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Abstract. This paper is concerned with a system of nonlinear wave equations with supercritical interior and boundary sources
and subject to interior and boundary damping terms. It is well-known that the presence of a nonlinear boundary source
causes significant difficulties since the linear Neumann problem for the single wave equation is not, in general, well-posed
in the finite-energy space H1(Ω) × L2(∂Ω) with boundary data from L2(∂Ω) (due to the failure of the uniform Lopatinskii
condition). Additional challenges stem from the fact that the sources considered in this article are non-dissipative and are
not locally Lipschitz from H1(Ω) into L2(Ω) or L2(∂Ω). With some restrictions on the parameters in the system and with
careful analysis involving the Nehari Manifold, we obtain global existence of a unique weak solution and establish (depend-
ing on the behavior of the dissipation in the system) exponential and algebraic uniform decay rates of energy. Moreover,
we prove a blow-up result for weak solutions with nonnegative initial energy.
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1. Introduction

1.1. Preliminaries

Over the recent years, wave equations under the influence of nonlinear damping and nonlinear sources have
generated considerable interest. Of central interest is the analysis of how two competing forces (nonlinear
damping and source terms) influence the behavior of solutions. Many results [1–3,14,26,28–30] have been
established when the sources in the system are subcritical or critical. In this case, the sources are locally
Lipschitz continuous from H1(Ω) into L2(Ω) and into L2(∂Ω), and thus, obtaining existence of local
solutions can achieved via Galerkin approximations or standard fixed point theorems. However, very few
articles ([8–11] and most recently in [13,15,16,27]) addressed wave equations influenced by supercritical
sources.

For the sake of clarity, we restrict our analysis to the physically more relevant case when Ω ⊂ R
3. Our

results extend easily to bounded domains in R
n, by accounting for the corresponding Sobolev imbeddings,

and accordingly adjusting the conditions imposed on the parameters. Thus, throughout the paper, we
assume that Ω is bounded, open, and connected non-empty set in R

3 with a smooth boundary Γ = ∂Ω.
In this paper, we study the following system of wave equations:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

utt − Δu+ g1(ut) = f1(u, v) in Ω × (0,∞),
vtt − Δv + g2(vt) = f2(u, v) in Ω × (0,∞),
∂νu+ u+ g(ut) = h(u) on Γ × (0,∞),
v = 0 on Γ × (0,∞),
u(0) = u0 ∈ H1(Ω), ut(0) = u1 ∈ L2(Ω),
v(0) = v0 ∈ H1

0 (Ω), vt(0) = v1 ∈ L2(Ω),

(1.1)
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where the nonlinearities f1(u, v), f2(u, v), and h(u) are supercritical interior and boundary sources, and
the damping functions g1, g2, and g are arbitrary continuous monotone increasing graphs vanishing at
the origin.

Some special cases of (1.1) arise in quantum field theory. In particular, Segal [33] introduced the
system

utt − Δu = −α2
1u− β2

1v
2u, vtt − Δv = −α2

2v − β2
2u

2v,

as a model to describe the interaction of scalar fields u, v of masses α1, α2, respectively, subject to the
interaction constants β1 and β2. This system defines the motion of charged mesons in an electromagnetic
field. Later, Makhankov [23] pointed out some essential properties of such interacting relativistic fields.
On the other hand, coupled wave equations arise naturally in investigating longitudinal dynamical effects
in classical semi-conductor lasers and nonlinear optics [4,35,37]. Moreover, nonlinear systems of coupled
wave equations have been derived from Maxwell’s equations for an electromagnetic field in a periodically
modulated waveguide under the assumption that transversal and longitudinal effects can be separated
[4]. Thus, the source-damping interaction in (1.1) encompasses a broad class of problems in quantum
field theory and certain mechanical applications [17,24,34]. For instance, a relevant model to (1.1) is the
Reissner–Mindlin plate equations (see for instance, Ch. 3 in [18]), which consist of three coupled PDE’s:
a wave equations and two wave-like equations, where each equation is influenced by nonlinear damping
and source terms. It is worth noting that non-dissipative “energy-building” sources, especially those on
the boundary, arise when one considers a wave equation being coupled with other types of dynamics, such
as structure-acoustic or fluid-structure interaction models (Lasiecka [20]). In light of these applications,
we are mainly interested in higher-order nonlinearities, as described in following assumption.

Assumption 1.1.

• Interior sources : fj(u, v) ∈ C1(R2) such that

|∇fj(u, v)| ≤ C(|u|p−1 + |v|p−1 + 1), j = 1, 2, where 1 ≤ p < 6.

• Boundary source : h ∈ C1(R) such that

|h′(s)| ≤ C(|s|k−1 + 1), where 1 ≤ k < 4.

• Damping : g1, g2, and g are continuous and monotone increasing functions on R with g1(0) =
g2(0) = g(0) = 0. In addition, the following growth conditions hold: there exist positive constants aj

and bj, j = 1, 2, 3, such that, for |s| ≥ 1,

a1|s|m+1 ≤ g1(s)s ≤ b1|s|m+1, where m ≥ 1,

a2|s|r+1 ≤ g2(s)s ≤ b2|s|r+1, where r ≥ 1,

a3|s|q+1 ≤ g(s)s ≤ b3|s|q+1, where q ≥ 1.

• Parameters : max{pm+1
m , p r+1

r } < 6; k q+1
q < 4.

We note here that in Assumption 1.1 and throughout the paper, all generic constants will be denoted
by C, and they may change from line-to-line.

1.2. Literature overview

Wellposedness and asymptotic behavior of wave equations with at most critical semi-linear nonlinearities
have been extensively studied, and by now, the established results forms a comprehensive theory. More
recent research efforts aim at the more challenging class of models with higher-order nonlinearities, such
as supercritical and super-supercritical sources.

In the presence of such strong nonlinearities, the local solvability becomes much harder to establish.
For a single wave equation, substantial advancements have been made by Bociu and Lasiecka in a series of



Vol. 64 (2013) Systems of wave equations 623

papers [8–11]. Indeed, the recent results by Bociu and Lasiecka included local and global existence, unique-
ness, continuous dependence on initial data, and some blow-up results for wave equations on bounded
domains subject to super-supercritical sources and damping terms (acting both on the boundary and
in the interior of the domain). These techniques have been also used to establish similar results for the
Cauchy problem of a single wave equation [12]. Subsequently, relying on this well-posedness theory, the
authors of [7] have investigated the long-term behavior and uniform decay rates for solutions confined to a
potential well. For other related results on potential well solutions, see [2,22,25,38,39] and the references
therein.

