For the turbulent flow in
the periodic domain, the energy spectrum Eκ can also be defined
using the following way (see [65]): it is assumed that there exists
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Eκ such that the total energy between the wavenumbers k′ and
k′′, i.e.


k∈Z2, k′≤|k|<k′′ |ûk|

2, can be approximated by the integral k′′

k′ Eκdκ , for wavenumbers k′ < k′′ in the inertial range.
Now, assume the energy is injected near wavenumber kf and

dissipated at very small wavenumbers k− ≪ kf and at very
large wavenumbers k+ ≫ kf , and there are neither forcing nor
dissipation at wavenumbers κ such that k− < κ < kf or kf < κ <
k+, which are the inverse and the direct cascade inertial ranges,
respectively. Under such scenario, ifwe set s = −t , then the energy
identity of the 2D NSE, backward in time, reads

1
2

d
ds

|u|2 = ν|∇u|2 ≈ ν


∞

0
κ2Eκdκ

≈ ν

 k−

0
κ2Eκdκ + Cϵϵ

2
3

 kf

k−
κ

1
3 dκ + Cηη

2
3

×

 k+

kf
κ−1dκ +


∞

k+
κ2Eκdκ


. (4.27)

Since in general the lower modes are not a main source for the
energy blow-up, we focus on the highermodes κ > kf . By a simple
dimensional argument, the enstrophy cascade inertial range is
expected to extend up to k+ ∼ (η/ν3)

1
6 [62]. As a result, the third

integral in (4.27) can be estimated as follows: Cηη
2
3
 k+
kf
κ−1dκ ∼

Cηη
2
3 ( 16 ln(η/ν3) − ln(kf )), which is controlled by the enstrophy

cascade rate. Concerning the last term in (4.27) for larger
wavenumbers κ > k+, we notice that, as the time goes backwards,
the viscosity amplifies the enstrophy on high wavenumbers, thus
the enstrophy tends to cascade inversely backward in time, moving
from small to large scales, so that the enstrophy on the small scales
might not grow too rapidly. Consequently, the energy increasing
rate d

ds |u(s)|
2 is possible to be relatively slow, and the finite-time

backward blow-up of 2D NSE may be prevented, for initial data
with energy concentrated on low modes.

Our argument above is consistent with the result in [1], which
states that there is a rich set of initial data in the energy space
H for which the solution of 2D NSE can be extended to a global
solution for all t ∈ R. More precisely, it is shown in [1] that, if
p0 ∈ PnH , for some n, then there exists a global solution S(t)u0

such that Pnu0 = p0, with |Qnu0| ≤ max{2|f |/νλ1, γ
1/2
n |p0|}where

γn = (λn+1 + λn)/(λn+1 − λn), and

lim sup
t→−∞

∥S(t)u0∥
2

|S(t)u0|
2

≤
λn + λn+1

2
,

where Pn is the projection onto the lower modes |k| ≤ n, Qn =

I − Pn, and λn is the nth eigenvalue of the linear Stokes operator
in 2D periodic NSE. This indicates that, if |Qnu0| is controlled by
|Pnu0| in an appropriate manner, then the ratio of the enstrophy to
the energy can be bounded as t → −∞, which may be a result
of the inverse enstrophy cascade and the direct energy cascade,
backward in time, from the Kraichnan dual cascade picture for
2D incompressible flow. Also, it is easy to see from the energy
identity that, if the ratio of the enstrophy to the energy is uniformly
bounded for all negative time, then the solution is global for all
t ∈ R, growing exponentially as t → −∞, provided it does not
belong to the global attractor.

In sum, the energy and enstrophy cascade as well as the
Kolmogorov spectra may reveal the underlying mechanism for the
different backward behavior of the KBS equation (1.1) and the 2D
NSE. In particular, we would like to emphasize that there is a huge
difference between the KdV spectrum E1D

k ∼ constant and the 2D
turbulence spectrum Eκ ∼ κ−3. For more material on Kolmogorov
turbulence theory, please refer to monographs [65–68].
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Appendix

We prove Theorems 3.1 and 3.3 in the Appendix.

A.1. The proof of Theorem 3.1

Proof. The proof consists of two parts: the first part is devoted to
the L2-estimate, and the second part is devoted to estimating the
energy as well as the H1-norm.

(1) L2-estimate
Multiply (3.1) by ū and integrate on T,

i


T
ut ūdx − |ux|

2
+ |u|4L4 + iλ|u|2 =


T
f ūdx. (A.1)

By taking the imaginary part of (A.1), we obtain

1
2

d
dt

|u|2 + λ|u|2 = Im


T
f ūdx ≥ −

λ

2
|u|2 −

1
2λ

|f |2, (A.2)

where we used the Cauchy–Schwarz inequality and Young’s
inequality.

