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Blow-up of solutions to systems of nonlinear wave equations with

supercritical sources†

Yanqiu Guo and Mohammad A. Rammaha*

Department of Mathematics, University of Nebraska-Lincoln, Lincoln, NE 68588, USA

Communicated by H. Levine

(Received 6 August 2011; final version received 11 December 2011)

In this article, we focus on the life span of solutions to the following system
of nonlinear wave equations:

utt � Duþ g1ðutÞ ¼ f1ðu, vÞ

vtt � Dvþ g2ðvtÞ ¼ f2ðu, vÞ

in a bounded domain ��R
n with Robin and Dirichlét boundary

conditions on u and v, respectively. The nonlinearities f1(u, v) and f2(u, v)
represent strong sources of supercritical order, while g1(ut) and g2(vt)
represent interior damping. The nonlinear boundary condition on u,
namely @�uþ uþ g(ut)¼ h(u) on �, also features h(u), a boundary source,
and g(ut), a boundary damping. Under some restrictions on the parameters,
we prove that every weak solution to system above blows up in finite time,
provided the initial energy is negative.

Keywords: blow-up; nonlinear wave equations; damping and source terms;
weak solutions; energy identity

AMS Subject Classifications: Primary 35L05, 35L20; Secondary 58J45

1. Introduction

1.1. Preliminaries

Wave equations under the influence of nonlinear damping and nonlinear sources
have generated considerable interest over recent years. As the linear theory has been
substantially developed, many problems for systems with supercritical nonlinearities
remain open. In this article, we study a system of coupled nonlinear wave equations
which features two competing forces, one force is damping and the other is a strong
source. Our main interest here is to investigate the possibility of the finite time blow-
up of solutions, under nominal conditions.

For the sake of clarity, we restrict our analysis to the physically more relevant
case when ��R

3. Our results easily extend to bounded domains in R
n, by
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accounting for the corresponding Sobolev embeddings, and accordingly adjusting

the conditions imposed on the parameters. Thus, throughout this article we assume

that � is bounded, open and connected non-empty set in R
3 with a smooth boundary

�¼ @�.
We study the following system of nonlinear wave equations:

utt � Duþ g1ðutÞ ¼ f1ðu, vÞ, in �� ð0,T Þ,

vtt � Dvþ g2ðvtÞ ¼ f2ðu, vÞ, in �� ð0,T Þ,

@�uþ uþ gðutÞ ¼ hðuÞ, on �� ð0,T Þ,

v ¼ 0, on �� ð0,T Þ,

uð0Þ ¼ u0 2H
1ð�Þ, utð0Þ ¼ u1 2L

2ð�Þ,

vð0Þ ¼ v0 2H
1
0ð�Þ, vtð0Þ ¼ v1 2L

2ð�Þ,

8>>>>>>>><
>>>>>>>>:

ð1:1Þ

where the nonlinearities f1(u, v), f2(u, v) and h(u) represent interior and boundary

sources, while g1(ut), g2(vt) and g(ut) act as interior and boundary damping. The

source–damping interaction in (1.1) encompasses a broad class of problems in

quantum field theory and certain mechanical applications [1,2], whereas non-

dissipative ‘energy-building’ sources, especially those on the boundary, arise

whenever one considers a wave equation being coupled with other types of

dynamics, such as structure–acoustic or fluid–structure interaction models [3]. In

light of these applications we are mainly interested in higher order nonlinearities, as

described in the following assumption.

ASSUMPTION 1.1

. Interior sources: fj(u, v)2C
1(R2) such that

jrfj ðu, vÞj � Cðjujp�1 þ jvjp�1 þ 1Þ, j ¼ 1, 2, with 1 � p5 6:

. Boundary source: h2C1(R) such that

jh0ðsÞj � Cðjsjk�1 þ 1Þ, with 1 � k5 4:

. Damping: g1, g2 and g are continuous and monotone increasing functions with

g1(0)¼ g2(0)¼ g(0)¼ 0. In addition, the following growth conditions hold:

there exist positive constants aj and bj, j¼ 1, 2, 3, such that, for all s2R,

a1jsj
mþ1 � g1ðsÞs � b1jsj

mþ1, with m � 1,

a2jsj
rþ1 � g2ðsÞs � b2jsj

rþ1, with r � 1,

a3jsj
qþ1 � gðsÞs � b3jsj

qþ1, with q � 1:

. Parameters: maxfp mþ1
m , p rþ1

r g5 6, k qþ1
q 5 4.

Let us note here that if the damping terms g1(ut), g2(vt) and g(ut) are removed

from the system, then the presence of any of the source terms should drive the

solution of (1.1) to blow-up in finite time. In such a case, one can appeal to a variety

of methods (going back to the work of Glassey [4], Levine [5] and others) to show

that most solutions to the problem blow up in finite time. In addition, if the source

terms are removed from the system, then damping terms of various forms should

yield existence of global solutions, (cf. [6–9]). However, when both damping and

2 Y. Guo and M.A. Rammaha1102

D
ow

nl
oa

de
d 

by
 [

W
ei

zm
an

n 
In

st
itu

te
 o

f 
Sc

ie
nc

e]
 a

t 0
6:

36
 0

2 
A

ug
us

t 2
01

3 



source terms are present, especially on the boundary, the analysis of their interaction
and their influence on the behaviour of solutions becomes more difficult (see, e.g.
[10–15] and the references therein).

