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In the present study, we are interested in the Davey-Stewartson equations (DSE) that
model packets of surface and capillary-gravity waves. We focus on the elliptic-elliptic
case, for which it is known that DSE may develop a finite-time singularity. We pro-
pose three systems of non-viscous regularization to the DSE in a variety of parameter
regimes under which the finite-time blow-up of solutions to the DSE occurs. We
establish the global well-posedness of the regularized systems for all initial data.
The regularized systems, which are inspired by the α-models of turbulence and
therefore are called the α-regularized DSE, are also viewed as unbounded, singularly
perturbed DSE. Therefore, we also derive reduced systems of ordinary differential
equations for the α-regularized DSE by using the modulation theory to investigate
the mechanism with which the proposed non-viscous regularization prevents the
formation of the singularities in the regularized DSE. This is a follow-up of the work
[Cao et al., Nonlinearity 21, 879–898 (2008); Cao et al., Numer. Funct. Anal. Optim.
30, 46–69 (2009)] on the non-viscous α-regularization of the nonlinear Schrödinger
equation. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4960047]

I. INTRODUCTION

The Davey-Stewartson equations (DSE) are given by




ivt + ∆v + β |v |2v − ρφxv = 0
φxx + νφy y = (|v |2)x
v(x, y,0) = v0(x, y)

(1.1)

for the spatial variables (x, y) ∈ R2, and the time variable t ∈ R, with zero boundary condition at
infinity, where the complex-valued function v(x, y, t) represents the amplitude of a wave packet, and
the real-valued function φ(x, y, t) stands for the free long wave mode. This system can be classified
as the elliptic-elliptic type for positive ν, and the elliptic-hyperbolic type for negative ν. System
(1.1) was first introduced by Davey and Stewartson,9 and later by Djordjevic and Redekopp10 to
model propagation of weakly nonlinear water waves that travels predominantly in one direction,
but in which the wave amplitude is modulated slowly in two horizontal directions. System (1.1)
is a Hamiltonian system, which has certain conserved quantities: the L2-energy as well as the
Hamiltonian,H ,

H (v) =

R2


|∇v |2 − β

2
|v |4 + ρ

2

(
φ2
x + νφ

2
y

)
dxdy. (1.2)
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Ghidaglia and Saut proved the local well-posedness of the DSE (1.1) with ν > 0 for the initial
data v0 ∈ H1(R2) in Ref. 13. Moreover, for β ≤ min(ρ,0), the solution in the elliptic-elliptic case
exists globally in time, whereas for β > min(ρ,0), it has a finite maximum lifespan (cf. Ref. 13).
Also, the well-posedness and the scattering of a more general and abstract class of the DSE were
investigated in Ref. 11.

The ground-state solutions (also known as standing-wave solutions) of the DSE (1.1) in the
elliptic-elliptic case are solutions of the form v(x, y, t) = eiλtR(x, y) and φ(x, y, t) = F(x, y), where
R and F are real-valued functions with λ > 0. Accordingly, the ground-state functions R and F
satisfy the following coupled nonlinear elliptic eigenvalue problem:




∆R − λR + βR3 − ρRFx = 0
Fxx + νFy y = (R2)x (1.3)

where ν > 0, with zero boundary condition at infinity. The existence of ground-state solutions was
established by Cipolatti in Ref. 8. An alternative way of characterizing the solution of (1.3) is pre-
sented in Ref. 19 and it is shown that the solution of the DSE (1.1) exists globally in time provided
that the initial value v0 ∈ H1(R2) satisfies ∥v0∥L2(R2) < ∥R∥L2(R2) where R is the ground-state solution
of (1.3). In Ref. 1, Ablowitz et al. explored necessary conditions for wave collapse in the DSE (1.1)
by using the global existence theory and numerical calculations of the ground-state.

The aim of our paper is to introduce three special non-viscous, Hamiltonian regularizations to
the nonlinear terms in the elliptic-elliptic DSE (1.1) in various parameter regimes, and establish the
global well-posedness of these regularized systems. These regularizations are in the spirit of the
α–models of turbulence. We will follow the approach in Refs. 4 and 3 in which an α-regularized
nonlinear Schrödinger equation (NLS) was investigated. See also references to the α-models of
turbulence in Ref. 4.

The two-dimensional cubic NLS equation is given by

ivt + ∆v + |v |2v = 0 (1.4)

with the initial condition v(x, y,0) = v0(x, y), where v is a complex-valued function. It is a model
for the propagation of a laser beam in an optical Kerr medium, or a model for water waves at the
free surface of an ideal fluid as well as plasma waves (see, e.g., Refs. 17 and 22 and references
therein). It is well known that the 2d cubic NLS (1.4) blows up in finite time (see, e.g., Refs. 5–7,
14–16, 22, and 23 and references therein). Notice that the 2d cubic NLS is the deep water limit of
the DSE. On the other hand, the DSE can be regarded as a perturbation of the 2d cubic NLS, and
this perturbation does not affect the blow up rate.12,19

In Refs. 4 and 3, the following non-viscous regularized system of the cubic NLS Equation (1.4)
is investigated:




ivt + ∆v + uv = 0
u − α2

∆u = |v |2 (1.5)

with the initial condition v(x, y,0) = v0(x, y), with zero boundary condition at infinity, where α > 0
is the regularization parameter. Notice that when α = 0, (1.5) reduces to (1.4). It is shown in Ref. 4
that the Cauchy problem (1.5) is globally well-posed. Moreover, by regarding system (1.5) as a
perturbation of the cubic NLS equation (1.4), and by adopting the modulation theory, different
scenarios are demonstrated in Ref. 3 of how the regularization prevents the formation of the singu-
larities of the cubic NLS equation.

This paper consists of five sections. Section II introduces notations, and summarizes some
embedding and interpolation theorems, as well as properties of certain elementary operators. In
Section III, we briefly introduce three different non-viscous Helmholtz type of α-regularizations
to the DSE in the elliptic-elliptic case and state the global well-posedness of these α-regularized
systems. In Section IV, we prove the local well-posedness of these α-regularized systems by a
fixed point argument, as well as the extension to global solutions by using the conservation of
the L2-energy and the Hamiltonian. In Section V, we apply modulation theory following ideas
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from Refs. 3, 12, 19, and 22, to shed light on the mechanism of how these regularizations prevent
the formation of the singularities in the regularized DSE.

II. NOTATIONS AND PRELIMINARIES

The following notations are used throughout the paper:

∆ = ∂xx + ∂y y, ∆ν = ∂xx + ν∂y y;

Lp = Lp(R2), ∥ · ∥p denotes Lp − norm;

Hq = Hq(R2), ∥ · ∥Hq denotes Hq − Sobolev norm;

W k,p = W k,p(R2), ∥ · ∥W k,p denotes W k,p − Sobolev norm;

Lq
t Lr

z = Lq(I; Lr(R2)) (I = [0,T], z = (x, y)), ∥ · ∥r,q denotes Lq
t Lr

z − norm.

Also, when writing that the gradient of a scalar function is in a given space, it actually means
that each component is in the space, and the norm is modified in an obvious way to incorporate
the vector structure. For instance, the notation ∇ϕ ∈ Lp represents that ϕx, ϕy ∈ Lp with the norm

∥∇ϕ∥p = �
R2 |∇ϕ|pdx

� 1
p , p ≥ 1.

Next, we recall some classical two-dimensional Gagliardo-Nirenberg and Sobolev inequalities,
as well as elementary interpolation estimates (see, e.g., Ref. 2),

(1) ∥v∥q ≤ C∥v∥
2
q

2 ∥v∥
q−2
q

H1 for v ∈ H1, 0 <
q − 2

q
≤ 1, (2.1)

(2) ∥v∥q ≤ C∥v∥W 2,p for v ∈ W 2,p, 1 < p ≤ q, (2.2)

(3) ∥v∥q ≤ C∥v∥H1 for v ∈ H1, 2 ≤ q < ∞, (2.3)

(4) ∥v∥q ≤ C∥v∥H2 for v ∈ H2, 2 ≤ q ≤ ∞, (2.4)

(5) ∥v∥2q ≤ C∥v∥Hk for v ∈ Hk, k = (q − 1)/q < 2, (2.5)

(6) ∥v∥Hk ≤ ∥v∥ k
2
H2∥v∥

2−k
2

2 for v ∈ H2, k < 2. (2.6)

In addition, for the elliptic Helmholtz equation ψ − α2∆ψ = Ψ, its solution will be denoted as
ψ = B(Ψ) where,

B = (Id − α2
∆)−1, (2.7)

where Id represents the identity operator. By Plancherel identity, for Ψ ∈ L2, one has

∥B(Ψ)∥2 ≤ ∥Ψ∥2. (2.8)

Also, for Ψ ∈ Lp, 1 < p < ∞, the following regularity property of elliptic operators is standard (see,
e.g., Refs. 18, 20, 24, and 25):

∥B(Ψ)∥W 2,p ≤ Cα,p∥Ψ∥p, for 1 < p < ∞, (2.9)

where Cα,p depends on α and p, and Cα,p ∼ 1/α2, as α → 0+.
Moreover, the Poisson-like equation ∆νψ = Ψx, for ν > 0, can be solved in terms of Ψ, and we

denote by ψx = E(Ψ), where the singular integral operator E is defined via the Fourier transform by

EE( f )(ξ1, ξ2) =
ξ2

1

ξ2
1 + νξ

2
2

f (ξ1, ξ2). (2.10)

Once again, due to Plancherel identity, for Ψ ∈ L2, one has

∥E(Ψ)∥2 ≤ ∥Ψ∥2. (2.11)
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Also, since the operator E is of order zero, then by the Calderon-Zygmund theorem (see, e.g.,
Refs. 20 and 21), we have

∥E(Ψ)∥p ≤ Cp∥Ψ∥p, for 1 < p < ∞, (2.12)

where Cp depends on p.
As usual, throughout the paper, the constant C may vary from line to line.