A well-known system, which is a special case of (1.1), is the following polynomially damped system
that has been studied extensively in the literature [1,2,28,29]:

⎧
⎪⎨

⎪⎩

utt − Δu+ |ut|m−1ut = f1(u, v) in Ω × (0, T ),
vtt − Δv + |vt|r−1vt = f2(u, v) in Ω × (0, T ),
u = v = 0 on Γ × (0, T ),

(1.2)

where the sources f1, f2 are very specific functions. Namely, f1(u, v) = ∂uF (u, v) and f2(u, v) = ∂vF (u, v),
where F : R

2 −→ R is a homogeneous C1-function given by:

F (u, v) = a|u+ v|p+1 + 2b|uv| p+1
2 , (1.3)

where p ≥ 3, a > 1, and b > 0.
Systems of nonlinear wave equations such as (1.2) go back to Reed [31] who proposed a similar system

in three space dimensions but without the presence of damping. Indeed, recently in [1] and later in [2],
the authors studied system (1.2) with Dirichlét boundary conditions on both u and v where the exponent
of the source was restricted to be critical (p = 3 in 3D). More recently, the authors of [15,16] (following
the strategy developed in [8–11]) studied the more general system (1.1) and obtained several results on
the existence of local and global weak solutions, uniqueness, continuous dependence on initial data, and
blow up in finite time for the larger range of the exponent p: supercritical sources (3 < p ≤ 5) and super-
supercritical (5 < p < 6). The main tools for proving local existence in [16] were nonlinear semi-groups
and monotone operator theory. Another crucial ingredient to the local solvability in [16] is the recent
results in [5], where the authors of [5] resolved the question of the identification of the subdifferential of
a sum of two convex functionals (one is originating from the interior and the other from the boundary
damping) without imposing any growth restrictions on the defining convex functions.

1.3. New goals and challenges

The main goal of the present paper is to complement the results of [15,16] by establishing global existence
of potential well solutions, uniform decay rates of energy, and blow up of solutions with non-negative ini-
tial energy. Comparing with the results of [2] for system (1.2) with p = 3, our results extend and refine
the results of [2] in the following sense: (i) System (1.1) is more general than (1.2) with supercritical
sources and subject to a nonlinear Robin boundary condition. However, we note here that the mixture
of Robin and Dirichlét boundary conditions in system (1.1) is not essential to the methods used in this
paper nor to our results. Indeed, all of our results in this paper can be easily obtained if instead one
imposes Robin boundary conditions on both u and v. (ii) The global existence and energy decay results
in [2] are obtained only when the exponents of the damping functions are restricted to the case m, r ≤ 5.
Here, we allow m, r to be larger than 5, provided we impose additional assumptions on the regularity of
weak solutions. (iii) In addition to the standard case p > max{m, r} and k > q for our blow-up result, we
consider another scenario in which the interior source is more dominant than both feedback mappings in
the interior and on the boundary. Specifically, we prove a blow-up result in the case p > max{m, r, 2q−1},
and without the additional assumption k > q. Although this kind of blow-up result has been established
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for solutions with negative initial energy [9,15], to our knowledge, our result is new for wave equations
with non-negative initial energy.

Our strategy for the blow-up results in this paper follows the general framework of [2,7]. However,
our proofs had to be significantly adjusted to accommodate the coupling in the system (1.1) and the new
case p > max{m, r, 2q−1}. For the decay of energy, we follow the roadmap paper by Lasiecka and Tataru
[19] and its refined versions in [2,7,21,36], which involve comparing the energy of the system to a suitable
ordinary differential equation. It is worth mentioning that the effect of quasilinear damping terms in
(1.1) leads to highly non-trivial long-time behavior of solutions. It is known that super-linear stabilizing
feedbacks may slow down the energy decay to algebraic or logarithmic rates [21]. On the another hand,
there are no known uniform decay results for some problems with degenerate damping, such as the one
in [6].

1.4. Outline

The paper is organized as follows. In Sect. 2, we begin by citing the local-wellposedness results established
in [16]. Subsequently, we revisit the potential well theory and the strong connection of (1.1) with the
elliptic theory. The statements of the main results: global existence of potential well solutions, uniform
energy decay rates, and blow up of solutions with non-negative initial energy are summarized in Sect. 2.
Global existence is then proved in Sect. 3. In Sect. 4, we prove the uniform energy decay rates of energy,
where the analysis is divided into several parts. Finally, Sect. 5 is devoted to the proof of our blow-up
result.

2. Preliminaries and main results

We begin by introducing the following notations that will be used throughout the paper:

‖u‖s = ‖u‖Ls(Ω) , |u|s = ‖u‖Ls(Γ) , ‖u‖1,Ω = ‖u‖H1(Ω) ;

(u, v)Ω = (u, v)L2(Ω), (u, v)Γ = (u, v)L2(Γ), (u, v)1,Ω = (u, v)H1(Ω).

We also use the notation γu to denote the trace of u on Γ, and we write d
dt

(γu(t)) as γut. In addition,

we note that (‖∇u‖2
2 + |γu|22)1/2 is equivalent to the standard H1(Ω) norm. This fact follows from a

Poincaré–Wirtinger type of inequality:

‖u‖2
2 ≤ c0

(
‖∇u‖2

2 + |γu|22
)
, for all u ∈ H1(Ω). (2.1)

Thus, throughout the paper, we put

‖u‖2
1,Ω = ‖∇u‖2

2 + |γu|22 and (u, v)1,Ω = (∇u,∇v)Ω + (γu, γv)Γ,

for u, v ∈ H1(Ω).
For the reader’s convenience, we begin by citing some of the main results in [16] that are essential to

the results of this paper. To do so, we first introduce the definition of a weak solution.

Definition 2.1. A pair of functions (u, v) is said to be a weak solution of (1.1) on [0, T ] if

• u ∈ C([0, T ];H1(Ω)), v ∈ C([0, T ];H1
0 (Ω)), ut ∈ C([0, T ];L2(Ω))∩Lm+1(Ω×(0, T )), γut ∈ Lq+1(Γ×

(0, T )), vt ∈ C([0, T ];L2(Ω)) ∩ Lr+1(Ω × (0, T ));
• (u(0), v(0)) = (u0, v0) ∈ H1(Ω) ×H1

0 (Ω), (ut(0), vt(0)) = (u1, v1) ∈ L2(Ω) × L2(Ω);
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• For all t ∈ [0, T ], u and v verify the following identities:

(ut(t), φ(t))Ω − (ut(0), φ(0))Ω +

t∫

0

[−(ut(τ), φt(τ))Ω + (u(τ), φ(τ))1,Ω]dτ

+

t∫

0

∫

Ω

g1(ut(τ))φ(τ)dxdτ +

t∫

0

∫

Γ

g(γut(τ))γφ(τ)dΓdτ

=

t∫

0

∫

Ω

f1(u(τ), v(τ))φ(τ)dxdτ +

t∫

0

∫

Γ

h(γu(τ))γφ(τ)dΓdτ, (2.2)

(vt(t), ψ(t))Ω − (vt(0), ψ(0))Ω +

t∫

0

[−(vt(τ), ψt(τ))Ω + (v(τ), ψ(τ))1,Ω]dτ

+

t∫

0

∫

Ω

g2(vt(τ))ψ(τ)dxdτ =

t∫

0

∫

Ω

f2(u(τ), v(τ))ψ(τ)dxdτ, (2.3)

for all test functions satisfying: φ ∈ C([0, T ];H1(Ω)) ∩Lm+1(Ω × (0, T )) such that γφ ∈ Lq+1(Γ × (0, T ))
with φt ∈ L1([0, T ];L2(Ω)) and ψ ∈ C([0, T ];H1

0 (Ω)) ∩Lr+1(Ω × (0, T )) such that ψt ∈ L1([0, T ];L2(Ω)).

As mentioned earlier, our work in this paper is based on the existence results, which was established
in [16].