A well-known system, which is a special case of (1.1), is the following
polynomially damped system studied extensively in the literature [16–19]:

utt � Duþ jutjm�1ut ¼ f1ðu, vÞ, in �� ð0,1Þ,

vtt � Dvþ jvtjr�1vt ¼ f2ðu, vÞ, in �� ð0,1Þ,

�
ð1:2Þ

where f1(u, v)¼ @uF(u, v) and f2(u, v)¼ @vF(u, v), and F2C1(R2) is given by

Fðu, vÞ ¼ ajuþ vjpþ1 þ 2bjuvj
pþ1
2 , ð1:3Þ

where p� 3, a> 1 and b> 0.
It is worth noting here that systems of nonlinear wave equations such as (1.2) go

back to Reed [20] who proposed a similar system in three space dimensions but
without the presence of damping. Indeed, recently in [16] and later in [17] the authors
studied system (1.2) with Dirichlét boundary conditions on both u and v where the
exponent of the source was restricted to be critical ( p¼ 3 in 3D). The more general
system (1.1) with Robin boundary condition has been studied recently in [21], where
the source terms are allowed to be of super-supercritical order (i.e. 1� p< 6,
1� k< 4). Indeed, the authors in [21] used monotone operator theory and nonlinear
semigroups to obtain several results on local and global existence and uniqueness of
weak solutions. The main goal of this article is to complement the work of [21] by
establishing two blow-up theorems for (1.1).

Our results are inspired by the work of [11–13] for their treatment of a single
wave equation. Although the basic calculus in the proofs of Theorem 1.8 and
Theorem 1.9 draw from ideas in [12,13,16] and also from the recent results in [11],
our proofs had to be significantly adjusted to accommodate the coupling in the
system (1.1). For other relevant results on wave equations with source–damping
interplay see [22–25] and the references therein.

It is important to note that the mixture of Robin and Dirichlét boundary
conditions in the system (1.1) is neither essential to the methods used in this article
nor to our results. Indeed, similar existence, uniqueness and blow-up results can be
easily obtained if instead one imposes Robin boundary conditions on both u and v.

To this end, we point out that the following notations will be used throughout
this article:

uk ks¼ uk kLsð�Þ, jujs ¼ uk kLsð�Þ, uk k1,�¼ uk kH1ð�Þ;

ðu, vÞ� ¼ ðu, vÞL2ð�Þ, ðu, vÞ� ¼ ðu, vÞL2ð�Þ, ðu, vÞ1,� ¼ ðu, vÞH1ð�Þ:

We also use the notation �u to denote the trace of u on � and we write d
dt ð�uðtÞÞ

as �ut. We finally note that ð ruk k22þj�uj
2
2Þ

1=2 is a norm equivalent to the standard
H1(�)-norm. This fact follows from a Poincaré–Wirtinger type of inequality:

uk k22� Cð ruk k22þ j�uj
2
2Þ, for all u2H1ð�Þ.

Thus, throughout this article we put,

uk k21,�¼ ruk k22þ j�uj
2
2 and ðu, vÞ1,� ¼ ðru,rvÞ� þ ð�u, �vÞ�,

for u, v2H1(�).

Applicable Analysis 31103
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1.2. Existence theory

We begin by introducing the definition of a weak solution to (1.1).

Definition 1.2 A pair of functions (u, v) is said to be a weak solution of (1.1)

on [0,T ] if

. u2C([0,T ]; H1(�)), v2Cð½0,T �;H1
0ð�ÞÞ, ut2C([0,T ]; L2(�))\Lmþ1

(�� (0,T )), �ut2L
qþ1(�� (0,T )), vt2C([0,T ]; L2(�))\Lrþ1(�� (0,T ));

. ðuð0Þ, vð0ÞÞ ¼ ðu0, v0Þ 2H1ð�Þ �H1
0ð�Þ, (ut(0), vt(0))¼ (u1, v1)2L

2(�)�L2(�);
. for all t2 [0,T ], u and v verify the following identities:

ðutðtÞ,�ðtÞÞ� � ðutð0Þ,�ð0ÞÞ� þ

Z t

0

½�ðutð�Þ,�tð�ÞÞ� þ ðuð�Þ,�ð�ÞÞ1,��d�

þ

Z t

0

Z
�

g1ðutð�ÞÞ�ð�Þdxd� þ

Z t

0

Z
�

gð�utð�ÞÞ��ð�Þd�d�

¼

Z t

0

Z
�

f1ðuð�Þ, vð�ÞÞ�ð�Þdx d� þ

Z t

0

Z
�

hð�uð�ÞÞ��ð�Þd� d�, ð1:4Þ

ðvtðtÞ, ðtÞÞ� � ðvtð0Þ, ð0ÞÞ� þ

Z t

0

½�ðvtð�Þ, tð�ÞÞ� þ ðvð�Þ, ð�ÞÞ1,��d�

þ

Z t

0

Z
�

g2ðvtð�ÞÞ ð�Þdxd� ¼

Z t

0

Z
�

f2ðuð�Þ, vð�ÞÞ ð�Þdxd�, ð1:5Þ

for all test functions satisfying: �2C([0,T ]; H1(�))\Lmþ1(�� (0,T )) such

that ��2Lqþ1(�� (0,T )) with �t2L
1([0,T ]; L2(�)) and  2Cð½0,T �;H1

0ð�ÞÞ \

Lrþ1ð�� ð0,T ÞÞ such that  t2L
1([0,T ];L2(�)).

In order to state our main results, it is essential to make a connection with the

recent results in [21]. Thus, for the reader’s convenience, we summarize some of the

main results in [21] in the following theorem.