III. HELMHOLTZ α-REGULARIZED DAVEY-STEWARTSON EQUATIONS

In this section, inspired by the inviscid α-regularization of the cubic NLS introduced in Refs. 4
and 3 (see also references therein), we propose three different regularizations of the DSE (1.1) of
the elliptic-elliptic type (i.e., ν > 0) in the parameter regime β > min(ρ,0) where the finite-time
blow-up takes place.13 We also state the global well-posedness of these α-regularized systems.

A. Case 1: ρ > 0 and β > 0

Under this scenario, by the conservation of the Hamiltonian (1.2) of DSE (1.1), we see that
the cubic nonlinearity β |v |2v in (1.1) tends to amplify the H1-norm, while the nonlocal term −ρφxv
can be viewed as a dissipation. Consequently, the finite-time blow-up of the H1-norm of the DSE
(1.1) is caused by the growth of the local term β |v |2v , which should be regularized to guarantee
global existence in H1. As a result, we introduce the first α-regularized Davey-Stewartson equations
(RDS1),




ivt + ∆v + βuv − ρφxv = 0, ∆νφ = (|v |2)x,
u − α2

∆u = |v |2,
v(x, y,0) = v0(x, y),

(3.1)

where ν > 0, α > 0, ρ > 0, and β > 0. Notice that system (3.1) reduces to the DSE (1.1) when
α = 0. Formally, system (3.1) has two conserved quantities: the L2-energy and the Hamiltonian,

H1(v) =

R2


|∇v |2 − β

2
u|v |2 + ρ

2

(
φ2
x + νφ

2
y

)
dxdy. (3.2)

The RDS1 system (3.1) is globally well-posed in H1. In particular, we have the following.

Theorem 3.1. Let v0 ∈ H1, then there exists a unique global solution of system RDS1 (3.1), for
all t ∈ R, such that v ∈ C(R,H1) ∩ C1(R,H−1), and ∇ϕ ∈ C(R,Lp), for p > 1. Moreover, the energy
N (v) = ∥v∥2

2 and the Hamiltonian H1(v) are conserved in time. In addition, the solution depends
continuously on the initial data.

B. Case 2: ρ < β < 0

In this case, by the structure of the Hamiltonian (1.2) of DSE (1.1), we notice that the
nonlocal term −ρφxv in DSE (1.1) may amplify the H1-norm, while the nonlinearity β |v |2v can be
considered as a dissipation. Furthermore, since ρ < β < 0, the nonlocal term overcomes the cubic
nonlinearity, leading to a finite-time blow-up.13 Therefore, in order to obtain the global existence
of solutions, the nonlocal term −ρvφx should be smoothed. We introduce the second α-regularized
Davey-Stewartson equations (RDS2) as follows:




ivt + ∆v + β |v |2v − ρϕxv = 0, ∆νψ = ux,

u − α2
∆u = |v |2, ϕ − α2

∆ϕ = ψ,

v(x, y,0) = v0(x, y),
(3.3)
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where ν > 0, α > 0 and 0 > β > ρ. Here the RDS2 system (3.3) reduces to the DSE (1.1) when
α = 0. Formally, system (3.3) has two conserved quantities: the L2-energy and the Hamiltonian,

H2(v) =

R2


|∇v |2 − β

2
|v |4 + ρ

2

(
ψ2
x + νψ

2
y

)
dxdy. (3.4)

The following result states that the RDS2 (3.3) is globally well-posed in H1.

Theorem 3.2. Let v0 ∈ H1, then there exists a unique global solution of the system RDS2 (3.3),
for all t ∈ R, such that v ∈ C(R,H1) ∩ C1(R,H−1), and ∇ϕ ∈ C(R,W 4,p) for p > 1. Moreover, the
energy N (v) = ∥v∥2

2 and the Hamiltonian H2(v) are conserved in time. In addition, the solution
depends continuously on the initial data.

C. Case 3: ρ < 0 and β > 0

Notice that each of the two nonlinear terms individually may cause the blow-up of DSE (1.1),
and thus both of them should be smoothed in order to prevent the development of singularity. As a
result, the third α-regularized Davey-Stewartson equations (RDS3) is given by




ivt + ∆v + βuv − ρϕxv = 0, ∆νψ = ux,

u − α2
∆u = |v |2, ϕ − α2

∆ϕ = ψ,

v(x, y,0) = v0(x, y),
(3.5)

where ν > 0, α > 0, ρ < 0 and β > 0. As in previous cases, the RDS3 system (3.5) reduces to the
DSE (1.1) when α = 0. Formally, system (3.5) has two conserved quantities: the L2–energy and the
Hamiltonian,

H3(v) =

R2


|∇v |2 − β

2
u|v |2 + ρ

2

(
ψ2
x + νψ

2
y

)
dxdy. (3.6)

The following theorem states that the RDS3 (3.5) is globally well-posed in H1.

Theorem 3.3. Let v0 ∈ H1, then there exists a unique global solution of system RDS3 (3.5),
for all t ∈ R, such that v ∈ C(R,H1) ∩ C1(R,H−1), and ∇ϕ ∈ C(R,W 4,p), for p > 1. Moreover, the
energy N (v) = ∥v∥2

2 and the Hamiltonian H3(v) are conserved in time. In addition, the solution
depends continuously on the initial data.

IV. PROOF OF THE GLOBAL WELL-POSEDNESS OF THE α-REGULARIZED
DAVEY-STEWARTSON EQUATIONS

This section is devoted to proving the global well-posedness of the various α-regularized
Davey-Stewartson equations proposed in Section III. The proof for all the three regularized systems
can be presented in a similar manner, so we only demonstrate the proof for Theorem 3.3, i.e.,
for the system RDS3 (3.5) in the case: ρ < 0 and β > 0. As we have discussed in Section III,
under this scenario, both nonlinear terms β |v |2v and −ρvφx in the DSE (1.1) are regularized. In
Subsections IV A–IV E, we shall study the local existence and uniqueness of solutions to (3.5) in
H1 and H2, the continuous dependence on initial data in H1, energy and Hamiltonian conservation,
as well as the extension to global solutions in H1. In order to make sure that the proof can be readily
adjusted to handle the systems RDS1 (3.1) and RDS2 (3.3) as well, we intentionally avoid using
the smoothing property of the α-regularization operator in justifying the local well-posedness. The
smoothing property is solely used when studying the extension to global solutions.

A. Short-time existence and uniqueness of solutions in H1

We follow the approach in Refs. 13 and 16 to establish short-time existence and uniqueness of
solutions to the RDS3 system (3.5) by using a fixed-point argument. In particular, we will prove the
following theorem.
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Theorem 4.1. Let v0 ∈ H1, then there exists a unique solution of the RDS3 system (3.5) on
I = [0,T], for some T(∥v0∥H1) > 0, such that v ∈ C(I,H1) ∩ C1(I,H−1) and ∇ϕ ∈ C(I,W 4,p), for
p > 1. Moreover, the energyN (v) = ∥v∥2

2 is conserved on [0,T].
To begin with, by using the operators B and E defined in (2.7) and (2.10), respectively, we write

the RDS3 system (3.5) as

ivt + ∆v + F(v) = 0, (4.1)

where the nonlinearity

F(v) = βB(|v |2)v − ρB(E(B(|v |2)))v, (4.2)

where β > 0 and ρ < 0. Next, by Duhamel’s principle, we convert Equation (4.1) into an equivalent
integral equation,

v(t) = G0v0 + iG ◦ F(v), (4.3)

where G0,G are linear operators given by

(G0w)(t) = eit∆w, (G f )(t) =
 t

0
ei(t−s)∆ f (s) ds. (4.4)

Some well-known properties of the operators G0 and G are given in Appendix A.
Before proving Theorem 4.1, we will study the properties of the maps F and G ◦ F. Set

z = (x, y) ∈ R2, and let t ∈ [0,T]. We introduce the following function spaces:

X = L∞t L2
z ∩ L4

t L
4
z and X0 = L∞t L2

z ∩ L∞t L4
z ⊂ X, (4.5)

with their relevant norms

∥v∥X = max{∥v∥2,∞, ∥v∥4,4} and ∥v∥X0 = max{∥v∥2,∞, ∥v∥4,∞}.
Also, we denote by BR(X0) the closed ball in X0, with center at 0 and radius R, i.e.,

BR(X0) = {v ∈ X0 : ∥v∥X0 ≤ R}.
The following result states some properties of the nonlinear operator G ◦ F.

Proposition 4.2. Let T > 0 be given. The nonlinear operator G ◦ F : X0 → X is bounded and
locally Lipschitz continuous. Moreover, on each ball BR(X0), G ◦ F is a contraction mapping in the
metric of X, provided T is sufficiently small.

Proof. Recall from (4.2) that F(v) = βB(|v |2)v − ρB(E(B(|v |2)))v , where β > 0 and ρ < 0, and
the operators B and E defined in (2.7) and (2.10), respectively. By using Hölder’s inequality and the
properties of B and E given in (2.8) and (2.11), respectively, we have

∥F(v)∥ 4
3
≤ β∥B(|v |2)∥2∥v∥4 + |ρ|∥B(E(B(|v |2)))∥2∥v∥4

≤ β∥|v |2∥2∥v∥4 + |ρ|∥|v |2∥2∥v∥4 ≤ (β + |ρ|)∥v∥3
4. (4.6)

By Lemma A.1 in Appendix A, as well as inequality (4.6), we have

∥G ◦ F(v)∥X = max{∥G ◦ F(v)∥2,∞, ∥G ◦ F(v)∥4,4}
≤ γ∥F(v)∥ 4

3 ,
4
3
≤ γT

3
4 (β + |ρ|)∥v∥3

4,∞ ≤ γT
3
4 (β + |ρ|)∥v∥3

X0
. (4.7)

Consequently, the nonlinear operator G ◦ F : X0 → X is bounded.
Next, we show that G ◦ F is a continuous operator mapping from X0 into X , and on each ball

BR(X0) the operator G ◦ F is a contraction mapping, with respect to the norm of X , provided T is
sufficiently small. To this end, we let v , w ∈ BR(X0), i.e., max{∥v∥2,∞, ∥v∥4,∞, ∥w∥2,∞, ∥w∥4,∞} ≤ R.
Since G is linear, we use Lemma A.1 to obtain