Theorem 2.2. (Local and global weak solutions [16]) Assume the validity of the Assumption 1.1. Then,
there exists a local weak solution (u, v) to (1.1) defined on [0, T ], for some T > 0. Moreover, we have:
• (u, v) satisfies the following energy identity for all t ∈ [0, T ]:

E (t) +

t∫

0

∫

Ω

[g1(ut)ut + g2(vt)vt]dxdτ +

t∫

0

∫

Γ

g(γut)γutdΓdτ

= E (0) +

t∫

0

∫

Ω

[f1(u, v)ut + f2(u, v)vt]dxdτ +

t∫

0

∫

Γ

h(γu)γutdΓdτ, (2.4)

where the quadratic energy is given by

E (t) =
1
2

(
‖ut(t)‖2

2 + ‖vt(t)‖2
2 + ‖u(t)‖2

1,Ω + ‖v(t)‖2
1,Ω

)
. (2.5)

• If, in addition, we assume p ≤ min{m, r}, k ≤ q and u0, v0 ∈ Lp+1(Ω), γu0 ∈ Lk+1(Γ), then the
said solution (u, v) is a global weak solution and T can be taken arbitrarily large.

Remark 2.3. Under additional assumptions on the sources and the boundary damping, uniqueness of weak
solutions for (1.1) has been established in [16]. Moreover, the results of [15] show that every weak solution
of (1.1) with negative initial energy blows up in finite time, provided either: p > max{m, r} and k > q,
or p > max{m, r, 2q − 1}. We refer the reader to [15,16] for complete statements of these results.

2.1. Potential well

In this section, we begin by briefly pointing out the connection of problem (1.1) to some important aspects
of the theory of elliptic equations. In order to do so, we need to impose additional assumptions on the
interior sources f1, f2, and boundary source h.
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Assumption 2.4.

• There exists a nonnegative function F (u, v) ∈ C1(R2) such that ∂uF (u, v) = f1(u, v), ∂vF (u, v) =
f2(u, v), and F is homogeneous of order p + 1, that is, F (λu, λv) = λp+1F (u, v), for all λ > 0,
(u, v) ∈ R

2.
• There exists a nonnegative function H(s) ∈ C1(R) such that H ′(s) = h(s), and H is homogeneous

of order k + 1, that is, H(λs) = λk+1H(s), for all λ > 0, s ∈ R.

Remark 2.5. We note that the special function F (u, v) defined in (1.3) satisfies Assumption 2.4, provided
p ≥ 3. However, there is a large class of functions that satisfies Assumption 2.4. For instance, functions
of the form (with an appropriate range of values for p, s, and σ):

F(u, v) = a|u|p+1 + b|v|p+1 + α|u|s|v|p+1−s + β(|u|σ + |v|σ)
p+1

σ ,

satisfy Assumption 2.4. Moreover, since F and H are homogeneous, then the Euler homogeneous function
theorem gives the following useful identities:

f1(u, v)u+ f2(u, v)v = (p+ 1)F (u, v) and h(s)s = (k + 1)H(s). (2.6)

Finally, we note that the assumptions |∇fj(u, v)| ≤ C(|u|p−1 + |v|p−1 + 1), j = 1, 2, and |h′(s)| ≤
C(|s|k−1 + 1) (as required by Assumption 1.1) imply that there exists a constant M > 0 such that
F (u, v) ≤ M(|u|p+1 + |v|p+1 + 1) and H(s) ≤ M(|s|k+1 + 1), for all u, v, s ∈ R. Therefore, by the
homogeneity of F and H, we must have

F (u, v) ≤ M(|u|p+1 + |v|p+1) and H(s) ≤ M |s|k+1. (2.7)

We start by defining the total energy of the system (1.1) as follows:

E(t) :=
1
2

(
‖ut(t)‖2

2 + ‖vt(t)‖2
2 + ‖u(t)‖2

1,Ω + ‖v(t)‖2
1,Ω

)

−
∫

Ω

F (u(t), v(t))dx−
∫

Γ

H(γu(t))dΓ. (2.8)

Put X := H1(Ω) ×H1
0 (Ω) and define the functional J : X → R by:

J(u, v) :=
1
2

(
‖u‖2

1,Ω + ‖v‖2
1,Ω

)
−
∫

Ω

F (u, v)dx−
∫

Γ

H(γu)dΓ, (2.9)

where J(u, v) represents the potential energy of the system. Therefore, the total energy can be written
as:

E(t) =
1
2

(
‖ut(t)‖2

2 + ‖vt(t)‖2
2

)
+ J(u(t), v(t)). (2.10)

In addition, simple calculations shows that the Fréchet derivative of J at (u, v) ∈ X is given by:

〈J ′(u, v), (φ, ψ)〉 =
∫

Ω

∇u · ∇φdx+
∫

Γ

γuγφdΓ +
∫

Ω

∇v · ∇ψdx

−
∫

Ω

[f1(u, v)φ+ f2(u, v)ψ]dx−
∫

Γ

h(γu)γφdΓ, (2.11)

for all (φ, ψ) ∈ X.
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Associated to the functional J is the well-known Nehari manifold, namely

N := {(u, v) ∈ X\{(0, 0)} : 〈J ′(u, v), (u, v)〉 = 0}. (2.12)

It follows from (2.11) and (2.6) that the Nehari manifold can be put as:

N =
{

(u, v) ∈ X\{(0, 0)} :

‖u‖2
1,Ω + ‖v‖2

1,Ω = (p+ 1)
∫

Ω

F (u, v)dx+ (k + 1)
∫

Γ

H(γu)dΓ
}
. (2.13)

In order to introduce the potential well, we first prove the following lemma.

Lemma 2.6. In addition to Assumptions 1.1 and 2.4, further assume that 1 < p ≤ 5 and 1 < k ≤ 3.
Then,

d := inf
(u,v)∈N

J(u, v) > 0. (2.14)

Proof. Fix (u, v) ∈ N . Then, it follows from (2.9) and (2.13) that

J(u, v) ≥
(

1
2

− 1
c

)(
‖u‖2

1,Ω + ‖v‖2
1,Ω

)
. (2.15)

where c := min{p+ 1, k + 1} > 2. Since (u, v) ∈ N , then the bounds (2.7) yield

‖u‖2
1,Ω + ‖v‖2

1,Ω ≤ Cp,k

⎛

⎝

∫

Ω

(|u|p+1 + |v|p+1)dx+
∫

Γ

|γu|k+1dΓ

⎞

⎠

≤ C
(
‖u‖p+1

1,Ω + ‖v‖p+1
1,Ω + ‖u‖k+1

1,Ω

)
. (2.16)

Thus,

‖(u, v)‖2
X ≤ C

(
‖(u, v)‖p+1

X + ‖(u, v)‖k+1
X

)
,

and since (u, v) = (0, 0), we have

1 ≤ C
(
‖(u, v)‖p−1

X + ‖(u, v)‖k−1
X

)
.