It follows that
d
dt

|u|2 + 3λ|u|2 ≥ −
1
λ

|f |2.

By using Gronwall’s inequality, we have

|u(t)|2 ≤ e−3λt
|u0|

2
+

1
3λ2

|f |2

e−3λt

− 1

, for t ≤ 0. (A.3)

On the other hand, (A.2) also shows

1
2

d
dt

|u|2 + λ|u|2 = Im


T
f ūdx ≤

λ

2
|u|2 +

1
2λ

|f |2.

Hence,

d
dt

|u|2 + λ|u|2 ≤
1
λ

|f |2.

Again, by Gronwall’s inequality, we obtain

|u(t)|2 ≥ e−λt
|u0|

2
+

1
λ2

|f |2(1 − e−λt), for t ≤ 0. (A.4)

By (A.3) and (A.4), we infer, if u does not belong to the global
attractor, then

c1e−
1
2 λt ≤ |u(t)| ≤ C1e−

3
2 λt , as t → −∞, (A.5)

where c1 and C1 depends on |u0|, |f |, and λ. That is to say,
the L2-norm of u(t), which is outside the global attractor, grows
exponentially fast as the time t goes backwards to negative infinity.

(2) Estimate of the energy and the H1-norm
Multiplying (3.1) by ūt followed by integrating on T, we obtain

i|ut |
2
−


T
uxūxtdx +


T
u2ūūtdx + iλ


T
uūtdx =


T
f ūtdx.

Taking the real part gives

d
dt


|ux|

2
−

1
2
|u|4L4


+ 2λ


Im


T
uūtdx


= −2


Re


T
f ūtdx


. (A.6)
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Now we need to estimate Im


T uūtdx. Indeed, by taking the real
part of (A.1), we infer

Im


T
uūtdx = −Im


T
ut ūdx

= |ux|
2
− |u|4L4 + Re


T
f ūdx. (A.7)

Substituting (A.7) into (A.6), we obtain

d
dt


|ux|

2
−

1
2
|u|4L4


+ 2λ


|ux|

2
− |u|4L4 + Re


T
f ūdx


= −2


Re


T
f ūtdx


.

This can be written as

d
dt
φ + 2λφ = λ|u|4L4 + 2λ


Re


T
f ūdx


, (A.8)

where φ(t) = |ux|
2
−

1
2 |u|

4
L4 + 2


Re


T f ūdx

.

Note that, |u|2 ≤ |u|2
L4
L

1
2 ≤ |u|4

L4
+

L
4 , by virtue of Hölder’s and

Young’s inequalities. Thus

Re


T
f ūdx ≥ −

1
2
|u|2 −

1
2
|f |2 ≥ −

1
2
|u|4L4 −

L
8

−
1
2
|f |2. (A.9)

Applying (A.9) on (A.8), one has

d
dt
φ + 2λφ ≥ −λ


L
4

+ |f |2

.

By Gronwall’s inequality, we deduce

φ(t) ≤ e−2λtφ(0)+
1
2


L
4

+ |f |2

(e−2λt

− 1), for t ≤ 0. (A.10)

Define the energy E(t) := |ux|
2
−

1
2 |u|

4
L4
. Then

φ(t) = E(t)+ 2

Re


T
f ūdx


≥ E(t)− |f |2 − |u(t)|2.

Therefore, by (A.3) and (A.10), one has, for t ≤ 0,

E(t) ≤ φ(t)+ |u(t)|2 + |f |2

≤ e−2λtφ(0)+
1
2


L
4

+ |f |2

(e−2λt

− 1)+ e−3λt
|u0|

2

+
1

3λ2
|f |2


e−3λt

− 1

+ |f |2.

This shows

E(t) ≤ C2e−3λt , as t → −∞, (A.11)

where C2 depends on ∥u0∥, |f | and L.
Finally, by the 1D Agmon’s inequality as well as Young’s

inequality, we deduce

E(t) = |ux|
2
−

1
2
|u|4L4 ≥ |ux|

2
− c|u|3∥u∥

≥ |ux|
2
−

1
2
∥u∥2

− c|u|6

≥
1
2
∥u∥2

− |u|2 − c|u|6.

Thus

∥u∥2
≤ 2E(t)+ 2|u|2 + c|u|6.