∥G ◦ F(v) − G ◦ F(w)∥X = ∥G[F(v) − F(w)]∥X ≤ γ∥F(v) − F(w)∥ 4
3 ,

4
3
. (4.8)
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We decompose ∥F(v) − F(w)∥ 4
3 ,

4
3

as

∥F(v) − F(w)∥ 4
3 ,

4
3
≤ β(I1 + I2) + |ρ|(I3 + I4), (4.9)

and claim

I1 B ∥B(|v |2 − |w |2)v∥ 4
3 ,

4
3
≤ 4R2 min{T

1
2 ∥v − w∥4,4, T

3
4 ∥v − w∥4,∞}, (4.10)

I2 B ∥B(|w |2)(v − w)∥ 4
3 ,

4
3
≤ R2 min{T

1
2 ∥v − w∥4,4, T

3
4 ∥v − w∥4,∞}, (4.11)

I3 B ∥B(E(B(|v |2 − |w |2)))v∥ 4
3 ,

4
3
≤ 4R2 min{T

1
2 ∥v − w∥4,4, T

3
4 ∥v − w∥4,∞}, (4.12)

I4 B ∥B(E(B(|w |2)))(v − w)∥ 4
3 ,

4
3
≤ R2 min{T

1
2 ∥v − w∥4,4, T

3
4 ∥v − w∥4,∞}. (4.13)

All of the inequalities (4.10)-(4.13) can be proved in a similar manner, so we just demonstrate
the proof of (4.12). By Hölder inequality, as well as (2.8) and (2.11), we have

I
4
3

3 ≤
 T

0
∥B(E(B(|v |2 − |w |2)))∥ 4

3
2 ∥v∥

4
3
4 dt

≤
 T

0
∥|v |2 − |w |2∥ 4

3
2 ∥v∥

4
3
4 dt

≤
 T

0
∥|v | + |w |∥ 4

3
4 ∥v − w∥

4
3
4 ∥v∥

4
3
4 dt

≤ (∥v∥4,∞ + ∥w∥4,∞) 8
3 min{T

2
3 ∥v − w∥ 4

3
4,4,T ∥v − w∥

4
3
4,∞},

which implies (4.12) due to the fact ∥v∥4,∞ + ∥w∥4,∞ ≤ 2R.
Combining (4.9) and (4.10)-(4.13) gives us

∥F(v) − F(w)∥ 4
3 ,

4
3
≤ 5(β + |ρ|)R2 min{T

1
2 ∥v − w∥4,4, T

3
4 ∥v − w∥4,∞}. (4.14)

By (4.8) and (4.14) it follows that

∥G ◦ F(v) − G ◦ F(w)∥X ≤ 5γ(β + |ρ|)R2T
3
4 ∥v − w∥X0, (4.15)

∥G ◦ F(v) − G ◦ F(w)∥X ≤ 5γ(β + |ρ|)R2T
1
2 ∥v − w∥X . (4.16)

Notice that (4.15) implies that G ◦ F : X0 → X is locally Lipschitz continuous. Also, (4.16) shows
that on each ball BR(X0), the operator G ◦ F is a contraction mapping with respect to the metric of
X , provided T < 1/(5γ(β + |ρ|)R2)2. �

Next, we introduce the following spaces:

Y = {v ∈ X : ∇v ∈ X} ⊂ L∞(I,H1), where X = L∞t L2
z ∩ L4

t L
4
z,

where I = [0,T], with the norms

∥v∥X = max{∥v∥2,∞, ∥v∥4,4} and ∥v∥Y = max{∥v∥X, ∥∇v∥X}.
Also, we set

Y ′ = { f ∈ X ′ : ∇ f ∈ X ′}, where X ′ = L1
t L

2
z + L

4
3
t L

4
3
z , (4.17)

with the norms

∥ f ∥X′ = inf{∥g∥2,1 + ∥h∥ 4
3 ,

4
3

: f = g + h} and ∥ f ∥Y ′ = max{∥ f ∥X′, ∥∇ f ∥X′}.
Recall the nonlinear operator F is defined in (4.2) by F(v) = βB(|v |2)v − ρB(E(B(|v |2)))v ,

where β > 0 and ρ < 0. Then the following result holds for F.

Proposition 4.3. The nonlinear operator F : Y → Y ′ is bounded satisfying

∥F(v)∥Y ′ ≤ C(β + |ρ|)T 3
4 ∥v∥3

Y , for v ∈ Y. (4.18)
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Proof. Let v ∈ Y , i.e., v ∈ X with ∇v ∈ X . We aim to show that F(v) ∈ X ′ and ∇F(v) ∈ X ′ such

that max{∥F(v)∥X′, ∥∇F(v)∥X′} ≤ C(β + |ρ|)T 3
4 ∥v∥3

Y . By virtue of (4.6), one has F(v) ∈ L
4
3
t L

4
3
z

such that

∥F(v)∥ 4
3 ,

4
3
≤ T

3
4 (β + |ρ|)∥v∥3

4,∞ ≤ T
3
4 (β + |ρ|)∥v∥3

X0
. (4.19)

Notice that Y ⊂ L∞(I,H1) ⊂ X0 = L∞t L2
z ∩ L∞t L4

z due to the imbedding H1 ↩→ L4. Thus ∥v∥X0 ≤
C∥v∥Y , and along with (4.19), we deduce

∥F(v)∥X′ ≤ ∥F(v)∥ 4
3 ,

4
3
≤ T

3
4 (β + |ρ|)∥v∥3

X0
≤ CT

3
4 (β + |ρ|)∥v∥3

Y . (4.20)

Next, we show that ∇F(v) ∈ X ′. We denote τh, the spatial translation by h ∈ R2, i.e., τhv(x) =
v(x + h). Note that the function spaces considered are translation invariant in spatial variables.
Denote the identity operator by Id, then applying (4.14) gives us

∥(τh − Id)F(v)∥ 4
3 ,

4
3
= ∥F(τhv) − F(v)∥ 4

3 ,
4
3

≤ 5(β + |ρ|)T 1
2 ∥v∥2

X0
∥(τh − Id)v∥4,4. (4.21)

Now, dividing (4.21) by |h|, and then taking the limit as |h| → 0 gives

∥∇F(v)∥X′ ≤ ∥∇F(v)∥ 4
3 ,

4
3
≤ 5(β + |ρ|)T 1

2 ∥v∥2
X0
∥∇v∥4,4 ≤ C(β + |ρ|)T 1

2 ∥v∥3
Y . (4.22)

Estimate (4.18) follows from Equations (4.20) and (4.22). �

In order to prove Theorem 4.1, for each v0 ∈ H1, we define operator T : Y → Y by

T (v) = G0v0 + iG ◦ F(v).
Since v0 ∈ H1, we have G0v0 ∈ Y due to Lemma A.2. Then, we define

BR(G0v0,Y ) = {v ∈ Y : ∥v − G0v0∥Y ≤ R}. (4.23)

The following result states a contraction mapping property of T .

Lemma 4.4. Let v0 ∈ H1 and R > 0 be fixed. Then there exists T(∥v0∥H1,R) > 0 sufficiently
small so that T : BR(G0v0,Y ) → BR(G0v0,Y ) is a contraction mapping in the metric of the space X.

Proof. Let v ∈ BR(G0v0,Y ), then by Lemma A.1, Proposition 4.3, and Lemma A.2, we deduce

∥T (v) − G0v0∥Y = ∥G ◦ F(v)∥Y ≤ γ∥F(v)∥Y ′ ≤ γC(β + |ρ|)T 3
4 ∥v∥3

Y

≤ C(β + |ρ|)T 3
4 (∥v − G0v0∥Y + ∥G0v0∥Y)3

≤ C(β + |ρ|)T 3
4 (R + ∥G0v0∥Y)3 ≤ C(β + |ρ|)T 3

4 (R + c∥v0∥H1)3 < R,

provided T is sufficiently small, i.e., T < [RC−1(β + |ρ|)−1(R + c∥v0∥H1)−3] 4
3 . This shows that T

maps BR(G0v0,Y ) into BR(G0v0,Y ), if T is sufficiently small.
Next, we show that T : BR(G0v0,Y ) → BR(G0v0,Y ) is a contraction mapping. Let v ∈ BR(G0v0,

Y ), i.e., ∥v − G0v0∥Y ≤ R. It follows that

∥v∥X0 ≤ ∥v − G0v0∥X0 + ∥G0v0∥X0

≤ C(∥v − G0v0∥Y + ∥G0v0∥Y) ≤ C(R + c∥v0∥H1) C R1, (4.24)

which shows that v ∈ BR1(X0) = {v ∈ X0 : ∥v∥X0 ≤ R1}. By Proposition 4.2, G ◦ F is a contraction
mapping on BR1(X0) in the metric of X provided T is sufficiently small. Moreover, it follows that
T : BR(G0v0,Y ) → BR(G0v0,Y ) is a contraction mapping with respect to the metric of X , provided
T is small enough. �

Finally we complete the proof of Theorem 4.1 as follows.
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Proof. We recognize that BR(G0v0,Y ) with respect to the X-metric is a complete metric space,
so by virtue of Lemma 4.4 and the contraction mapping theorem, we obtain that T has a unique
fixed point v ∈ Y . Consequently, v = T (v) is the unique solution of (4.3) in the space Y , provided T
is small enough.

Next, we show that the solution v ∈ C(I,H1). Indeed, if we introduce the spaces

Ȳ = {v ∈ X̄ , ∇v ∈ X̄} ⊂ C(I,H1), where X̄ = C(I,L2
z) ∩ L4

t L
4
z, (4.25)

then by Lemma A.2 and Proposition 4.3, we obtain that G0v0 ∈ Ȳ since v0 ∈ H1, and G ◦ F(v) ∈ Ȳ
since v ∈ Y , and it follows that v = T (v) = G0v0 + iG ◦ F(v) ∈ Ȳ ⊂ C(I,H1). By the Equation (3.1)
we also have vt ∈ C(I,H−1).

Moreover, we claim that ∇ϕ ∈ C(I,W 4,p) for p > 1. Indeed, since ϕx = B(E(B(|v |2))) and
v ∈ C(I,H1), we obtain that ϕx ∈ C(I,W 4,p), for p > 1, by using (2.3), (2.9), and (2.12). A similar
argument works for ϕy.