It follows that ‖(u, v)‖X ≥ s1 > 0 where s1 is the unique positive solution of the equation C(sp−1+sk−1) =
1, where p, k > 1. Then, by (2.15), we arrive at

J(u, v) ≥
(

1
2

− 1
c

)

s21

for all (u, v) ∈ N . Thus, (2.14) follows. �

As in [2], we introduce the following sets:

W := {(u, v) ∈ X : J(u, v) < d},

W1 :=

⎧
⎨

⎩
(u, v) ∈ W : ‖u‖2

1,Ω + ‖v‖2
1,Ω > (p+ 1)

∫

Ω

F (u, v)dx+ (k + 1)
∫

Γ

H(γu)dΓ

⎫
⎬

⎭

∪ {(0, 0)},

W2 :=

⎧
⎨

⎩
(u, v) ∈ W : ‖u‖2

1,Ω + ‖v‖2
1,Ω < (p+ 1)

∫

Ω

F (u, v)dx+ (k + 1)
∫

Γ

H(γu)dΓ

⎫
⎬

⎭
.



628 Yanqiu Guo and Mohammad A. Rammaha ZAMP

Clearly, W1 ∩ W2 = ∅, and W1 ∪ W2 = W. In addition, we refer to W as the potential well and d as
the depth of the well. The set W1 is regarded as the “good” part of the well, as we will show that every
weak solution exists globally in time, provided the initial data are taken from W1 and the initial energy
is under the level d. On the other hand, if the initial data are taken from W2 and the sources dominate
the damping, we will prove a blow-up result for weak solutions with nonnegative initial energy.

The following lemma will be needed in the sequel.

Lemma 2.7. Under the assumptions of Lemma 2.6, the depth of the potential well d coincides with the
mountain pass level. Specifically,

d = inf
(u,v)∈X\{(0,0)}

sup
λ≥0

J(λ(u, v)). (2.17)

Proof. Recall X = H1(Ω) × H1
0 (Ω). Let (u, v) ∈ X\{(0, 0)} be fixed. By recalling Assumption 2.4, it

follows that,

J(λ(u, v)) =
1
2
λ2

(
‖u‖2

1,Ω + ‖v‖2
1,Ω

)
− λp+1

∫

Ω

F (u, v)dx− λk+1

∫

Γ

H(γu)dΓ, (2.18)

for λ ≥ 0. Then,

d
dλ
J(λ(u, v)) =

[ (
‖u‖2

1,Ω + ‖v‖2
1,Ω

)
− (p+ 1)λp−1

∫

Ω

F (u, v)dx

− (k + 1)λk−1

∫

Γ

H(γu)dΓ
]
. (2.19)

Hence, the only critical point in (0,∞) for the mapping λ �→ J(λ(u, v)) is λ0 that satisfies the equation:
(
‖u‖2

1,Ω + ‖v‖2
1,Ω

)
= (p+ 1)λp−1

0

∫

Ω

F (u, v)dx+ (k + 1)λk−1
0

∫

Γ

H(γu)dΓ. (2.20)

Moreover, it is easy to see that

sup
λ≥0

J(λ(u, v)) = J(λ0(u, v)). (2.21)

By the definition of N and noting (2.20), we conclude that λ0(u, v) ∈ N . As a result,

J(λ0(u, v)) ≥ inf
(y,z)∈N

J(y, z) = d. (2.22)

By combining (2.21) and (2.22), one has

inf
(u,v)∈X\{(0,0)}

sup
λ≥0

J(λ(u, v)) ≥ d. (2.23)

On the other hand, for each fixed (y, z) ∈ N , we find that (using (2.13) and (2.20)) the only critical
point in (0,∞) of the mapping λ �→ J(λ(y, z)) is λ0 = 1. Therefore, supλ≥0 J(λ(y, z)) = J(y, z) for each
(y, z) ∈ N . Hence,

inf
(u,v)∈X\{(0,0)}

sup
λ≥0

J(λ(u, v)) ≤ inf
(y,z)∈N

sup
λ≥0

J(λ(y, z)) = inf
(y,z)∈N

J(y, z) = d. (2.24)

Combining (2.23) and (2.24) gives the desired result (2.17). �
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2.2. Main results

Our first result establishes the existence of a global weak solution to (1.1), provided the initial data come
from W1 and the initial energy is less than d, and without imposing the conditions p ≤ min{m, r}, k ≤ q,
as required by Theorem 2.2.

In order to state our first result, we recall the quadratic energy E (t) and the total energy E(t) as
defined in (2.5) and (2.8), respectively.

Theorem 2.8. (Global Solutions) In addition to Assumptions 1.1 and 2.4, further assume (u0, v0) ∈ W1

and E(0) < d. If 1 < p ≤ 5 and 1 < k ≤ 3, then the weak solution (u, v) of (1.1) is a global solution.
Furthermore, we have:

(u(t), v(t)) ∈ W1,

E (t) < d

(
c

c− 2

)

, (2.25)
(

1 − 2
c

)

E (t) ≤ E(t) ≤ E (t), (2.26)

for all t ≥ 0, where c = min{p+ 1, k + 1} > 2.

Since the weak solution furnished by Theorem 2.8 is a global solution and the total energy E(t) remains
positive for all t ≥ 0, we may study the uniform decay rates of the energy. Specifically, we will show that
if the initial data come from a closed subset of W1, then the energy E(t) decays either exponentially or
algebraically, depending on the behaviors of the functions g1, g2, and g near the origin.

In order to state our result on the energy decay, we need some preparations. Define the function

G(s) :=
1
2
s2 −MR1s

p+1 −MR2s
k+1, (2.27)

where the constant M > 0 is as given in (2.7) and

R1 := sup
u∈H1(Ω)\{0}

‖u‖p+1
p+1

‖u‖p+1
1,Ω

, R2 := sup
u∈H1(Ω)\{0}

|γu|k+1
k+1

‖u‖k+1
1,Ω

. (2.28)

Since p ≤ 5 and k ≤ 3, by Sobolev Imbedding Theorem, we know 0 < R1, R2 < ∞.
A straightforward calculation shows that G′(s) has a unique positive zero, say at s0 > 0, and

sup
s∈[0,∞)

G(s) = G(s0).

Thus, we define the set

W̃1 := {(u, v) ∈ X : ‖(u, v)‖X < s0, J(u, v) < G(s0)}. (2.29)

We will show in Proposition 4.2 that G(s0) ≤ d and W̃1 ⊂ W1.
Furthermore, for each fixed small value δ > 0, we define a closed subset of W̃1, namely

W̃δ
1 := {(u, v) ∈ X : ‖(u, v)‖X ≤ s0 − δ, J(u, v) ≤ G(s0 − δ)}. (2.30)

Indeed, we will show in Proposition 4.3 that W̃δ
1 is invariant under the dynamics, if the initial energy

satisfies E(0) ≤ G(s0 − δ).
The following theorem addresses the uniform decay rates of energy. In the standard case m, r ≤ 5,

and q ≤ 3, we do not impose any additional assumptions on the weak solutions furnished by Theorem
2.8. However, if any of the exponents of damping is large, then we need additional assumptions on the
regularity of weak solutions. More precisely, we have the following result.
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Theorem 2.9. (Uniform Decay Rates) In addition to Assumptions 1.1 and 2.4, further assume: 1 < p < 5,
1 < k < 3, u0 ∈ Lm+1(Ω), v0 ∈ Lr+1(Ω), γu0 ∈ Lq+1(Γ), (u0, v0) ∈ W̃δ

1 , and E(0) < G(s0 − δ) for some
δ > 0. In addition, assume u ∈ L∞(R+;L

3
2 (m−1)(Ω)) if m > 5, v ∈ L∞(R+;L

3
2 (r−1)(Ω)) if r > 5, and

γu ∈ L∞(R+;L2(q−1)(Γ)) if q > 3, where (u, v) is the global solution of (1.1) furnished by Theorem 2.8.