It follows from (A.5) and (A.11) that

∥u∥ ≤ C3e−
9
2 λt , as t → −∞,

where C3 depends on |u0|, |f | and λ. �
A.2. The proof of Theorem 3.3

Proof. The proof follows the idea in [44]. Let f = 0. Recall the
spaceH is the space of all periodic, divergence free, L2-functions on
T2 with vanishing mean values. Let P be the orthogonal projection
on H in L2per(T

2)2 and set Au = −P1u and B(v,w) = P[(v · ∇)w].
Then the Eq. (3.5) can be written in an equivalent form

ut + νA2u + B(u, u) = 0, in T2. (A.12)

Since (B(u, v), v) = 0 (see, e.g. [69]), taking the scalar product of
(A.12) with u gives

1
2

d
dt

|u|2 + ν|Au|2 = 0. (A.13)

Let λ1 = (2π/L)2 be the first eigenvalue of A = −P∆. Then by the
Poincaré inequality |Au| ≥ λ1|u|, we obtain

1
2

d
dt

|u|2 + νλ21|u|
2

≤ 0.

It follows that

|u(t)| ≤ e−νλ21(t−t0)|u(t0)|, for t ≥ t0 ≥ 0. (A.14)

Next we show that |u(t)| ≥ e−b(t−t0)|u(t0)|, for t ≥ t0 > 0,
where b > 0 will be specified later. To this end, we set

q(t) =
|Au(t)|2

|u(t)|2
. (A.15)

By differentiating both side of q(t)|u(t)|2 = |Au(t)|2, we obtain
d
dt

q


|u|2 + 2q (ut , u) = 2


d
dt

Au, Au

.

It follows that
1
2

d
dt

q =
1

|u|2
(ut , A2u − qu)

= −
1

|u|2
(νA2u + B(u, u), A2u − qu)

= −
1

|u|2
ν|A2u − qu|2

−
1

|u|2
(B(u, u), A2u − qu)− ν(qu, A2u − qu).

Notice, by (A.15), we have

(qu, A2u − qu) =
|Au|2

|u|2

u, A2u


−

|Au|4

|u|4
(u, u) = 0.

Combining the above two estimate and by letting v =
u
|u| , we have

1
2

d
dt

q = −
1

|u|2
ν|A2u − qu|2 −

1
|u|2

(B(u, u), A2u − qu)

= −ν|(A2
− q)v|2 − |u|(B(v, v), (A2

− q)v).

Consequently, by the Cauchy–Schwarz inequality and Young’s
inequality, we infer

1
2

d
dt

q + ν|(A2
− q)v|2 = −|u|(B(v, v), (A2

− q)v)

≤
ν

2
|(A2

− q)v|2 +
1
2ν

|u|2|B(v, v)|2.

It follows that
d
dt

q ≤
1
ν
|u|2|B(v, v)|2 =

1
ν|u|2

|B(u, u)|2.
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Notice that |B(u, u)| ≤ |u|L4 |∇u|L4 ≤ c|u|
1
2 ∥u∥|Au|

1
2 , by virtue of

2D Ladyzhenskaya’s inequality |u|L4 ≤ c|u|
1
2 ∥u∥

1
2 . Then

d
dt

q ≤
c

ν|u|2
|u|∥u∥2

|Au| ≤ cν−1λ
−

1
2

1 |u|∥u∥


|Au|2

|u|2


= cν−1λ

−
1
2

1 |u|∥u∥q,

where the Poincaré inequality has been used. This gives

q(t) ≤ q(t0) exp

cν−1λ

−
1
2

1

 t

t0
|u|∥u∥ds


,

for t ≥ t0 > 0. (A.16)

Now we estimate
 t
t0

|u|∥u∥ds. Indeed, by (A.13), one has t

t0
|Au|2ds =

1
2ν


|u(t0)|2 − |u(t)|2


. (A.17)

Therefore, by the Poincaré inequality, the Cauchy–Schwarz in-
equality, as well as the estimates (A.14) and (A.17), we deduce t

t0
|u|∥u∥ds ≤ λ−

1
2

 t

t0
|u| |Au|ds

≤ λ−
1
2

 t

t0
|u|2ds

 1
2
 t

t0
|Au|2ds

 1
2

≤ λ−
1
2 |u(t0)|


(2νλ21)

−1(1 − e−2νλ21(t−t0))

× (|u(t0)|2 − |u(t)|2)
 1

2

≤ (2ν)−
1
2 λ

−
3
2

1 |u(t0)|2.

Substituting this estimate into (A.16) gives

q(t) ≤ q(t0) exp

cν−

3
2 λ−2

1 |u(t0)|2

.

That is

|Au(t)|2 ≤
|Au(t0)|2

|u(t0)|2
|u(t)|2 exp


cν−

3
2 λ−2

1 |u(t0)|2

,

and along with the energy identity, we obtain

d
dt

|u(t)|2 + 2ν
|Au(t0)|2

|u(t0)|2
|u(t)|2 exp


cν−

3
2 λ−2

1 |u(t0)|2


≥ 0.

It follows that

|u(t)| ≥ |u(t0)|e−b(t−t0), for t ≥ t0 > 0,

where b = ν
|Au(t0)|2

|u(t0)|2
exp


cν−

3
2 λ−2

1 |u(t0)|2

. �
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