Finally we prove the conservation of the energy N (v) = ∥v∥2
2. Since v ∈ C(I,H1) ∩ C1(I,H−1)

and ∇ϕ ∈ C(I,W 4,p) for p > 1, we can take the duality pairing of the RDS3 (3.5) with v̄ , and it
follows that

i⟨vt, v̄⟩H−1×H1 = −∥∇v∥2
2 − β


R2

u|v |2dxdy + ρ

R2
ϕx |v |2dxdy . (4.26)

Notice that the right-hand side of (4.26) is a real number, thus we take the imaginary part of both
sides of (4.26). Then

Re ⟨vt, v̄⟩H−1×H1 =
1
2

d
dt

∥v∥2
2 = 0.

This shows that the energy ∥v∥2
2 is invariant in time. �

B. Continuous dependence on initial data in H1

This subsection is devoted to prove that the map v0 → (v,∇ϕ) is continuous from H1 into
C(I,H1) × C(I,W 4,p), for p > 1, for system (3.5). More precisely, we have the following result.

Theorem 4.5. Let v ∈ C(I,H1) and ∇ϕ ∈ C(I,W 4,p), for p > 1, be the solution of the RDS3
system (3.5) with the initial data v(0) = w ∈ H1. Let wn → w in H1 and (vn,∇ϕn) be the solution of
(3.5) with the initial value vn(0) = wn. Then (vn,∇ϕn) is defined on I = [0,T], for sufficiently large
n. Moreover, vn → v in C(I,H1) and ∇ϕn → ∇ϕ in C(I,W 4,p), for p > 1.

Proof. The proof adopts the idea in Ref. 16. Let w ∈ H1. By Theorem 4.1, there exists a unique
solution (v,∇ϕ) of the RDS3 system (3.5), on I = [0,T], with the initial value v(0) = w, such that
v ∈ C(I,H1) ∩ C1(I,H−1) and ∇ϕ ∈ C(I,W 4,p), for p > 1. Let {wn} ⊂ H1 be a sequence of func-
tions such that wn → w in H1. Then there exists a sequence of solutions (vn,∇ϕn) to the system
(3.5) on In = [0,Tn] such that vn(0) = wn. Notice that T and Tn depend on ∥w∥H1 and ∥wn∥H1,
respectively, and since wn → w in H1, we see that, for sufficiently large n, say n ≥ n0, one may take
Tn = T . That is, v and {vn} all define on I = [0,T], for n ≥ n0.

Now, we show that vn → v in Y ⊂ C(I,H1). Indeed, since vn and v satisfy (4.3), one has

vn − v = G0(wn − w) + i[G ◦ F(vn) − G ◦ F(v)]. (4.27)

Take the X-norm on both sides of (4.27) and apply Lemma A.1. We obtain

∥vn − v∥X ≤ ∥G0(wn − w)∥X + ∥G ◦ F(vn) − G ◦ F(v)∥X
≤ γ∥wn − w∥2 + ∥G ◦ F(vn) − G ◦ F(v)∥X . (4.28)

We shall estimate the second term on the right-hand side of (4.28). By the construction of the
solutions vn and v , we know that vn ∈ BR(G0wn,Y ) and v ∈ BR(G0w,Y ). Since wn → w in H1, we
see that vn ∈ B2R(G0w,Y ) for sufficiently large n. As a result, by (4.24), there exists R1 > 0 such that
vn, v ∈ BR1(X0). Therefore, by (4.16), we have

∥G ◦ F(vn) − G ◦ F(v)∥X ≤ 5γ(β + |ρ|)R2
1T

1
2 ∥vn − v∥X,
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and along with (4.28), it follows that

∥vn − v∥X ≤ γ∥wn − w∥2 + 5γ(β + |ρ|)R2
1T

1
2 ∥vn − v∥X . (4.29)

Next we take the gradient on both sides of (4.27) and notice that G0 and G are linear operators.
One has

∇vn − ∇v = G0 (∇wn − ∇w) + i [G (∇F(vn) − ∇F(v))] . (4.30)

By taking the X–norm on both sides of (4.30) and applying Lemma A.1, it follows that

∥∇vn − ∇v∥X ≤ ∥G0 (∇wn − ∇w) ∥X + ∥G (∇F(vn) − ∇F(v)) ∥X
≤ γ∥∇wn − ∇w∥2 + γ∥∇F(vn) − ∇F(v)∥ 4

3 ,
4
3
. (4.31)

We shall estimate the second term on the right-hand side of (4.31). Notice that

∥∇F(vn) − ∇F(v)∥ 4
3 ,

4
3
≤ β(Ĩ1 + Ĩ2) + |ρ|(Ĩ3 + Ĩ4), (4.32)

and we claim

Ĩ1 B ∥∇(B(|vn |2 − |v |2)vn)∥ 4
3 ,

4
3
≤ CT

1
2 R2

2∥vn − v∥Y , (4.33)

Ĩ2 B ∥∇(B(|v |2)(vn − v))∥ 4
3 ,

4
3
≤ CT

1
2 R2

2∥vn − v∥Y , (4.34)

Ĩ3 B ∥∇(B(E(B(|vn |2 − |v |2)))vn)∥ 4
3 ,

4
3
≤ CT

1
2 R2

2∥vn − v∥Y , (4.35)

Ĩ4 B ∥∇(B(E(B(|v |2)))(vn − v))∥ 4
3 ,

4
3
≤ CT

1
2 R2

2∥vn − v∥Y , (4.36)

for some R2 > 0. All of the inequalities (4.33)-(4.36) can be justified similarly, so we solely demon-
strate the proof for (4.35). In fact, by using Hölder’s inequality as well as (2.8) and (2.11), we
deduce

Ĩ3 ≤ ∥B(E(B(∇|vn |2 − ∇|v |2)))vn∥ 4
3 ,

4
3
+ ∥B(E(B(|vn |2 − |v |2)))∇vn∥ 4

3 ,
4
3

≤
( T

0
∥∇|vn|2 − ∇|v |2∥

4
3
2 ∥vn∥

4
3
4 dt

) 3
4

+

( T

0
∥|vn |2 − |v |2∥ 4

3
2 ∥∇vn∥

4
3
4 dt

) 3
4

. (4.37)

Notice that |∇|vn |2 − ∇|v |2| = |∇(vnv̄n) − ∇(v v̄)| ≤ 2|∇vn − ∇v ||vn | + 2|vn − v ||∇v |. It follows that

∥∇|vn |2 − ∇|v |2|∥2 ≤ 2∥|∇vn − ∇v∥vn |∥2 + 2∥|vn − v ||∇v |∥2

≤ 2∥∇vn − ∇v∥4∥vn∥4 + 2∥vn − v∥4∥∇v∥4, (4.38)

for all t ∈ [0,T]. By (4.37) and (4.38), we deduce

Ĩ3 ≤ CT
1
2
�∥∇vn − ∇v∥4,4∥vn∥2

4,∞ + ∥vn − v∥4,∞∥∇v∥4,4∥vn∥4,∞

+ (∥vn∥4,∞ + ∥v∥4,∞) ∥vn − v∥4,∞∥∇vn∥4,4
�

≤ CT
1
2
(∥vn∥2

4,∞ + ∥v∥2
4,∞ + ∥∇vn∥2

4,4 + ∥∇v∥2
4,4

) (∥∇vn − ∇v∥4,4 + ∥vn − v∥4,∞) .
Since vn, v ∈ B2R(G0w,Y ) for sufficiently large n, there exists R2 > 0 such that ∥vn∥4,∞, ∥v∥4,∞,
∥∇vn∥4,4, ∥∇v∥4,4 ≤ R2 for all n. Consequently,

Ĩ3 ≤ CT
1
2 R2

2∥vn − v∥Y .
By virtue of (4.31)-(4.36), we obtain

∥∇vn − ∇v∥X ≤ γ∥∇wn − ∇w∥2 + Cγ(β + |ρ|)T 1
2 R2

2∥vn − v∥Y . (4.39)

Combining (4.29) and (4.39) yields

∥vn − v∥Y ≤ γ∥wn − w∥H1 + Cγ(β + |ρ|)T 1
2 (R2

1 + R2
2)∥vn − v∥Y . (4.40)
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If T ≤ T∗, where T∗ satisfies Cγ(β + |ρ|)(T∗) 1
2 (R2

1 + R2
2) = 1

2 , then

∥vn − v∥Y ≤ 2γ∥wn − w∥H1.

Since wn → w in H1, we obtain vn → v in Y ⊂ C(I,H1). If T∗ is shorter than the life span
of the solution v , the above argument can be iterated. Finally, it is straightforward to deduce
that (ϕn)x = B(E(B(|vn |2))) → ϕx = B(E(B(|v |2))) in C(I,W 4,p) for p > 1 by using vn → v in
C(I,H1). �

C. Short-time existence and uniqueness of solutions in H2

Let z = (x, y) and t ∈ I = [0,T], we introduce the function spaces

Z = {v ∈ X : vt ∈ X, ∆v ∈ L∞t L2
z}, where X = L∞t L2

z ∩ L4
t L

4
z, (4.41)

Z̄ = {v ∈ X̄ : vt ∈ X̄ , ∆v ∈ C(I,L2)}, where X̄ = C(I,L2) ∩ L4
t L

4
z, (4.42)

Z ′ = { f ∈ L∞t L2
z : f t ∈ X ′}, where X ′ = L1

t L
2
z + L

4
3
t L

4
3
z , (4.43)

with the norm

∥v∥Z = max{∥v∥X, ∥vt∥X, ∥∆v∥2,∞}, ∥ f ∥Z′ = max{∥ f ∥2,∞, ∥ f t∥X′}.
Recall that ∥v∥ = max{∥v∥2,∞, ∥v∥4,4} and ∥ f ∥X′ = inf{∥g∥2,1 + ∥h∥ 4

3 ,
4
3

: f = g + h}. Also, note

that v ∈ Z may also be characterized by v ∈ L∞(I,H2) and vt ∈ X .16

Theorem 4.6. Let v0 ∈ H2. Then there exists a unique solution (v,∇ϕ) of the RDS3 system
(3.5), with the initial value v(0) = v0, on the time interval I = [0,T], for some T(∥v0∥H2) > 0, such
that v ∈ C(I,H2), vt ∈ C(I,L2), and ∇ϕ ∈ C(I,H6).