• If g1, g2, and g are linearly bounded near the origin, then the total energy E(t) decays exponentially:

E(t) ≤ C̃E(0)e−wt, for all t ≥ 0, (2.31)

where C̃ and w are positive constants.
• If at least one of the feedback mappings g1, g2, and g is not linearly bounded near the origin, then

E(t) decays algebraically:

E(t) ≤ C(E(0))(1 + t)−β , for all t ≥ 0, (2.32)

where β > 0 (specified in (4.11)) depends on the growth rates of g1, g2 and g near the origin.

Our final result addresses the blow up of potential well solutions with non-negative initial energy. It is
important to note that the blow-up result in [15] deals with the case of negative initial energy for general
weak solutions (not necessarily potential well solutions).

Theorem 2.10. (Blow up of Solutions) In addition to Assumptions 1.1 and 2.4, further assume for all
s ∈ R,

a1|s|m+1 ≤ g1(s)s ≤ b1|s|m+1, where m ≥ 1,

a2|s|r+1 ≤ g2(s)s ≤ b2|s|r+1, where r ≥ 1,

a3|s|q+1 ≤ g(s)s ≤ b3|s|q+1, where q ≥ 1. (2.33)

In addition, we suppose F (u, v) ≥ α0(|u|p+1 + |v|p+1), for some α0 > 0, and H(s) > 0, for all s = 0. If
1 < p ≤ 5, 1 < k ≤ 3, (u0, v0) ∈ W2, 0 ≤ E(0) < ρd, where

ρ :=
min

{
p+1
p−1 ,

k+1
k−1

}

max
{

p+1
p−1 ,

k+1
k−1

} ≤ 1, (2.34)

then, the weak solution (u, v) of (1.1) (as furnished by Theorem 2.2) blows up in finite time, provided
either
• p > max{m, r} and k > q,

or
• p > max{m, r, 2q − 1}.

Remark 2.11. The blow-up result in Theorem 2.10 relies on the blow-up result in [15] for negative initial
energy. Therefore, as in [15], we conclude from Theorem 2.10 that

‖u(t)‖1,Ω + ‖v(t)‖1,Ω → ∞,

as t → T−, for some 0 < T < ∞.

3. Global solutions

This section is devoted to the proof of Theorem 2.8.
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Proof. The argument will be carried out in two steps.
Step 1. We first show the invariance of W1 under the dynamics, that is, (u(t), v(t)) ∈ W1 for all
t ∈ [0, T ), where [0, T ) is the maximal interval of existence.

Notice the energy identity (2.4) is equivalent to

E(t) +

t∫

0

∫

Ω

[g1(ut)ut + g2(vt)vt]dxdτ +

t∫

0

∫

Γ

g(γut)γutdΓdτ = E(0). (3.1)

Since g1, g2, and g are all monotone increasing, then it follows from the regularity of the solutions
(u, v) that

E′(t) = −
∫

Ω

[g1(ut)ut + g2(vt)vt]dx−
∫

Γ

g(γut)γutdΓ ≤ 0. (3.2)

Thus,

J(u(t), v(t)) ≤ E(t) ≤ E(0) < d, for all t ∈ [0, T ). (3.3)

It follows that (u(t), v(t)) ∈ W for all t ∈ [0, T ).
To show that (u(t), v(t)) ∈ W1 on [0, T ), we proceed by contradiction. Assume that there exists

t1 ∈ (0, T ) such that (u(t1), v(t1)) /∈ W1. Since W = W1 ∪ W2 and W1 ∩ W2 = ∅, then it must be
the case that (u(t1), v(t1)) ∈ W2.

Let us show now that the function t �→ ∫

Ω
F (u(t), v(t))dx is continuous on [0, T ). Indeed, since

|∇fj(u, v)| ≤ C(|u|p−1 + |v|p−1 + 1), it follows that |fj(u, v)| ≤ C(|u|p + |v|p + 1), j = 1, 2. By
recalling that F is homogeneous of order p+1, one has fj(u, v) are homogeneous of order p, j = 1, 2.
Therefore,

|fj(u, v)| ≤ C(|u|p + |v|p), j = 1, 2. (3.4)

Fix an arbitrary t0 ∈ [0, T ). By the Mean Value Theorem and (3.4), we have
∫

Ω

|F (u(t), v(t)) − F (u(t0), v(t0))|dx

≤ C

∫

Ω

(|u(t)|p + |v(t)|p + |u(t0)|p + |v(t0)|p) (|u(t) − u(t0)| + |v(t) − v(t0)|) dx

≤ C
(
‖u(t)‖p

6
5 p

+ ‖v(t)‖p
6
5 p

+ ‖u(t0)‖p
6
5 p

+ ‖v(t0)‖p
6
5 p

)
(‖u(t) − u(t0)‖6 + ‖v(t) − v(t0)‖6) . (3.5)

Since p ≤ 5, we know 6
5p ≤ 6, so by the imbedding H1(Ω) ↪→ L6(Ω) and the regularity of the weak

solution (u, v) ∈ C([0, T );H1(Ω) ×H1
0 (Ω)), we obtain from (3.5) that

lim
t→t0

∫

Ω

|F (u(t), v(t)) − F (u(t0), v(t0))|dx = 0,

that is,
∫

Ω
F (u(t), v(t))dx is continuous on [0, T ).

Likewise, the function t �→ ∫

Γ
H(γu(t))dΓ is also continuous on [0, T ). Therefore, since

(u(0), v(0)) ∈ W1 and (u(t1), v(t1)) ∈ W2, then it follows from the definition of W1 and W2 that
there exists s ∈ (0, t1) such that

‖u(s)‖2
1,Ω + ‖v(s)‖2

1,Ω = (p+ 1)
∫

Ω

F (u(s), v(s))dx+ (k + 1)
∫

Γ

H(γu(s))dΓ. (3.6)

As a result, we may define t∗ as the supreme of all s ∈ (0, t1) satisfying (3.6). Clearly, t∗ ∈ (0, t1),
t∗ satisfies (3.6), and (u(t), v(t)) ∈ W2 for all t ∈ (t∗, t1].
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We have two cases to consider:
Case 1 : (u(t∗), v(t∗)) = (0, 0). In this case, since t∗ satisfies (3.6), we see that (u(t∗), v(t∗)) ∈ N ,
the Nehari manifold given in (2.13). Thus, by Lemma 2.6, it follows that J(u(t∗), v(t∗)) ≥ d.
Since E(t) ≥ J(u(t), v(t)) for all t ∈ [0, T ), one has E(t∗) ≥ d, which contradicts (3.3).
Case 2 : (u(t∗), v(t∗)) = (0, 0). Since (u(t), v(t)) ∈ W2 for all t ∈ (t∗, t1], then by (2.7) and the
definition of W2, we obtain

‖u(t)‖2
1,Ω + ‖v(t)‖2

1,Ω < C
(
‖u(t)‖p+1

p+1 + ‖v(t)‖p+1
p+1 + |γu(t)|k+1

k+1

)

≤ C
(
‖u(t)‖p+1

1,Ω + ‖v(t)‖p+1
1,Ω + ‖u(t)‖k+1

1,Ω

)
, for all t ∈ (t∗, t1].