THEOREM 1.3 (Local and global weak solutions [21]) Assume the validity of

Assumption 1.1, then there exists a local weak solution (u, v) to (1.1) defined on [0,T ],

for some T> 0. Moreover, (u, v) satisfies the following energy identity for all t2 [0,T ]:

EðtÞ þ

Z t

0

Z
�

½ g1ðutÞut þ g2ðvtÞvt�dxd� þ

Z t

0

Z
�

gð�utÞ�utd� d�

¼ Eð0Þ þ

Z t

0

Z
�

½ f1ðu, vÞut þ f2ðu, vÞvt�dx d� þ

Z t

0

Z
�

hð�uÞ�utd� d�, ð1:6Þ

where the quadratic energy is given by

EðtÞ ¼
1

2

�
utðtÞ
�� ��2

2
þ vtðtÞ
�� ��2

2
þ uðtÞ
�� ��2

1,�
þ vðtÞ
�� ��2

1,�

�
: ð1:7Þ

If, in addition, we assume p�min{m, r}, k� q and u0, v02L
pþ1(�), �u02L

kþ1(�), then

the said solution (u, v) is a global weak solution and T can be taken arbitrarily large.

In order to state the uniqueness results in [21], we shall need additional

assumptions on the sources and the boundary damping.

4 Y. Guo and M.A. Rammaha1104
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ASSUMPTION 1.4

(a) For p> 3, there exists a function F(u, v)2C3(R2) such that f1(u, v)¼ @uF(u, v),
f2(u, v)¼ @vF(u, v), and jD

�F(u, v)j �C(jujp�2þ jvjp�2þ 1) for all multi-indices
j�j ¼ 3 and all u, v2R.

(b) For k� 2, h2C2(R) such that jh00(s)j �C(jsjk�2þ 1), for all s2R.
(c) For k< 2, there exists mg> 0 such that (g(s1)� g(s2))(s1� s2)�mgjs1� s2j

2, for
all s1, s22R.

The following uniqueness results are based on the validity of Assumptions 1.1
and 1.4. However, in the case when the interior sources f1 and f2 fail to satisfy
Assumption 1.4(a), as in system (1.2) for the values 3< p� 5; we still can prove
uniqueness of solutions of (1.1), provided the exponents m and r of the interior
damping are sufficiently large.

THEOREM 1.5 (Uniqueness of weak solutions [21]) Assume that one of the following
statements holds:

. Assumptions 1.1 and 1.4 are valid, u0, v0 2L
3ð p�1Þ

2 ð�Þ and �u02L
2(k�1)(�).

. Assumption 1.1 and Assumptions 1.4(b), (c) are valid, u0, v02L
3( p�1)(�),

�u02L
2(k�1)(�), and m, r� 3p� 4, if p> 3.

Then, weak solutions of (1.1) are unique.

1.3. Main results

In order to state our blow-up results, we need additional assumptions on interior and
boundary sources and initial data.

ASSUMPTION 1.6

. There exists a function F2C2(R2) such that f1(u, v)¼ @uF(u, v) and
f2(u, v)¼ @vF(u, v), (u, v)2R

2. Moreover, there exist c0> 0 and c1> 2 such
that F(u, v)� c0(juj

pþ1
þ jvjpþ1) and uf1(u, v)þ vf2(u, v)� c1F(u, v), for all

(u, v)2R
2.

. There exist c2> 0 and c3> 2 such that H(s)� c2jsj
kþ1 and h(s)s� c3H(s),

for all s2R, where HðsÞ ¼
R s
0 hð�Þd�.

. The initial energy E(0)< 0, where the total energy E(t) is given by

EðtÞ ¼
1

2

�
utðtÞ
�� ��2

2
þ vtðtÞ
�� ��2

2
þ uðtÞ
�� ��2

1,�
þ vðtÞ
�� ��2

1,�

�
�

Z
�

FðuðtÞ, vðtÞÞdx�

Z
�

Hð�uðtÞÞd�: ð1:8Þ

Remark 1.7 It is important to note here that our restrictions on interior and
boundary sources in Assumption 1.6 are natural and quite reasonable. For instance,
the function F given in (1.3) satisfies Assumption 1.6. Indeed, a quick calculations
show that there exists a constant c0> 0 such that F(u, v)� c0(juj

pþ1
þ jvjpþ1),

provided b is chosen large enough. Moreover, it is easy to compute and find that
uf1(u, v)þ vf2(u, v)¼ ( pþ 1)F(u, v). Since the blow-up theorems below require
p>m� 1, then pþ 1> 2, and so, the assumption c1> 2 is reasonable. A simple

Applicable Analysis 51105
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example of a boundary source term that satisfies Assumption 1.6 is h(s)¼ jsjk�1s.

In this case, HðsÞ ¼ 1
kþ1 jsj

kþ1, and so, h(s)s¼ (kþ 1)H(s). Again, the statement of

Theorem 1.8 requires k> q� 1, implies that kþ 1> 2. Thus, the restriction c3> 2 in

Assumption 1.6 is also reasonable.

Our first blow-up result shows that if the interior and boundary sources are more

dominant than their corresponding damping terms, and the initial energy is negative,

then every weak solution of (1.1) blows up in finite time. In addition, we obtain an

upper bound for the life span of solutions.

THEOREM 1.8 (Blow-up of solutions – Part 1) Assume the validity of Assumptions 1.1

and 1.6. If p>max{m, r} and k> q, then any weak solution (u, v) of (1.1) blows up in

finite time. More precisely, ku(t)k1,�þkv(t)k1,�!1 as t!T�, for some 0<T<1.

Our second result shows that all solutions of (1.1) blows up in finite time,

provided E(0)< 0, and the interior sources dominate both interior and boundary

damping, without any restriction on the boundary source.