Proof. We follow the approach in Ref. 16. Define the closed ball BR(Z) = {v ∈ Z : ∥v∥Z ≤
R}. Let v0 ∈ H2 and define the set A as

A = {v ∈ BR(Z) : v(0) = v0}.
Also, we define the operator T : Z → Z by T (v) = G0v0 + iG ◦ F(v), where the linear operators G0

and G are defined in (4.4).
We shall show that T (A) ⊂ A provided R is large enough and T is sufficiently small. Let v ∈ A.

Applying Lemma A.3, we estimate

∥T (v)∥Z ≤ ∥G0v0∥Z + ∥G ◦ F(v)∥Z
≤ ∥G0v0∥Z + ∥G(F(v) − F(v0))∥Z + ∥G(F(v0))∥Z
≤ γ∥v0∥H2 + (2γ + 1)∥F(v) − F(v0)∥Z′ + (2γ + 1)∥F(v0)∥Z′. (4.44)

We shall evaluate the last two terms on the right-hand side of (4.44). Note that F(v0) is independent
of time, so by using (2.4), (2.8), and (2.11), we obtain

∥F(v0)∥Z′ = ∥F(v0)∥2 ≤ β∥B(|v0|2)∥2∥v0∥∞ + |ρ|∥B(E(B(|v2
0 |)))∥2∥v0∥∞

≤ C(β + |ρ|)∥|v0|2∥2∥v0∥H2 = C(β + |ρ|)∥v0∥2
4∥v0∥H2 ≤ C(β + |ρ|)∥v0∥3

H2. (4.45)

Next, we estimate ∥F(v) − F(v0)∥Z′. Indeed, by Lemma 3.3 in Ref. 16, we have

∥v(t) − v(s)∥2p ≤ C |t − s|θ∥v∥Z, for k =
p − 1

p
, θ = 1 − k

2
. (4.46)

By using Hölder inequality, along with (2.9), (2.12), and (4.46), we evaluate
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∥F(v) − F(v0)∥2

≤ β
�∥B(|v |2 − |v0|2)∥3∥v∥6 + ∥B(|v0|2)∥3∥v − v0∥6

�

+ |ρ| �∥B(E(B(|v |2 − |v0|2)))∥3∥v∥6 + ∥B(E(B(|v0|2)))∥3∥v − v0∥6
�

≤ C β
�∥|v |2 − |v0|2∥3∥v∥6 + ∥|v0|2∥3∥v − v0∥6

�

+C |ρ| �∥|v |2 − |v0|2∥3∥v∥6 + ∥|v0|2∥3∥v − v0∥6
�

≤ C β
�∥|v | + |v0|∥6∥v − v0∥6∥v∥6 + ∥v0∥2

6∥v − v0∥6
�

+C |ρ| �∥|v | + |v0|∥6∥v − v0∥6∥v∥6 + ∥v0∥2
6∥v − v0∥6

�

≤ C(β + |ρ|) �∥v∥2
6 + ∥v0∥2

6

� ∥v − v0∥6

≤ C(β + |ρ|) �∥v∥2
6 + ∥v0∥2

6

�
t

2
3 ∥v∥Z, for all t ∈ [0,T].

It follows that

∥F(v) − F(v0)∥2,∞ ≤ C(β + |ρ|) (∥v∥2
Z + ∥v0∥2

H2

)
T

2
3 ∥v∥Z

≤ C(β + |ρ|) (R2 + ∥v0∥2
H2

)
T

2
3 R. (4.47)

Recall X ′ = L1
t L

2
z + L

4
3
t L

4
3
z , with the norm ∥ f ∥X′ = inf{∥g∥2,1 + ∥h∥ 4

3 ,
4
3

: f = g + h}. Thus
∥∂t(F(v) − F(v0))∥X′ ≤ ∥∂t(F(v) − F(v0))∥ 4

3 ,
4
3
= ∥∂tF(v)∥ 4

3 ,
4
3
. We denote by τs the shift of time by

s ∈ R, i.e., τsv(t) = v(t + s). Also, we denote the identity operator by Id, then by applying (4.14), we
deduce

∥(τs − Id)F(v)∥ 4
3 ,

4
3
= ∥F(τsv) − F(v)∥ 4

3 ,
4
3
≤ 5(β + |ρ|)∥v∥2

X0
T

1
2 ∥(τs − Id)v∥4,4.

Dividing by |s| and letting s → 0, one has

∥∂tF(v)∥ 4
3 ,

4
3
≤ 5(β + |ρ|)∥v∥2

X0
T

1
2 ∥vt∥4,4.

This shows that

∥∂t(F(v) − F(v0))∥X′ ≤ 5(β + |ρ|)∥v∥2
X0

T
1
2 ∥vt∥X ≤ C(β + |ρ|)T 1

2 R3. (4.48)

Combining (4.47) and (4.48) yields

∥F(v) − F(v0)∥Z′ ≤ C(β + |ρ|)[(R2 + ∥v0∥2
H2

)
T

2
3 R + T

1
2 R3]. (4.49)

By (4.44), (4.45), and (4.49), we obtain

∥T (v)∥Z ≤ γ∥v0∥H2 + (2γ + 1)C(β + |ρ|)[(R2 + ∥v0∥2
H2

)
T

2
3 R + T

1
2 R3 + ∥v0∥3

H2].
If we let R > γ∥v0∥H2 + (2γ + 1)C(β + |ρ|)∥v0∥3

H2, and choose T sufficiently small, then the above
estimate implies ∥T (v)∥Z < R. Also, notice that T (v)(0) = v0. So T (A) ⊂ A.

Next, we let v , w ∈ A, and using Lemma A.1 and (4.14), we deduce

∥T (v) − T (w)∥X = ∥G(F(v) − F(w))∥X ≤ γ∥F(v) − F(w)∥ 4
3 ,

4
3

≤ 5γ(β + |ρ|)max{∥v∥2
X0
, ∥w∥2

X0
}T

1
2 ∥v − w∥4,4 ≤ Cγ(β + |ρ|)R2T

1
2 ∥v − w∥X .

Consequently, T : A → A is a contraction mapping in the norm of X , provided T is sufficiently
small. It follows that T has a unique fixed point in the set A with respect to the metric of X by
virtue of the contraction mapping theorem, i.e., there exists v ∈ A such that v = T (v) = G0v0 +

iG ◦ F(v) ∈ Z̄ , due to Lemma A.3. Therefore, v ∈ C(I,H2) and vt ∈ C(I,L2). Finally, v ∈ C(I,H2)
implies |v |2 ∈ C(I,H2) since the spatial dimension is two, and thus by (2.9) and (2.11), one has
φx = B(E(B(|v2|))) ∈ C(I,H6). �
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D. Conservation of the hamiltonian

Theorem 4.7. Assume the initial datum v0 ∈ H1. Let v ∈ C(I,H1) ∩ C1(I,H−1) with ∇φ ∈
C(I,W 4,p), p > 1, be the solution of RDS3 system (3.5). Then the Hamiltonian

H3(v) =

R2


|∇v |2 − β

2
u|v |2 + ρ

2

(
ψ2
x + νψ

2
y

)
dxdy

is conserved in time.

Proof. First, we assume v0 ∈ H2, then by Theorem 4.6, the RDS3 system (3.5) has a unique
solution v ∈ C(I,H2) with vt ∈ C(I,L2) and ∇φ ∈ C(I,H6). Therefore it is legitimate to take the
inner product of Equation (3.5) with v̄t to obtain

i

R2
|vt |2dxdy −


R2
∇v · ∇v̄tdxdy + β


R2

uv v̄tdxdy − ρ

R2
ϕxv v̄tdxdy = 0. (4.50)

Now we take the real part of each term in the above equality. Clearly,

Re

R2
∇v · ∇v̄tdxdy =

1
2

d
dt


R2
|∇v |2dxdy. (4.51)

Moreover, since u − α2∆u = |v |2, we see that u is real-valued, and thus

Re

R2

uv v̄tdxdy =
1
2


R2

u∂t(|v |2)dxdy =
1
2


R2

u(ut − α2
∆ut)dxdy

=
1
4

d
dt


R2

�
u2 + α2|∇u|2� dxdy =

1
4

d
dt


R2

�
u2 − α2u∆u

�
dxdy =

1
4

d
dt


R2

u|v |2dxdy. (4.52)

Recall from system (3.5) that ϕ − α2∆ϕ = ψ and ∆νψ = ux. Also, since ϕ is real-valued, we
deduce that

Re

R2
ϕxv v̄tdxdy =

1
2


R2
ϕx∂t(|v |2)dxdy =

1
2


R2
ϕx∂t(u − α2

∆u)dxdy

= −1
2


R2
(ϕ − α2

∆ϕ)uxtdxdy = −1
2


R2
ψ∆νψtdxdy =

1
4

d
dt


R2

(
ψ2
x + νψ

2
y

)
dxdy. (4.53)

By (4.50)-(4.53), we conclude that

d
dt

(
R2
|∇v |2dxdy − β

2


R2

u|v |2dxdy +
ρ

2


R2

(
ψ2
x + νψ

2
y

)
dxdy

)
= 0 ,

i.e., d
dt
H3(v) = 0. This shows that H3(v) is invariant in time provided v ∈ C(I,H2) with vt ∈

C(I,L2).
Next, we consider the general initial data: v0 ∈ H1. Take a sequence of functions {wn} ⊂ H2

such that wn → v0 in H1. Then by Theorem 4.6, there exists a sequence of solutions {vn} of (3.5)
on In = [0,Tn], with the initial value vn(0) = wn, such that vn ∈ C(In,H2), ∂tvn ∈ C(In,L2) and
∇ϕn ∈ C(In,H6). By the above result, we know that H3(vn) is conserved in time. Moreover, by
Theorem 4.5, we see that, for sufficiently large n, vn is defined on I = [0,T], such that vn → v in
C(I,H1), ∇ϕn → ∇ϕ in C(I,W 4,p). If follows that un → u in C(I,H3) and ∇ψn → ∇ψ in C(I,W 2,p),
for p > 1. As a result, we conclude that H3(vn) → H3(v) on [0,T], and thus H3(v) is conserved in
time.