Therefore,

‖(u(t), v(t))‖2
X < C

(
‖(u(t), v(t))‖p+1

X + ‖(u(t), v(t))‖k+1
X

)
, for all t ∈ (t∗, t1],

which yields,

1 < C
(
‖(u(t), v(t))‖p−1

X + ‖(u(t), v(t))‖k−1
X

)
, for all t ∈ (t∗, t1].

It follows that ‖(u(t), v(t))‖X > s1, for all t ∈ (t∗, t1], where s1 > 0 is the unique positive
solution of the equation C(sp−1 + sk−1) = 1, where p, k > 1. Employing the continuity of the
weak solution (u(t), v(t)), we obtain that

‖(u(t∗), v(t∗))‖X ≥ s1 > 0,

which contradicts the assumption (u(t∗), v(t∗)) = (0, 0). Hence, (u(t), v(t)) ∈ W1 for all t ∈
[0, T ).

Step 2. We show the weak solution (u(t), v(t)) is global solution. By (3.3), we know J(u(t), v(t)) < d
for all t ∈ [0, T ), that is,

1
2

(
‖u(t)‖2

1,Ω + ‖v(t)‖2
1,Ω

)
−
∫

Ω

F (u(t), v(t))dx−
∫

Γ

H(γu(t))dΓ < d, on [0, T ). (3.7)

Since (u(t), v(t)) ∈ W1 for all t ∈ [0, T ), one has

‖u(t)‖2
1,Ω + ‖v(t)‖2

1,Ω ≥ c

⎛

⎝

∫

Ω

F (u(t), v(t))dx+
∫

Γ

H(γu(t))dΓ

⎞

⎠ , on [0, T ), (3.8)

where c = min{p+ 1, k + 1} > 2. Combining (3.7) and (3.8) yields
∫

Ω

F (u(t), v(t))dx+
∫

Γ

H(γu(t))dΓ <
2d
c− 2

, for all t ∈ [0, T ). (3.9)

By using the energy identity (3.1) and (3.9), we deduce

E (t) +

t∫

0

∫

Ω

[g1(ut)ut + g2(vt)vt]dxdτ +

t∫

0

∫

Γ

g(γut)γutdΓdτ

= E(0) +
∫

Ω

F (u(t), v(t))dx+
∫

Γ

H(γu(t))dΓ

< d+
2d
c− 2

= d
c

c− 2
, for all t ∈ [0, T ). (3.10)
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By virtue of the monotonicity of g1, g2, and g, inequality (2.25) follows. Consequently, by a standard
continuation argument, we conclude that the weak solution (u(t), v(t)) is indeed a global solutions
and it can be extended to [0,∞).

It remains to show inequality (2.26). Obviously, E(t) ≤ E (t) since F (u, v) and H(s) are non-negative
functions. On the other hand, by (3.8) and the definition of E(t), one has

E(t) ≥ 1
2

(
‖ut(t)‖2

2 + ‖vt(t)‖2
2

)
+
(

1
2

− 1
c

)(
‖u(t)‖2

1,Ω + ‖v(t)‖2
1,Ω

)
≥

(

1 − 2
c

)

E (t).

Thus, the proof of Theorem 2.8 is now complete. �

4. Uniform decay rates of energy

In this section, we study the uniform decay rate of the energy for the global solution furnished by Theorem
2.8. More precisely, we shall prove Theorem 2.9.

We begin by introducing several functions. Let ϕj , ϕ : [0,∞) → [0,∞) be continuous, increasing,
concave functions, vanishing at the origin, and such that

ϕj(gj(s)s) ≥ |gj(s)|2 + s2 for |s| < 1, j = 1, 2; (4.1)

and

ϕ(g(s)s) ≥ |g(s)|2 for |s| < 1. (4.2)

We also define the function Φ : [0,∞) → [0,∞) by

Φ(s) := ϕ1(s) + ϕ2(s) + ϕ(s) + s, s ≥ 0. (4.3)

We note here that the concave functions ϕ1, ϕ2, and ϕ mentioned in (4.1)–(4.2) can always be con-
structed. To see this, recall the damping g1, g2, and g are monotone increasing functions passing through
the origin. If g1, g2, and g are bounded above and below by linear or superlinear functions near the origin,
that is, for all |s| < 1,

c1|s|m ≤ |g1(s)| ≤ c2|s|m, c3|s|r ≤ |g2(s)| ≤ c4|s|r, c5|s|q ≤ |g(s)| ≤ c6|s|q, (4.4)

where m, r, q ≥ 1, and cj > 0, j = 1, . . . , 6, then we can select

ϕ1(s) = c
− 2

m+1
1 (1 + c22)s

2
m+1 , ϕ2(s) = c

− 2
r+1

3 (1 + c24)s
2

r+1 , ϕ = c
− 2

q+1
5 c26s

2
q+1 . (4.5)

It is straightforward to see the functions in (4.5) verify (4.1)–(4.2). To see this, consider ϕ1 for example:

ϕ1(g1(s)s) = c
− 2

m+1
1

(
1 + c22

)
(g1(s)s)

2
m+1 ≥ c

− 2
m+1

1

(
1 + c22

)
(c1|s|m+1)

2
m+1

=
(
1 + c22

)
s2 ≥ s2 + (c2|s|m)2 ≥ s2 + |g1(s)|2, for all |s| < 1.

In particular, we note that, if g1, g2, and g are all linearly bounded near the origin, then (4.5) shows ϕ1,
ϕ2, and ϕ are all linear functions.

However, if the damping are bounded by sublinear functions near the origin, namely, for all |s| < 1,

c1|s|θ1 ≤ |g1(s)| ≤ c2|s|θ1 , c3|s|θ2 ≤ |g2(s)| ≤ c4|s|θ2 , c5|s|θ ≤ |g(s)| ≤ c6|s|θ, (4.6)

where 0 < θ1, θ2, θ < 1, and cj > 0, j = 1, . . . , 6, then instead we can select

ϕ1(s) = c
− 2θ1

θ1+1

1 (1 + c22)s
2θ1

θ1+1 , ϕ2(s) = c
− 2θ2

θ2+1

3 (1 + c24)s
2θ2

θ2+1 , ϕ = c
− 2θ

θ+1
5 c26s

2θ
θ+1 . (4.7)

In sum, by (4.5) and (4.7), there exist constants C1, C2, C3 > 0 such that

ϕ1(s) = C1s
z1 , ϕ2(s) = C2s

z2 , ϕ(s) = C3s
z, (4.8)
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where

z1 :=
2

m+ 1
or

2θ1
θ1 + 1

, z2 :=
2

r + 1
or

2θ2
θ2 + 1

, z :=
2

q + 1
or

2θ
θ + 1

(4.9)

depending on the growth rates of g1, g2, and g near the origin, which are specified in (4.4) and (4.6).
Now, we define

j := max
{

1
z1
,

1
z2
,
1
z

}

. (4.10)

It is important to note that j > 1 if at least one of g1, g2, and g are not linearly bounded near the origin,
and in this case, we put

β :=
1

j − 1
> 0. (4.11)

For the sake of simplifying the notations, we define

D(t) :=

t∫

0

∫

Ω

[g1(ut)ut + g2(vt)vt]dxdτ +

t∫

0

∫

Γ

g(γut)γutdΓdτ.