THEOREM 1.9 (Blow-up of solutions – Part 2) Assume the validity of Assumptions 1.1

and 1.6. If p>max{m, r, 2q� 1}, then any weak solution (u, v) of (1.1) blows up in finite

time. Specifically, ku(t)k1,�þkv(t)k1,�!1 as t!T�, for some 0<T<1.

Remark 1.10 Although the existence and uniqueness results in Theorems 1.3 and

1.5 hold for sources that are super-supercritical (i.e. p< 6 and k< 4), however the

assumptions in Theorems 1.8 and 1.9 force the restrictions p< 5 and k< 3. To see

this, we note that both theorems require p>m, and by Assumption 1.1, it follows

that, 64 pð1þ 1
mÞ4 pð1þ 1

pÞ ¼ pþ 1, which implies p< 5. By the same observation,

we conclude k< 3 in Theorem 1.8. Although k> q is not required by Theorem 1.9,

we still must have k< 3. Indeed, since 2q� 1< p< 5, then q< 3. Whence, by

Assumption 1.1, we have 44 kð1þ 1
qÞ4

4
3 k, and so, k< 3.

2. Proof of Theorem 1.8

Proof Let (u, v) be a weak solution to (1.1) in the sense of Definition 1.2. Throughout

the proof, we assume the validity of Assumptions 1.1 and 1.6, p>max{m, r} and k> q.

We define the life span T of such a solution (u, v) to be the supremum of all T �> 0

such that (u, v) is a solution to (1.1) in the sense of Definition (1.2) on [0,T �]. Our goal

is to show that T is necessarily finite, and obtain an upper bound for T.
As in [11,16], for t2 [0,T ), we define:

GðtÞ ¼ �EðtÞ,

NðtÞ ¼ uðtÞ
�� ��2

2
þ vðtÞ
�� ��2

2
,

SðtÞ ¼

Z
�

FðuðtÞ, vðtÞÞdxþ

Z
�

Hð�uðtÞÞd�:

It follows that,

GðtÞ ¼ �
1

2

�
utðtÞ
�� ��2

2
þ vtðtÞ
�� ��2

2
þ uðtÞ
�� ��2

1,�
þ vðtÞ
�� ��2

1,�

�
þ SðtÞ, ð2:1Þ

6 Y. Guo and M.A. Rammaha1106
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and

N0ðtÞ ¼ 2

Z
�

½uðtÞutðtÞ þ vðtÞvtðtÞ�dx: ð2:2Þ

Moreover, by the assumptionsH(s)� c2jsj
kþ1 and F(u, v)� c0(juj

pþ1
þ jvjpþ1), one has

SðtÞ � c0 uðtÞ
�� ��pþ1

pþ1
þ vðtÞ
�� ��pþ1

pþ1

� �
þ c2j�uðtÞj

kþ1
kþ1: ð2:3Þ

Let

05�5 min

�
1

mþ 1
�

1

pþ 1
,

1

rþ 1
�

1

pþ 1
,

1

qþ 1
�

1

kþ 1
,

p� 1

2ð pþ 1Þ

�
: ð2:4Þ

In particular, �5 1
2. To simplify the notation, we introduce the following constants:

K1 ¼ b1j�j
p�m

ð pþ1Þðmþ1Þc
� 1

pþ1

0 , K2 ¼ b2j�j
p�r

ð pþ1Þðrþ1Þc
� 1

pþ1

0 , K3 ¼ b3j�j
k�q

ðkþ1Þðqþ1Þc
� 1

kþ1

2 ,

�1 ¼
�

6
Gð0Þ

1
mþ1�

1
pþ1, �2 ¼

�

6
Gð0Þ

1
rþ1�

1
pþ1, �3 ¼

�

6
Gð0Þ

1
qþ1�

1
kþ1,

ð2:5Þ

where �¼min{c1� 2, c3� 2}> 0, and j�j, j�j denote the Lebesgue measures of �

and �.
Note that the energy identity (1.6) is equivalent to

GðtÞ ¼ Gð0Þ þ

Z t

0

Z
�

½ g1ðutÞut þ g2ðvtÞvt�dxd� þ

Z t

0

Z
�

gð�utÞ�ut d� d�:

So, by Assumption 1.1 and the regularity of the solution (u, v), we conclude that G(t)
is absolutely continuous and

G0ðtÞ ¼

Z
�

½ g1ðutðtÞÞutðtÞ þ g2ðvtðtÞÞvtðtÞ�dxþ

Z
�

gð�utðtÞÞ�utðtÞd�

� a1 utðtÞ
�� ��mþ1

mþ1
þa2 vtðtÞ

�� ��rþ1
rþ1
þa3j�utðtÞj

qþ1
qþ1 � 0, a.e. ½0,T Þ: ð2:6Þ

Thus, G(t) is non-decreasing. Since G(0)¼�E(0)> 0, then it follows that

05Gð0Þ � GðtÞ � SðtÞ for 0 � t5T: ð2:7Þ

Now, put

YðtÞ ¼ GðtÞ1�� þ 	N0ðtÞ, ð2:8Þ

where 0<	�G(0). Later in the proof we further adjust the requirements on 	.
We shall show that

Y0ðtÞ ¼ ð1� �ÞGðtÞ��G0ðtÞ þ 	N00ðtÞ, ð2:9Þ

where

N00ðtÞ ¼ 2
�

utðtÞ
�� ��2

2
þ vtðtÞ
�� ��2

2

�
� 2

�
uðtÞ
�� ��2

1,�
þ vðtÞ
�� ��2

1,�

�
� 2

Z
�

ð g1ðutÞuþ g2ðvtÞvÞdx� 2

Z
�

gð�utÞ�u d�

þ 2

Z
�

ð f1ðu, vÞuþ f2ðu, vÞvÞdxþ 2

Z
�

hð�uÞ�u d�, a.e. ½0,T Þ: ð2:10Þ
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In order to obtain (2.10), we first verify u2Lmþ1(�� (0, t)) for all t2 [0,T ). Indeed,
since both u and ut2C([0, t]; L