E. The extension to global solutions in H1

In the proof of the short-time existence and uniqueness theorem for the RDS3 system (3.5) in
Section IV A, we have produced the estimates that are necessary for implementing the contraction
mapping argument, on the time interval [0,T], where T is taken to be small enough depending on the
initial data. The solution of the RDS3 (3.5) established in Theorem 4.1 can be extended to a maximal
interval of existence [0,Tmax), where Tmax might be finite or infinite. In this section, we establish the
global existence of solutions to the Cauchy problem (3.5), by using the conservation of the energy
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and the Hamiltonian. To do this, we focus attention on the maximal interval of existence [0,Tmax). If
Tmax = ∞, then the solutions exist globally in time. On the other hand, if Tmax < ∞, then one has

lim sup
t→T−max

∥v(t)∥H1 = ∞ (4.54)

otherwise, one can extend the solution, beyond Tmax, which contradicts the fact that Tmax is the
maximal time of the existence. This argument is used to prove the global existence theorem in this
section, hence we assume by contradiction that Tmax < ∞ and then show that (4.54) does not hold,
which implies that Tmax = ∞.

Now we present the proof for the extension to global solutions for the system RDS3 (3.5),
which completes the proof of the global well-posedness of (3.5) stated in Theorem 3.3.

Proof. Let [0,Tmax) be the maximal interval of existence of the solution established in Theorem
4.1. We assume Tmax < ∞. It has been shown that the energyN (v) = ∥v∥2

2 and the Hamiltonian

H3(v) =

R2


|∇v |2 − β

2
u|v |2 + ρ

2

(
ψ2
x + νψ

2
y

)
dxdy , (4.55)

remains constant for all t ∈ [0,Tmax). We aim to derive a uniform bound of ∥v∥H1 by using the
conservation of the energy and the Hamiltonian. Indeed, it can be readily seen from (4.55) that

∥∇v∥2
2 = H3(v) + β

2


R2

u|v |2 dxdy − ρ

2
�∥ψx∥2

2 + ν∥ψy∥2
2

�
. (4.56)

Recall that u − α∆u = |v |2, i.e., u = B(|v |2). By using (2.1), (2.4) and (2.9), we estimate
R2

u|v |2 dxdy ≤ ∥u∥L∞∥v∥2
2 ≤ C∥u∥H2∥v∥2

2 = C∥B(|v |2)∥H2∥v∥2
2

≤ Cα∥|v |2∥2∥v∥2
2 = Cα∥v∥2

4∥v∥2
2 ≤ Cα∥v∥H1∥v∥3

2 , (4.57)

where Cα ∼ 1/α2, as α → 0+.
By system (3.5) one has ∆νψ = ux, it follows that ψx = E(u) where the operator E is defined in

(2.10). Since u = B(|v |2), we obtain ψx = E(B(|v |2)). We estimate ∥ψx∥2 in the frequency space

∥ψx∥2
2 = ∥E(B(|v |2))∥2

2 =


R2

ξ4
1

(ξ2
1 + νξ

2
2)2

1
(1 + α2|ξ |2)2 |

|v |2(ξ)|2 dξ1dξ2

≤

R2

1
(1 + α2|ξ |2)2 |

|v |2(ξ)|2 dξ1dξ2 ≤ ∥v∥4
2


R2

1
(1 + α2|ξ |2)2 dξ1dξ2 =

C
α2 ∥v∥4

2 , (4.58)

where we have used the above convolution theorem and Young’s inequality for convolution to
obtain ||v |2(ξ)| = |(v · v̄)(ξ)| = |(v̂ ∗ ˆ̄v)(ξ)| ≤ ∥v∥2

2, for every ξ ∈ R2. Similarly,

∥ψy∥2
2 ≤

C(ν)
α2 ∥v∥4

2. (4.59)

By (4.56)–(4.59), one has

∥∇v(t)∥2
2 ≤ H3(v(t)) + β

2
Cα∥v(t)∥H1∥v(t)∥3

2 +
|ρ|
α2 Cν∥v(t)∥4

2

≤ H3(v0) + 1
2
∥v(t)∥2

H1 +
β2

8
C2
α∥v0∥6

2 +
|ρ|
α2 Cν∥v0∥4

2 ,

due to Young’s inequality as well as the conservation of the energy ∥v∥2 and the HamiltonianH3(v).
Since ∥v∥2

H1 = ∥v∥2
2 + ∥∇v∥2

2, it follows that

∥∇v(t)∥2
2 ≤ 2H3(v0) + ∥v0∥2

2 +
β2

4
C2
α∥v0∥6

2 +
2|ρ|
α2 Cν∥v0∥4

2,

for all t ∈ [0,Tmax). Consequently,

lim sup
t→T−max

∥v(t)∥H1 < ∞ ,

which contradicts (4.54), and hence the solution exists globally in time. �
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V. MODULATION THEORY

Modulation theory is introduced in order to explain the role of the regularization, through
perturbation of a system that develops a singularity, in preventing singularity formation of the
original system. The intention of this theory is that the profiles of the perturbed system’s solutions
are asymptotic to some rescaled profiles of the original system’s solutions near the singularity. By
this approach, a perturbed system can be reduced into a simpler system of ordinary differential
equations that do not depend on the spatial variables and are easier to analyze both analytically
and numerically. Hence, in this section, we will apply modulation theory to the RDS3 system (3.5)
by following the ideas in Refs. 12, 19, and 22 (see also Ref. 4) for the purpose of observing the
prevention mechanism of the singularities.

First, we review some main results on an asymptotic construction of blow-up solutions for the
DSE presented in Refs. 19 and 22. It is convenient to rewrite the DSE (1.1) in the terms of the
amplitude v and the longitudinal velocity u1 = φx in the form




ivt + ∆v + β |v |2v − ρu1v = 0,
∆νu1 = (|v |2)xx. (5.1)

It is shown in Refs. 19 and 22 that blow-up solutions of system (5.1) have the following asymptotic
form near the singularity:




v(x, y, t) ≈ 1
L(t) ei(τ(t)−a(t)

|η |2
4 )P (|η |,b(t)) ,

u1(x, y, t) ≈ − 1
L2(t) (−∆ν)

−1(|P|2)η1η1,
(5.2)

where η = (η1, η2) = ( x
L
, y
L
), τt = L−2, a = −LtL and b = a2 + aτ ≈ a2, which satisfies bτ ∼ −e

− π√
b ,

and to leading order at the limit as τ → ∞, one has b ∼ 1
(lnτ)2 . In addition, the function P in (5.2)

satisfies




∆P − P +
b
4
|η |2P + i

√
b
(

1
p
− 1

)
P + β |P|2pP − ρPQ = 0

∆νQ = (|P|2p)η1η1

(5.3)

which is the steady system of (5.1) (see Refs. 19 and 22), where p > 1. It is also obtained in Refs. 19
and 22 that, as b tends to 0, 1 − 1

p
∼ 1√

b
e
− π√

b and the scaling factor L(t) approaches zero, in the case

of self-focusing of the original system, like L(t) ∼ (t∗ − t) 1
2
�
ln ln 1

t∗−t
�− 1

2 .
Observe that the singularity in the original system (5.1) is manifested by the fact that L(t) tends

to 0, as t → t∗. Thus, our goal is now to show how the regularization mechanism prevents L(t) from
collapsing to zero.

We adopt a similar strategy as in Refs. 19 and 22. The following arguments are formal and have
not been placed on the level of mathematical rigor. For small values of the parameter α, the RDS3
system (3.5) can be regarded as a perturbation of the DSE (1.1). To see this, we define

Φ = ϕx,Ψ = ψx,

for the sake of convenience. Then Equation (3.5) becomes




ivt + ∆v + βuv − ρΦv = 0, ∆νΨ = uxx,

u − α2
∆u = |v |2, Φ − α2

∆Φ = Ψ,
(5.4)

and u and Φ can be formally expanded in leading order α2 as

u = |v |2 + α2
∆u = |v |2 + α2

∆(|v |2 + α2
∆u) = |v |2 + α2

∆|v |2 + O(α4),
Φ = Ψ + α2

∆Φ = Ψ + α2
∆(Ψ + α2

∆Φ) = Ψ + α2
∆Ψ + O(α4).
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Thus we can rewrite Equation (5.4) to the leading order of α2 as




ivt + ∆v + β |v |2v − ρΨv + α2 �βv∆|v |2 − ρv∆Ψ� = 0,
∆νΨ = (|v |2)xx + α2

∆(|v |2)xx. (5.5)

The numerical simulations, Ref. 19, suggest that the blow-up of the DSE (1.1) is very similar
to that of the critical NLS (1.4) and the typical scales remain comparable in the x and y directions.
Therefore we choose to use the same scaling factor L(t) in both directions. As in Refs. 19 and 22,
we define

ξ1 =
x

L(t) , ξ2 =
y

L(t) , τ =

 t

0

1
L2(s)ds,

U(ξ1, ξ2, τ) = L(t)v(x, y, t), W (ξ1, ξ2, τ) = L2(t)Ψ(x, y, t).
Since U and W depend on the new variables ξ1, ξ2, and τ, in what follows we denote

∇ = (∂ξ1, ∂ξ2), ∆ = ∂ξ1ξ1 + ∂ξ2ξ2, ∆ν = ∂ξ1ξ1 + ν∂ξ2ξ2.