We note here that D(t) ≥ 0, by the monotonicity of g1, g2, and g, and the energy identity (3.1) can be
written as

E(t) + D(t) = E(0). (4.12)

For the remainder of the proof of Theorem 2.9, we define

T0 := max
{

1,
1

|Ω| ,
1

|Γ| , 8c0
(

c

c− 2

)}

(4.13)

where c0 is the constant in the Poincaré–Wirtinger type of inequality (2.1), and c = min{p+1, k+1} > 2.

4.1. Perturbed stabilization estimate

Proposition 4.1. In addition to Assumptions 1.1 and 2.4, assume that 1 < p < 5, 1 < k < 3, u0 ∈
Lm+1(Ω), v0 ∈ Lr+1(Ω), γu0 ∈ Lq+1(Γ), (u0, v0) ∈ W1, and E(0) < d. We further assume that u ∈
L∞(R+;L

3
2 (m−1)(Ω)) if m > 5, v ∈ L∞(R+;L

3
2 (r−1)(Ω)) if r > 5, and γu ∈ L∞(R+;L2(q−1)(Γ)) if

q > 3, where (u, v) is the global solution of (1.1) furnished by Theorem 2.8. Then,

E(T ) ≤ Ĉ

⎡

⎣Φ(D(T )) +

T∫

0

(‖u(t)‖2
2 + ‖v(t)‖2

2)dt

⎤

⎦ , (4.14)

for all T ≥ T0, where T0 is defined in (4.13), Φ is given in (4.3), and Ĉ > 0 is independent of T .

Proof. Let T ≥ T0 be fixed. We begin by verifying u ∈ Lm+1(Ω × (0, T )) for all T ∈ [0,∞). Since both u
and ut ∈ C([0, T ];L2(Ω)), we can write

T∫

0

∫

Ω

|u|m+1dxdt =

T∫

0

∫

Ω

∣
∣
∣
∣
∣
∣

t∫

0

ut(τ)dτ + u0

∣
∣
∣
∣
∣
∣

m+1

dxdt

≤ 2m
(
Tm+1 ‖ut‖m+1

Lm+1(Ω×(0,T )) + T ‖u0‖m+1
m+1

)
< ∞,

where we have used the regularity enjoyed by u, namely, ut ∈ Lm+1(Ω × (0, T )), and the assumption
u0 ∈ Lm+1(Ω). Note, ifm ≤ 5, then u0 ∈ Lm+1(Ω) is not an extra assumption since u0 ∈ H1(Ω) ↪→ L6(Ω).
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Similarly, we can show v ∈ Lr+1(Ω × (0, T )) and γu ∈ Lq+1(Γ × (0, T )). It follows that u and v enjoy,
respectively, the regularity restrictions imposed on the test function φ and ψ, as stated in Definition 2.1.
Consequently, we can replace φ by u in (2.2) and ψ by v in (2.3), and then the sum of two equations gives

⎡

⎣

∫

Ω

(utu+ vtv)dx

⎤

⎦

T

0

−
T∫

0

(
‖ut‖2

2 + ‖vt‖2
2

)
dt+

T∫

0

(
‖u‖2

1,Ω + ‖v‖2
1,Ω

)
dt

+

T∫

0

∫

Ω

(g1(ut)u+ g2(vt)v)dxdt+

T∫

0

∫

Γ

g(γut)γudΓdt

=

T∫

0

∫

Ω

[f1(u, v)u+ f2(u, v)v]dxdt+

T∫

0

∫

Γ

h(γu)γudΓdt. (4.15)

After a rearrangement of (4.15) and employing the identity (2.6), we obtain

2

T∫

0

E (t)dt =2

T∫

0

(
‖ut‖2

2 + ‖vt‖2
2

)
dt−

⎡

⎣

∫

Ω

(utu+ vtv)dx

⎤

⎦

T

0

−
T∫

0

∫

Ω

(g1(ut)u+ g2(vt)v)dxdt−
T∫

0

∫

Γ

g(γut)γudΓdt

+ (p+ 1)

T∫

0

∫

Ω

F (u, v)dxdt+ (k + 1)

T∫

0

∫

Γ

H(γu)dΓdt. (4.16)

By recalling (2.7), one has

T∫

0

E (t)dt ≤
T∫

0

(
‖ut‖2

2 + ‖vt‖2
2

)
dt+

∣
∣
∣
∣
∣
∣
∣

⎡

⎣

∫

Ω

(utu+ vtv)dx

⎤

⎦

T

0

∣
∣
∣
∣
∣
∣
∣

+

⎡

⎣

T∫

0

∫

Ω

|g1(ut)u+ g2(vt)v|dxdt+

T∫

0

∫

Γ

|g(γut)γu|dΓdt

⎤

⎦

+ C

T∫

0

(
‖u‖p+1

p+1 + ‖v‖p+1
p+1 + |γu|k+1

k+1

)
dt. (4.17)

Now, we start with estimating each term on the right-hand side of (4.17).

1. Estimate for

∣
∣
∣
∣
∣
∣
∣

⎡

⎣

∫

Ω

(utu+ vtv)dx

⎤

⎦

T

0

∣
∣
∣
∣
∣
∣
∣

.
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Notice
∣
∣
∣

∫

Ω

(ut(t)u(t) + vt(t)v(t))dx
∣
∣
∣ ≤ ‖ut(t)‖2 ‖u(t)‖2 + ‖vt(t)‖2 ‖v(t)‖2

≤ 1
2

(
‖ut(t)‖2

2 + ‖u(t)‖2
2 + ‖vt(t)‖2

2 + ‖v(t)‖2
2

)
≤ c0E (t), for all t ≥ 0,

where c0 > 0 is the constant in the Poincaré–Wirtinger type of inequality (2.1). Thus, by (2.26) and
(4.12), it follows that

∣
∣
∣
∣
∣
∣
∣

⎡

⎣

∫

Ω

(utu+ vtv)dx

⎤

⎦

T

0

∣
∣
∣
∣
∣
∣
∣

≤ c0(E (T ) + E (0)) ≤ c0

(
c

c− 2

)

(E(T ) + E(0))

≤ c0

(
c

c− 2

)

(2E(T ) + D(T )) . (4.18)

2. Estimate for

T∫

0

(
‖u‖p+1

p+1 + ‖v‖p+1
p+1 + |γu|k+1

k+1

)
dt.

Since p < 5, then by the Sobolev Imbedding Theorem, H1−δ(Ω) ↪→ Lp+1(Ω), for sufficiently
small δ > 0, and by using a standard interpolation, we obtain

‖u‖p+1 ≤ C ‖u‖H1−δ(Ω) ≤ C ‖u‖1−δ
1,Ω ‖u‖δ

2 .