2(�)), we can writeZ t

0

Z
�

jujmþ1dxd� ¼

Z t

0

Z
�

Z �

0

utðsÞdsþ u0

				
				mþ1dxd�

� 2m
Z t

0

Z
�

Z �

0

utðsÞds

				
				mþ1dxd� þ

Z t

0

Z
�

ju0j
mþ1dxd�

" #

� 2m tm
Z t

0

Z
�

Z t

0

jutðsÞj
mþ1ds dxd� þ t u0k k

mþ1
mþ1


 �

� 2m
�
tmþ1 utk k

mþ1
Lmþ1ð��ð0,tÞÞþt u0k k

mþ1
mþ1

�
51, ð2:11Þ

for all t2 [0,T ), where we have used the regularity enjoyed by u, namely the fact
ut2L

mþ1(�� (0, t)), and the assumption u02H
1(�) ,! Lmþ1(�) since m< p< 5,

as stated in Remark 1.10. Hence, u2Lmþ1(�� (0, t)) for all t2 [0,T ). Likewise,
one can show that v2Lrþ1(�� (0, t)) for all t2 [0,T ). Moreover, by similar estimates
as in (2.11), we deduce

�u
�� ��qþ1

Lqþ1ð��ð0,tÞÞ
� 2q

�
tqþ1 �ut

�� ��qþ1
Lqþ1ð��ð0,tÞÞ

þtj�u0j
qþ1
qþ1

�
51:

Thus, �u2Lqþ1(�� (0, t)), for all t2 [0,T ).
The above shows that u and v enjoy, respectively, the regularity restrictions

imposed on the test functions � and  , as stated in Definition 1.2. Therefore, we can
replace � by u in (1.4) and  by v in (1.5), and by (2.2), we obtain

1

2
N0ðtÞ ¼

Z
�

ðu1u0þ v1v0Þdxþ

Z t

0

Z
�

ðjutj
2þ jvtj

2Þdxd��

Z t

0

ð uk k21,�þ vk k21,�Þd�

�

Z t

0

Z
�

ðg1ðutÞuþ g2ðvtÞvÞdxd��

Z t

0

Z
�

gð�utÞ�ud�d�

þ

Z t

0

Z
�

ð f1ðu, vÞuþ f2ðu, vÞvÞdxd�þ

Z t

0

Z
�

hð�uÞ�ud�d�, a.e. ½0,T Þ: ð2:12Þ

By Assumption 1.1, jrfj(u, v)j �C(jujp�1þ jvjp�1þ 1), and so, by the mean value
theorem, one has j fj(u, v)j �C(jujpþ jvjpþ 1), j¼ 1, 2. Thus, by using Young and
Hölder’s inequality, we haveZ t

0

Z
�

ð f1ðu, vÞuþ f2ðu, vÞvÞdx

				
				d� � C

Z t

0

Z
�

ðjujp þ jvjp þ 1Þðjuj þ jvjÞdxd�

� CT

Z t

0

Z
�

ðjujpþ1 þ jvjpþ1Þdxdt51, ð2:13Þ

for all t2 [0,T ), where we have used the fact u2C([0, t]; H1(�)), the embedding
H1(�) ,! L6(�) and the restriction p< 5, as mentioned in Remark 1.10.

In addition, by using the regularity of the solution (u, v) and the assumptions on
the parameters, we inferZ t

0

Z
�

ð g1ðutÞuþ g2ðvtÞvÞdx

				
				d� þ

Z t

0

Z
�

gð�utÞ�u d�

				
				d� þ

Z t

0

Z
�

hð�uÞ�u d�

				
				d�51,

ð2:14Þ

for all t2 [0,T ). Hence, it follows from (2.12)–(2.14), and the regularity of (u, v) that
N0(t) is absolutely continuous, and thus (2.10) follows.
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Now, note that (2.1) yields

uðtÞ
�� ��2

1,�
þ vðtÞ
�� ��2

1,�
¼ �

�
utðtÞ
�� ��2

2
þ vtðtÞ
�� ��2

2

�
þ 2SðtÞ � 2GðtÞ: ð2:15Þ

So, by (2.9), (2.10), (2.15) and the assumptions uf1(u, v)þ vf2(u, v)� c1F(u, v),

h(s)s� c3H(s), we deduce

Y0ðtÞ � ð1� �ÞGðtÞ��G0ðtÞ þ 4	
�

utðtÞ
�� ��2

2
þ vtðtÞ
�� ��2

2

�
þ 4	GðtÞ

þ 2	ðc1 � 2Þ

Z
�

FðuðtÞ, vðtÞÞdxþ 2	ðc3 � 2Þ

Z
�

Hð�uðtÞÞd�

� 2	

Z
�

g1ðutðtÞÞuðtÞdx� 2	

Z
�

g2ðvtðtÞÞvðtÞdx� 2	

Z
�

gð�utðtÞÞ�uðtÞd�: ð2:16Þ

We begin by estimating the last three terms on the right-hand side of (2.16). First, by

using the assumption g1(s)s� b1jsj
mþ1, Hölder’s inequality, the fact p>m and the

inequality (2.3), we haveZ
�

g1ðutðtÞÞuðtÞdx

				
				 � b1

Z
�

juðtÞjjutðtÞj
mdx � b1 uðtÞ

�� ��
mþ1

utðtÞ
�� ��m

mþ1

� b1j�j
p�m

ð pþ1Þðmþ1Þ uðtÞ
�� ��

pþ1
utðtÞ
�� ��m

mþ1
� K1SðtÞ

1
pþ1 utðtÞ
�� ��m

mþ1
ð2:17Þ

where K1 is defined in (2.5). Observe, the definition of � implies 1
pþ1�

1
mþ1þ �5 0.