Notice that vt = ∂t

U (ξ1,ξ2,τ)

L(t)

= 1

L3 [Uτ + a(U + ξ · ∇U)] , where a = −LtL and ξ = (ξ1, ξ2).
Then Equation (5.5) can be written as




iUτ + ia(U + ξ · ∇U) + ∆U + β |U |2U − ρWU + ϵ
�
βU∆|U |2 − ρU∆W

�
= 0,

∆νW = (|U |2)ξ1ξ1 + ϵ∆(|U |2)ξ1ξ1,

where ϵ = α2

L2 . Inspired by (5.2) we set

U(ξ, τ) = ei(τ−a
|ξ |2

4 )V (ξ, τ),
and let b = aτ + a2. Therefore




iVτ + ∆V − V +
b
4
|ξ |2V + β |V |2V − ρWV + ϵ(βV∆|V |2 − ρV∆W ) = 0

∆νW = (|V |2)ξ1ξ1 + ϵ∆(|V |2)ξ1ξ1.
(5.6)

We observe that, on one hand, Equation (5.6) becomes the rescaled form of the RDS1 system
(3.1) if the terms −ϵ ρV∆W and ϵ∆(|V |2)ξ1ξ1 are neglected. On the other hand, if the term ϵ βV∆|V |2
is omitted from (5.6), the equation becomes the rescaled form of the RDS2 system (3.3). Therefore,
the argument in this section can also be applied to the RDS1 and RDS2 systems in a straightforward
manner.

Analogously to Refs. 19 and 22, we formally modulate the degree of the nonlinearity, and
introduce the steady state system (similar to (5.3))




∆V 0 − V 0 +
b
4
|ξ |2V 0 + β |V 0|2pV 0 − ρW 0V 0 + i

√
b
(

1
p
− 1

)
V 0

+ϵ(βV 0
∆|V 0|2p − ρV 0

∆W 0) = 0,
∆νW 0 = (|V 0|2p)ξ1ξ1 + ϵ∆(|V 0|2p)ξ1ξ1,

(5.7)

with p > 1 and b > 0, where V 0(|ξ |,b(τ), ϵ(τ)) and W 0(|ξ |,b(τ), ϵ(τ)) are quasi-steady in τ.
At this stage, we expand V 0 and W 0 with respect to small values of b and ϵ ,




V 0 = S(|ξ |) + b(τ)G(|ξ |) + ϵ(τ)H(|ξ |) + O(b2, ϵ2),
W 0 = X(|ξ |) + b(τ)Y (|ξ |) + ϵ(τ)Z(|ξ |) + O(b2, ϵ2). (5.8)

Notice that, if ignoring the terms involving ϵ in (5.7), it reduces to (5.3), which is a nonlinear
eigenvalue problem expected to have no nontrivial solutions with monotonic decreasing profiles
except when a specific relation p = p(b) holds. Since we are interested in situations where b varies
in time, as in Refs. 19 and 22, we consider the conditions b(τ) → 0+ and p(b(τ)) → 1+ as τ → ∞,
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then the equations for (S,X) are given by




∆S − S + βS3 − ρSX = 0,
∆νX − (S2)ξ1ξ1 = 0,

(5.9)

and the equations for (G,Y ) are




∆G − G + 3βGS2 − ρ(SY + GX) = −1
4
|ξ |2S,

∆νY − 2(GS)ξ1ξ1 = 0,
(5.10)

and also the equations for (H, Z) are




∆H − H + 3βHS2 − ρ(SZ + H X) = −βS∆(S2) + ρS∆X,
∆νZ − 2(SH)ξ1ξ1 = ∆(S2)ξ1ξ1,

(5.11)

with zero boundary conditions at infinity.
Notice that (5.9) is a system of nonlinear PDEs, which is essentially identical to the system

(1.3), whose solutions are ground states (standing waves) of DSE, and the existence, regularity, and
asymptotics of the ground states have been studied in Ref. 8. On the other hand, (5.10) is a system
of linear equations, and due to the Fredholm alternative, (5.10) is solvable provided the vector
determined by the right-hand side of the system is orthogonal to the kernel of the adjoint of the
operator arising in the left-hand side. In particular, the vector (− 1

4 |ξ |2S, 0) needs to be orthogonal to
the solution set of the equation




∆G̃ − G̃ + 3βG̃S2 − ρG̃X − 2SỸξ1ξ1 = 0,
∆νỸ − ρSG̃ = 0.

(5.12)

By virtue of (5.9), the solution set of (5.12) is spanned by




*.
,

Sξ1
ρ

2
X1

+/
-
,
*.
,

Sξ2
ρ

2
X2,

+/
-




(5.13)

where (X1)ξ1 = X and (X2)ξ1ξ1 = Xξ2. As a result, the solvability condition of system (5.10) is
R2 |ξ |2SSξ j

dξ1dξ2 = 0, j = 1,2, that is,
R2
ξ jS2 dξ1dξ2 = 0, j = 1,2.

This condition is satisfied since S is symmetric with respect to the variables ξ1 and ξ2, which is
confirmed by numerical simulations.19,22 Analogously, the existence of solutions for (5.11) requires
that the right-hand side of (5.11) be orthogonal to the kernel of the adjoint of the operator arising in
the left-hand side, which is also spanned by the vectors given in (5.13). The solvability condition of
system (5.11) thus reads

R2


−β∆(S2)∂ξ j

(S2) + ρ∂ξ j
(S2)∆X + ρ∆(S2)Xξ j


dξ1dξ2 = 0,

for j = 1,2, which can be reduced to
R2
∆(S2)∂ξ j

(S2) dξ1dξ2 = 0,

which is valid since S is symmetric with respect to ξ1 and ξ2.
Next, we consider the unsteady problem (5.6). Let V = V 0 + V 1 and W = W 0 +W 1. Using (5.6)

and (5.7), we obtain a system for the remainder V 1 and W 1,
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


∆V 1 − V 1 +
b
4
|ξ |2V 1 + β

�|V 0 + V 1|2(V 0 + V 1) − |V 0|2pV 0�

− ρ(W 1V 0 +W 0V 1 +W 1V 1) + ϵ β[(V 0 + V 1)∆|V 0 + V 1|2 − V 0
∆|V 0|2p]

− ϵ ρ(V 0
∆W 1 + V 1

∆W 0 + V 1
∆W 1) = i

√
b
(

1
p
− 1

)
V 0 − i(V 0 + V 1)τ,

∆νW 1 = (|V 0 + V 1|2 − |V 0|2p)ξ1ξ1 + ϵ∆(|V 0 + V 1|2 − |V 0|2p)ξ1ξ1.

By the mean value theorem, |V 0|2 − |V 0|2p ≈ (1 − p)|V 0|2 ln |V 0|2 due to the condition that p → 1+

as τ → ∞. Also we assume that, as τ → ∞, |V 1| ≪ |V 0| and |W 1| ≪ |W 0|. Then using (5.8), to the
lowest order, as τ → ∞, the above system reduces to




∆V 1 − V 1 + βS2(2V 1 + V̄ 1) + β(1 − p)(S3 ln S2) − ρ(W 1S + XV 1)
= i
√

b
(

1
p
− 1

)
S − i(bτG + ϵτH),

∆νW 1 = [S(V 1 + V̄ 1) + (1 − p)(S2 ln S2)]ξ1ξ1.

Substituting V 1 = V1 + iV2 yields




∆V1 − V1 + 3βS2V1 − ρ(W 1S + XV1) = β(p − 1)(S3 ln S2),
∆V2 − V2 + βS2V2 − ρXV2 =

√
b
(

1
p
− 1

)
S − (bτG + ϵτH),

∆νW 1 − 2(SV1)ξ1ξ2 = (1 − p)(S2 ln S2)ξ1ξ1.

(5.14)

Note that (5.14)2 (the 2nd equation in (5.14)) is decoupled from (5.14)1 and (5.14)3. Concerning
the system comprised of Equations (5.14)1 and (5.14)3, the existence of solutions again requires the
right-hand side of the system be orthogonal to the kernel of the adjoint of the operator arising in the
left-hand side, which is spanned by the vectors given in (5.13). Therefore, the solvability condition
of the system comprised of Equations (5.14)1 and (5.14)3 reads

1
4
β(p − 1)


R2
(S4)ξ j

ln S2 dξ1dξ2 +
ρ

2
(p − 1)


R2

X(S2 ln S2)ξ j
dξ1dξ2 = 0,

for j = 1, 2, which is satisfied provided S is symmetric and X is even in ξ1 and ξ2. Also notice that,
due to (5.9), S satisfies the left-hand side of Equation (5.14)2, and it follows that the solvability
condition for (5.14)2 reads

R2

√
b
(

1
p
− 1

)
S2 − bτSG − ϵτSH


dξ1dξ2 = 0. (5.15)

From Appendix B, we know that

C1 =


R2

SG dξ1dξ2 =
1
16


R2
|ξ |2S2 dξ1dξ2 > 0,

C2 =


R2

SH dξ1dξ2 =
1
4

(
β − 2ρ

1 + ν

) 
R2
|∇S2|2 dξ1dξ2 > 0, (5.16)

since ρ < 0 and β > 0. Thus (5.15) can be written as

C1bτ + C2ϵτ +
√

b
(
1 − 1

p

)
∥S∥2

2 = 0.

Since p > 1 and b > 0, we obtain that

C1bτ + C2ϵτ < 0.

Integrating from 0 to τ gives

C1b + C2ϵ < C3,
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for some constant C3 = (C1b + C2ϵ)|τ=0. Recall that b = a2 + aτ, with a = −LtL and τ =
 t

0
1

L2(s) ds,

thus b = −L3Lt t. Also recall that ϵ = α2

L2 . It follows that

−C1L3Lt t + C2
α2

L2 < C3,

which can be written as

Lt t >
C2α

2

C1
L−5 − C3

C1
L−3. (5.17)

Our purpose is to show that the α-regularization prevents the scaling factor L from collapsing
to zero. To this end, we assume that Lt < 0 and look for a positive lower bound for L. Indeed,
multiplying both sides of (5.17) by 2Lt < 0 yields

(L2
t )t < −C2α

2

2C1
(L−4)t + C3

C1
(L−2)t .

Integrating from 0 to t gives

L2L2
t < −

C2α
2

2C1

1
L2 +

C3

C1
+ C4L2, (5.18)

where C4 = L2
t (0) + C2α

2

2C1
L−4(0) − C3

C1
L−2(0).