Therefore, by using (2.6)–(2.7), Young’s inequality and recalling the definition of �1,
�2, �3 in (2.5), we obtain from (2.17) that				
Z

�

g1ðutðtÞÞuðtÞdx

				 � K1SðtÞ
1

pþ1�
1

mþ1SðtÞ
1

mþ1 utðtÞ
�� ��m

mþ1

� GðtÞ
1

pþ1�
1

mþ1 �1SðtÞ þ C�1K
mþ1
m

1 utðtÞ
�� ��mþ1

mþ1

� �
� �1GðtÞ

1
pþ1�

1
mþ1SðtÞ þ C�1K

mþ1
m

1 a�11 G0ðtÞGðtÞ��GðtÞ
1

pþ1�
1

mþ1þ�

� �1Gð0Þ
1

pþ1�
1

mþ1SðtÞ þ C�1K
mþ1
m

1 a�11 G0ðtÞGðtÞ��Gð0Þ
1

pþ1�
1

mþ1þ�: ð2:18Þ

By repeating the estimates (2.17)–(2.18), replacing u(t) by v(t) and m by r, we deduce				
Z

�

g2ðvtðtÞÞvðtÞdx

				 � �2Gð0Þ 1
pþ1�

1
rþ1SðtÞ þ C�2K

rþ1
r

2 a�12 G0ðtÞGðtÞ��Gð0Þ
1

pþ1�
1

rþ1þ�: ð2:19Þ

Likewise, by replacing u(t) by �u(t), � by �, p by k, m by q in (2.17)–(2.18), we obtain				
Z

�

gð�utðtÞÞ�uðtÞd�

				 � �3Gð0Þ 1
kþ1�

1
qþ1SðtÞ þ C�3K

qþ1
q

3 a�13 G0ðtÞGðtÞ��Gð0Þ
1

kþ1�
1

qþ1þ�:

ð2:20Þ

Now, since 05�5 1
2, we may choose 0<	< 1 small enough such that

L :¼ 1� �� 2	
�
C�1K

mþ1
m

1 a�11 Gð0Þ
1

pþ1�
1

mþ1þ�

þ C�2K
rþ1
r

2 a�12 Gð0Þ
1

pþ1�
1

rþ1þ� þ C�3K
qþ1
q

3 a�13 Gð0Þ
1

kþ1�
1

qþ1þ�
�
� 0: ð2:21Þ
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In addition, since �¼min{c1� 2, c3� 2}, then

ðc1 � 2Þ

Z
�

FðuðtÞ, vðtÞÞdxþ ðc3 � 2Þ

Z
�

Hð�uðtÞÞd� � �SðtÞ: ð2:22Þ

Hence, by inserting (2.18)–(2.20) into (2.16) and using (2.21), (2.22) and (2.5),

we conclude

Y0ðtÞ � LGðtÞ��G0ðtÞ þ 4	 utðtÞ
�� ��2

2
þ vtðtÞ
�� ��2

2

� �
þ 4	GðtÞ þ �	SðtÞ

� 4	
�

utðtÞ
�� ��2

2
þ vtðtÞ
�� ��2

2
þGðtÞ

�
þ �	SðtÞ: ð2:23Þ

In particular, the inequality (2.23) shows that Y(t) is increasing on [0,T ), with

YðtÞ ¼ GðtÞ1�� þ 	N0ðtÞ � Gð0Þ1�� þ 	N0ð0Þ: ð2:24Þ

If N0(0)� 0, then no further condition on 	 is needed. However, if N0(0)< 0, then we

further adjust 	 so that 05 	 � � Gð0Þ1��

2N0ð0Þ . In any case, one has

YðtÞ �
1

2
Gð0Þ1��4 0 for t2 ½0,T Þ: ð2:25Þ

Finally, we show that

Y0ðtÞ � C	1þ
YðtÞ� for t2 ½0,T Þ, ð2:26Þ

where

15 � ¼
1

1� �
5 2, 
 ¼ 1�

2

ð1� 2�Þð pþ 1Þ
4 0,

and C> 0 is a generic constant independent of 	. Notice that 
 > 0 follows from the

assumption �5 p�1
2ð pþ1Þ.

Now, if N0(t)� 0 for some t2 [0,T ), then for such value of t we have

YðtÞ� ¼ ½GðtÞ1�� þ 	N0ðtÞ�� � GðtÞ ð2:27Þ

and in this case, (2.23) and (2.27) yield

Y0ðtÞ � 4	GðtÞ � 4	1þ
GðtÞ � 4	1þ
YðtÞ�:

Hence, (2.26) holds for all t2 [0,T ) for which N0(t)� 0. However, if t2 [0,T ) is such

that N0(t)> 0, then showing the validity of (2.26) requires a little more effort. First,

we note that Y(t)¼G(t)1��þ 	N0(t)�G(t)1��þN0(t), and so

YðtÞ� � 2��1½GðtÞ þN0ðtÞ��: ð2:28Þ

We estimate N0(t)� as follows. By using Hölder and Young’s inequality and noting

that 1<�< 2, we obtain from (2.2) that

N0ðtÞ� � 2�
�

utðtÞ
�� ��

2
uðtÞ
�� ��

2
þ vtðtÞ
�� ��

2
vðtÞ
�� ��

2

��
� C

�
utðtÞ
�� ���

2
uðtÞ
�� ���

pþ1
þ vtðtÞ
�� ���

2
vðtÞ
�� ���

pþ1

�
� C

�
utðtÞ
�� ��2

2
þ uðtÞ
�� �� 2�

2��

pþ1þ vtðtÞ
�� ��2

2
þ vðtÞ
�� �� 2�

2��

pþ1

�
: ð2:29Þ
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Since � ¼ 1
1�� and 
 > 0, it is easy to see that

2�

ð2� �Þð pþ 1Þ
� 1 ¼

2

ð1� 2�Þð pþ 1Þ
� 1 ¼ �
5 0: ð2:30Þ

Therefore, by (2.3), (2.7), (2.30), and by recalling 	�G(0), we have

uðtÞ
�� �� 2�

2��

pþ1 ¼ uðtÞ
�� ��pþ1

pþ1

� � 2�
ð2��Þð pþ1Þ

� CSðtÞ
2�

ð2��Þð pþ1Þ

� CSðtÞ
2�

ð2��Þð pþ1Þ�1SðtÞ � CGð0Þ�
SðtÞ � C	�
SðtÞ: ð2:31Þ

Similarly,

vðtÞ
�� �� 2�

2��

pþ1� C	�
SðtÞ: ð2:32Þ

By (2.29) and (2.31)–(2.32) and noting 	�
 > 1, we obtain

N0ðtÞ� � C
�

utðtÞ
�� ��2

2
þ vtðtÞ
�� ��2

2
þ 	�
SðtÞ

�
� C	�


�
utðtÞ
�� ��2

2
þ vtðtÞ
�� ��2

2
þSðtÞ

�
: ð2:33Þ

Finally, the estimates (2.23), (2.28) and (2.33) allow us to conclude that

Y0ðtÞ � C	 GðtÞ þ utðtÞ
�� ��2

2
þ vtðtÞ
�� ��2

2
þSðtÞ

h i
� C	½GðtÞ þ 	
N0ðtÞ��

� C	1þ
½GðtÞ þN0ðtÞ�� � C	1þ
YðtÞ�

for all values of t2 [0,T ) for which N0(t)> 0. Hence, (2.26) is valid. By simple

calculations, it follows from (2.25)–(2.26) that T is necessarily finite and

T5C	�ð1þ
ÞYð0Þ�
�

1�� � C	�ð1þ
ÞGð0Þ��: ð2:34Þ

As a result,

YðtÞ ¼ GðtÞ1�� þ 	N0ðtÞ ! 1 as t! T�: ð2:35Þ

It remains to show ku(t)k1,�þkv(t)k1,�!1 as t!T�. Indeed, by the definition

of Y(t) and the first inequality in (2.33), one has

YðtÞ� � 2��1½GðtÞ þ 	�N0ðtÞ��

� 2��1 GðtÞ þ 	�C utðtÞ
�� ��2

2
þ vtðtÞ
�� ��2

2
þ	�
SðtÞ

� �h i
:

ð2:36Þ

By recalling (2.1), and by further adjusting 	 so that � 1
2þ 	

�C � 0, then (2.36)

implies

YðtÞ� � 2��1½SðtÞ þ C	��
SðtÞ�: ð2:37Þ

However, by using the assumptions on the sources and employing Hölder’s

inequality, we have

SðtÞ ¼

Z
�

FðuðtÞ, vðtÞÞdxþ

Z
�

Hð�uðtÞÞd�

�
1

c1

Z
�

�
uðtÞ f1ðuðtÞ, vðtÞÞ þ vðtÞ f2ðuðtÞ, vðtÞÞ



dxþ

1

c3

Z
�

hð�uðtÞÞ�uðtÞd�

� C uðtÞ
�� ��pþ1

pþ1
þ vðtÞ
�� ��pþ1

pþ1
þj�uðtÞjkþ1kþ1

� �
� C uðtÞ

�� ��pþ1
1,�
þ vðtÞ
�� ��pþ1

1,�
þ uðtÞ
�� ��kþ1

1,�

� �
, ð2:38Þ
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where we have used the fact p< 5 and k< 3, as mentioned in Remark 1.10.
Consequently, by combining (2.37) and (2.38) one has

YðtÞ� � C uðtÞ
�� ��pþ1

1,�
þ vðtÞ
�� ��pþ1

1,�
þ uðtÞ
�� ��kþ1

1,�

� �
,

and along with (2.35), we conclude ku(t)k1,�þkv(t)k1,�!1 as t!T�. This
completes the proof of Theorem 1.8. g

3. Proof of Theorem 1.9

The proof of Theorem 1.9 goes along the same lines as the proof of Theorem 1.8;
except for the estimate of the last term on the right-hand side of (2.16). Here, we shall
utilize the following trace and interpolation theorems:

. Trace theorem (see e.g. [26]):

j�ujqþ1 � C uk kWs,qþ1ð�Þ, where s4
1

qþ 1
: ð3:1Þ

. Interpolation theorem [27]:

W1��,rð�Þ ¼ ½H1ð�Þ,Lpþ1ð�Þ��, ð3:2Þ

where r ¼ 2ð pþ1Þ
ð1��Þð pþ1Þþ2�, � 2 [0, 1], and as usual [	, 	]� denotes the interpolation

bracket.

We select � such that

1� � ¼
1


ðqþ 1Þ
4

1

qþ 1
for some

1

qþ 1
5
5 1: ð3:3Þ

Additionally, we require that

r ¼
2ð pþ 1Þ

ð1� �Þð pþ 1Þ þ 2�
� qþ 1: ð3:4Þ

Note p> q since by assumption p> 2q� 1¼ qþ (q� 1)� q. So, inserting (3.3)
into (3.4) yields the following restriction on 
:


 �
p� 1

2ð p� qÞ
4 0: ð3:5Þ

However, since q� 1, and by assumption, p> 2q� 1, it follows that 14 p�1
2ð p�qÞ �

1
qþ1.

Thus, it is enough to impose the following restriction on 
:

p� 1

2ð p� qÞ
� 
5 1: ð3:6Þ

Now, we turn our attention to the proof of Theorem 1.9.

Proof Under the above restrictions on the parameters, we first show that

j�ujqþ1 � C1 uk k
2

qþ1

1,�þ uk k
ð pþ1Þ

qþ1

pþ1

� �
, ð3:7Þ

for some 
 satisfying (3.6), where C1 is a generic constant.
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In order to prove (3.7), we use (3.1)–(3.4) and Young’s inequality to obtain

j�ujqþ1 � C uk kW1��,qþ1ð�Þ � C uk kW1��,rð�Þ � C uk k1��1,� uk k�pþ1

¼ C uk k
1


ðqþ1Þ

1,� uk k
1� 1


ðqþ1Þ

pþ1 � C1

�
uk k

2

qþ1

1,�þ uk k
2
2 ðqþ1Þ�2


ð2
2�1Þðqþ1Þ

pþ1

�
: ð3:8Þ

By comparing (3.7) and (3.8), it suffices to show that there exists 
 satisfying (3.6)

such that 2
2ðqþ1Þ�2

ð2
2�1Þðqþ1Þ

¼
ð pþ1Þ

qþ1 . We note that the latter is equivalent to

2( pþ 1)
2� 2(qþ 1)
� ( p� 1)¼ 0. By the assumption 2q< pþ 1, the positive root

of the above quadratic equation satisfies:


 :¼
2ðqþ 1Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðqþ 1Þ2 þ 8ð p2 � 1Þ

q
4ð pþ 1Þ

5
ð pþ 3Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3pþ 1Þ2

q
4ð pþ 1Þ

¼ 1: ð3:9Þ

Additionally, we must show that

2ðqþ 1Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðqþ 1Þ2 þ 8ð p2 � 1Þ

q
4ð pþ 1Þ

�
p� 1

2ð p� qÞ
, ð3:10Þ

as required by (3.6). Indeed, by routine calculations, it is easy to see that (3.10) is

equivalent to

ð p� 1Þð pþ 1Þ2ð p� 2qþ 1Þ � 0: ð3:11Þ

Obviously, (3.11) is valid since p� 1 and p> 2q� 1. Hence, (3.7), verified.
Now, we turn our attention to estimating the last term on the right-hand side

of (2.16). First, we note that (2.15) yields

uðtÞ
�� ��2

1,�
� 2SðtÞ: ð3:12Þ

By Hölder’s inequality and the estimates (2.3), (3.7) and (3.12), we obtain				
Z

�

gð�utðtÞÞ�uðtÞd�

				 � b3

Z
�

j�uðtÞjj�utðtÞj
qd�� b3j�uðtÞjqþ1j�utðtÞj

q
qþ1

� b3C1 uk k
2

qþ1

1,�þ uk k
ð pþ1Þ

qþ1

pþ1

� �
j�utðtÞj

q
qþ1

� b3C1 2



qþ1SðtÞ



qþ1 þ c
�



qþ1

0 SðtÞ



qþ1

� �
j�utðtÞj

q
qþ1

� K4SðtÞ



qþ1j�utðtÞj
q
qþ1, ð3:13Þ

where K4 ¼ b3C1 	maxf2



qþ1, c
�



qþ1

0 g. In addition to the restriction on � in (2.4), we

further require �5 1�

qþ1, so 
�1

qþ1 þ �5 0. Thus, by using (2.6)–(2.7) and Young’s

inequality, we can continue the estimate in (3.13) as follows.					
Z

�

gð�utðtÞÞ�uðtÞd�

					 � K4SðtÞ

�1
qþ1SðtÞ

1
qþ1j�utðtÞj

q
qþ1

� GðtÞ

�1
qþ1 �4SðtÞ þ C�4K

qþ1
q

4 j�utðtÞj
qþ1
qþ1

� �
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� �4GðtÞ

�1
qþ1SðtÞ þ C�4K

qþ1
q

4 a�13 G0ðtÞGðtÞ��GðtÞ

�1
qþ1þ�

� �4Gð0Þ

�1
qþ1SðtÞ þ C�4K

qþ1
q

4 a�13 G0ðtÞGðtÞ��Gð0Þ

�1
qþ1þ�, ð3:14Þ

where �4 ¼
�
6Gð0Þ

1�

qþ1.

Now, instead of estimate (2.20) we use (3.14), and instead of (2.21) in
Theorem 1.8, we choose 0<	< 1 small enough so that

L1 ¼ 1� �� 2	
�
C�1K

mþ1
m

1 a�11 Gð0Þ
1

pþ1�
1

mþ1þ� þ C�2K
rþ1
r

2 a�12 Gð0Þ
1

pþ1�
1

rþ1þ�

þ C�4K
qþ1
q

4 a�13 Gð0Þ

�1
qþ1þ�

�
� 0:

After replacing L with L1 in (2.23), the rest of the proof continues exactly as in the
proof of Theorem 1.8. g
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