Since C1, C2, α > 0, we conclude from (5.18) that the scaling factor L cannot approach zero,
thus the wave amplitude 1

L
does not approach infinity. Indeed, if L → 0, then the right-hand side

of (5.18) tends to −∞, which is absurd since the left-hand side of (5.18) is non-negative. More-
over, it is straightforward to derive from (5.18) that the scaling factor L has a positive lower bound:

L2 ≥
(
−C3/C1 +


C2

3/C
2
1 + 2|C4|C2α2/C1

)
/(2|C4|) > 0. By referring to (5.2) for the asymptotic pro-

file near the singularity, we see that the blow-up will not occur due to our discovery that L has a positive
lower bound. On the other hand, recall that if setting α = 0 in RDS3 system (3.5), i.e., removing the
regularization, it becomes the original DSE (1.1), which blows up in finite time under the situation
ρ < 0 and β > 0.13,19 This explains the prevention of the singularity formation, at the leading order
in the expansion, by employing the non-viscous α-regularization presented in RDS3 (3.5).

Remark. A similar procedure for handling singularities can also be applied to the RDS1 sys-
tem (3.1). When ϵ ρV∆W and ϵ∆(|V |2)ξ1ξ1 are neglected in (5.6), then C2 defined in (5.16) be-
comes C2 =

β
4


R2 |∇S2|2 dξ1dξ2 > 0, since β > 0. Furthermore, for the RDS2 system (3.3), when

ϵ βV∆|V |2 is neglected in (5.6), we have C2 = − ρ
2(ν+1)


R2 |∇S2|2 dξ1dξ2 > 0, since ρ < 0. Therefore,

these regularizations also prevent the singularity formation of the DSE (1.1).
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APPENDIX A: PROPERTIES OF THE LINEAR SCHRÖDINGER EQUATION

The aim of this appendix is to state some well-known results in the theory of the Schrödinger
equation concerning the operators G0ψ(t) = eit∆ψ and G f (t) =  t

0 ei(t−s)∆ f (s) ds in the 2-
dimensional space (see, e.g., Refs. 13, 16, and 22).

Lemma A.1. Let r ∈ [2,∞), q ∈ (2,∞), such that 1
q
+ 1

r
= 1

2 . Then the following estimates hold:

∥G0ψ∥Lq(R;Lr ) ≤ γ∥ψ∥2, ∥G0ψ∥L∞(R;L2) ≤ γ∥ψ∥2,

∥G f ∥Lq(R;Lr ) ≤ γ∥ f ∥L1(R;L2), ∥G f ∥Lq(R;Lr ) ≤ γ∥ f ∥Lq′(R;Lr′),

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  165.91.119.224

On: Sun, 07 Aug 2016 22:17:31



081502-20 Guo, Hacinliyan, and Titi J. Math. Phys. 57, 081502 (2016)

∥G f ∥L∞(R;L2) ≤ γ∥ f ∥Lq′(R;Lr′).

Here q′ and r ′ are the dual pair of q and r, respectively.

Recall the spaces X ′ and Y ′ are defined in (4.17), and the spaces X̄ and Ȳ are defined in (4.25).

Lemma A.2. G0 is bounded from L2 into X̄ and bounded from H1 into Ȳ . G is bounded from X ′

into X̄ and bounded from Y ′ into Ȳ . The associated norms are independent of T.

Recall the spaces Z , Z̄ , and Z ′ are defined in (4.41)–(4.43), respectively.

Lemma A.3. G0 is bounded from H2 into Z̄ and G is bounded from Z ′ into Z̄ such that

∥G0ψ∥Z ≤ γ∥ψ∥H2

∥G f ∥Z ≤ (2γ + 1)∥ f ∥Z′, if T ≤ 1.

APPENDIX B: PROOF OF IDENTITIES (B1) AND (B2)

This appendix is aimed to prove
R2

SG dξ1dξ2 =
1
16


R2
|ξ |2S2 dξ1dξ2, (B1)

R2
SH dξ1dξ2 =

1
4

(
β − 2ρ

1 + ν

) 
R2
|∇S2|2 dξ1dξ2, (B2)

which were introduced in Section V.
The proofs for these two formulas are similar. So we only justify (B2) in detail. Our argument

follows the approach in Ref. 19.
Recall that (S,X) satisfies




∆S − S + βS3 − ρSX = 0,
∆νX − (S2)ξ1ξ1 = 0 ,

(B3)

and (H, Z) satisfies




∆H − H + 3βHS2 − ρ(SZ + H X) = −βS∆(S2) + ρS∆X,
∆νZ − 2(SH)ξ1ξ1 = ∆(S2)ξ1ξ1.

(B4)

Multiplying (B3)1 by H , (B4)1 by S, subtracting and integrating over R2, we obtain
R2

�
2βS3H − ρS2Z + βS2

∆(S2) − ρS2
∆X

�
dξ1dξ2 = 0 . (B5)

Also, multiplying (B3)1 by (ξ1, ξ2) · ∇H , (B4)1 by (ξ1, ξ2) · ∇S, adding and integrating over R2, it
follows that

R2

(
4SH − 2βS3H + ρSH(2X + ξ1Xξ1 + ξ2Xξ2) +

ρS2

2
(2Z + ξ1Zξ1 + ξ2Zξ2)

)
dξ1dξ2

=
1
2


R2

�[ξ1(S2)ξ1 + ξ2(S2)ξ2](−β∆(S2) + ρ∆X)� dξ1dξ2 . (B6)

At this stage, let us define

(X1)ξ1ξ1 = X, (Z1)ξ1ξ1 = Z.

Multiplying (B3)2 by (ξ1, ξ2) · ∇Z1 and integrating over R2 yields
R2
(X − S2)(2Z + ξ1Zξ1 + ξ2Zξ2) dξ1dξ2

+ ν


R2

X[2(Z1)ξ2ξ2 + ξ1(Z1)ξ1ξ2ξ2 + ξ2(Z1)ξ2ξ2ξ2] dξ1dξ2 = 0 . (B7)
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Notice that
R2
νX(Z1)ξ2ξ2 dξ1dξ2 =


R2
νXξ2ξ2Z1 dξ1dξ2=


R2
[(S2)ξ1ξ1 − Xξ1ξ1]Z1 dξ1dξ2

=


R2
(S2 − X)Z dξ1dξ2 ,

which can be substituted into (B7), and it follows that
R2
(X − S2)(ξ1Zξ1 + ξ2Zξ2) dξ1dξ2 + ν


R2

X[ξ1(Z1)ξ1ξ2ξ2 + ξ2(Z1)ξ2ξ2ξ2] dξ1dξ2 = 0 . (B8)

Also, multiplying (B4)2 by (ξ1, ξ2) · ∇X1 and integrating yields
R2
[Z − 2SH − ∆(S2)](2X + ξ1Xξ1 + ξ2Xξ2) dξ1dξ2

+ ν


R2

Zξ2ξ2[ξ1(X1)ξ1 + ξ2(X1)ξ2] dξ1dξ2 = 0 . (B9)

Now substituting
R2

Zξ2ξ2[ξ1(X1)ξ1 + ξ2(X1)ξ2] dξ1dξ2 = −

R2

X[ξ1(Z1)ξ1ξ2ξ2 + ξ2(Z1)ξ2ξ2ξ2] dξ1dξ2

into (B9) yields 
R2
[Z − 2SH − ∆(S2)](2X + ξ1Xξ1 + ξ2Xξ2) dξ1dξ2

− ν

R2

X[ξ1(Z1)ξ1ξ2ξ2 + ξ2(Z1)ξ2ξ2ξ2] dξ1dξ2 = 0 . (B10)

Adding (B8) and (B10) gives us
R2
(X − S2)(ξ1Zξ1 + ξ2Zξ2) dξ1dξ2

+


R2
[Z − 2SH − ∆(S2)](2X + ξ1Xξ1 + ξ2Xξ2) dξ1dξ2 = 0 ,

and since 
R2

X(ξ1Zξ1 + ξ2Zξ2) = −

R2

Z(2X + ξ1Xξ1 + ξ2Xξ2) dξ1dξ2 ,

we obtain that
R2

S2(ξ1Zξ1 + ξ2Zξ2) dξ1dξ2 +


R2
[2SH + ∆(S2)](2X + ξ1Xξ1 + ξ2Xξ2) dξ1dξ2 = 0 . (B11)

Multiplying (B11) by ρ
2 and substituting the result into the sum of (B5) and (B6), it follows that

R2

(
4SH + βS2

∆(S2) − 2ρS2
∆X − ρ

2
(∆(S2))(ξ1Xξ1 + ξ2Xξ2)

)
dξ1dξ2

=
1
2


R2

�[ξ1(S2)ξ1 + ξ2(S2)ξ2](−β∆(S2) + ρ∆X)� dξ1dξ2 . (B12)

Note that
R2
[ξ1(S2)ξ1 + ξ2(S2)ξ2]∆(S2) dξ1dξ2

=


R2
[ξ1(S2)ξ1(S2)ξ1ξ1 + ξ2(S2)ξ2(S2)ξ1ξ1 + ξ1(S2)ξ1(S2)ξ2ξ2 + ξ2(S2)ξ2(S2)ξ2ξ2] dξ1dξ2

=


R2


−1

2
((S2)ξ1)2 +

1
2
((S2)ξ1)2 +

1
2
((S2)ξ2)2 −

1
2
((S2)ξ2)2


dξ1dξ2 = 0 .

Consequently, (B12) can be reduced to
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
R2

SH dξ1dξ2

= β


R2
|∇S2|2 dξ1dξ2 + 2ρ


R2

S2
∆X dξ1dξ2

+
ρ

2


R2

�
∆(S2)(ξ1Xξ1 + ξ2Xξ2) + [ξ1(S2)ξ1 + ξ2(S2)ξ2]∆X

�
dξ1dξ2

= β


R2
|∇S2|2 dξ1dξ2 + 2ρ


R2

S2
∆X dξ1dξ2 . (B13)

Since S and X are symmetric and ∆νX = (S2)ξ1ξ1, we obtain that (1 + ν)∆X = ∆S2 which implies
that 

R2
S2
∆X dξ1dξ2 = −

1
1 + ν


R2
|∇S2|2 dξ1dξ2 . (B14)

Substituting (B14) into (B13) yields
R2

SH dξ1dξ2 =
1
4

(
β − 2ρ

1 + ν

) 
R2
|∇S2|2 dξ1dξ2 .
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