Applying Young’s inequality yields

‖u‖p+1
p+1 ≤ C ‖u‖(1−δ)(p+1)

1,Ω ‖u‖δ(p+1)
2 ≤ ε0 ‖u‖

2(1−δ)(p+1)
2−δ(p+1)

1,Ω + Cε0 ‖u‖2
2 (4.19)

for all ε0 > 0, and where we have required δ < 2
p+1 . By (2.26) and (3.3), one has

‖u‖2
1,Ω ≤ 2E (t) ≤

(
2c
c− 2

)

E(t) ≤
(

2c
c− 2

)

E(0). (4.20)

Since p > 1 and δ < 2
p+1 , then 2(1−δ)(p+1)

2−δ(p+1) > 2, and thus combining (4.19) and (4.20) implies

‖u‖p+1
p+1 ≤ ε0C(E(0)) ‖u‖2

1,Ω + Cε0 ‖u‖2
2 . (4.21)

For each ε > 0, if we choose ε0 = ε
C(E(0)) , then (4.21) gives

‖u‖p+1
p+1 ≤ ε ‖u‖2

1,Ω + C(ε, E(0)) ‖u‖2
2 . (4.22)

Replacing u by v in (4.19)–(4.22) yields

‖v‖p+1
p+1 ≤ ε ‖v‖2

1,Ω + C(ε, E(0)) ‖v‖2
2 . (4.23)

Also, since k < 3, then by the Sobolev Imbedding Theorem |γu|k+1 ≤ C ‖u‖H1−δ(Ω), for sufficiently
small δ > 0. By employing similar estimates as in (4.19)–(4.22), we deduce

|γu|k+1
k+1 ≤ ε ‖u‖2

1,Ω + C(ε, E(0)) ‖u‖2
2 . (4.24)
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A combination of the estimates (4.22)–(4.24) yields

T∫

0

(
‖u‖p+1

p+1 + ‖v‖p+1
p+1 + |γu|k+1

k+1

)
dt

≤ 4ε

T∫

0

E (t)dt+ C(ε, E(0))

T∫

0

(
‖u‖2

2 + ‖v‖2
2

)
dt. (4.25)

3. Estimate for

T∫

0

(
‖ut‖2

2 + ‖vt‖2
2

)
dt.

We introduce the sets:

A := {(x, t) ∈ Ω × (0, T ) : |ut(x, t)| < 1}
B := {(x, t) ∈ Ω × (0, T ) : |ut(x, t)| ≥ 1}.

By Assumption 1.1, we know g1(s)s ≥ a1|s|m+1 ≥ a1|s|2 for |s| ≥ 1. Therefore, applying (4.1) and
the fact ϕ1 is concave and increasing implies,

T∫

0

‖ut‖2
2 dt =

∫

A

|ut|2dxdt+
∫

B

|ut|2dxdt

≤
∫

A

ϕ1(g1(ut)ut)dxdt+
∫

B

g1(ut)utdxdt

≤ T |Ω|ϕ1

⎛

⎝

T∫

0

∫

Ω

g1(ut)utdxdt

⎞

⎠ +

T∫

0

∫

Ω

g1(ut)utdxdt, (4.26)

where we have used Jensen’s inequality and our choice of T , namely T |Ω| ≥ 1. Likewise, one has

T∫

0

‖vt‖2
2 dt ≤ T |Ω|ϕ2

⎛

⎝

T∫

0

∫

Ω

g2(vt)vtdxdt

⎞

⎠ +

T∫

0

∫

Ω

g2(vt)vtdxdt. (4.27)

4. Estimate for

T∫

0

∫

Ω

|g1(ut)u+ g2(vt)v|dxdt+

T∫

0

∫

Γ

|g(γut)γu|dΓdt.
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Case 1 : m, r ≤ 5 and q ≤ 3.
We will concentrate on evaluating

∫ T

0

∫

Ω
|g1(ut)u|dxdt. Notice

T∫

0

∫

Ω

|g1(ut)u|dxdt =
∫

A

|g1(ut)u|dxdt+
∫

B

|g1(ut)u|dxdt

≤
⎛

⎝

T∫

0

‖u‖2
2 dt

⎞

⎠

1
2
⎛

⎝

∫

A

|g1(ut)|2dxdt
⎞

⎠

1
2

+
∫

B

|g1(ut)u|dxdt

≤ ε

T∫

0

E (t)dt+ Cε

∫

A

|g1(ut)|2dxdt+
∫

B

|g1(ut)u|dxdt (4.28)

where we have used Hölder’s and Young’s inequalities. By (4.1), Jensen’s inequality and the
fact T |Ω| ≥ 1, we have

∫

A

|g1(ut)|2dxdt ≤
∫

A

ϕ1(g1(ut)ut)dxdt ≤ T |Ω|ϕ1

⎛

⎝

T∫

0

∫

Ω

g1(ut)utdxdt

⎞

⎠ . (4.29)

Next, we estimate the last term on the right-hand side of (4.28). Since m ≤ 5, then by Assump-
tion 1.1, we know |g1(s)| ≤ b1|s|m ≤ b1|s|5 for |s| ≥ 1. Therefore, by Hölder’s inequality, we
deduce

∫

B

|g1(ut)u|dxdt ≤
⎛

⎝

∫

B

|u|6dxdt
⎞

⎠

1
6
⎛

⎝

∫

B

|g1(ut)|65 dxdt

⎞

⎠

5
6

≤
⎛

⎝

T∫

0

‖u‖6
6 dt

⎞

⎠

1
6
⎛

⎝

∫

B

|g1(ut)||g1(ut)| 1
5 dxdt

⎞

⎠

5
6

≤ b
1
6
1

⎛

⎝

T∫

0

‖u‖6
6 dt

⎞

⎠

1
6
⎛

⎝

∫

B

|g1(ut)||ut|dxdt
⎞

⎠

5
6

. (4.30)

By recalling inequality (2.25) which states E (t) ≤ d
(

c
c−2

)
, for all t ≥ 0, we have

T∫

0

‖u‖6
6 dt ≤ C

T∫

0

‖u‖6
1,Ω dt ≤ C

T∫

0

E (t)3dt ≤ C

T∫

0

E (t)dt. (4.31)

Combining (4.30) and (4.31) yields

∫

B

|g1(ut)u|dxdt ≤ C

⎛

⎝

T∫

0

E (t)dt

⎞

⎠

1
6
⎛

⎝

T∫

0

∫

Ω

g1(ut)utdxdt

⎞

⎠

5
6

≤ ε

T∫

0

E (t)dt+ Cε

T∫

0

∫

Ω

g1(ut)utdxdt (4.32)

where we have used Young’s inequality.
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By applying the estimates (4.29) and (4.32), we obtain from (4.28) that

T∫

0

∫

Ω

|g1(ut)u|dxdt ≤ 2ε

T∫

0

E (t)dt

+ CεT |Ω|ϕ1

⎛

⎝

T∫

0

∫

Ω

g1(ut)utdxdt

⎞

⎠ + Cε

T∫

0

∫

Ω

g1(ut)utdxdt, if m ≤ 5. (4.33)

Similarly,

T∫

0

∫

Ω

|g2(vt)v|dxdt ≤ 2ε

T∫

0

E (t)dt+ CεT |Ω|ϕ2

⎛

⎝

T∫

0

∫

Ω

g2(vt)vtdxdt

⎞

⎠

+ Cε

T∫

0

∫

Ω

g2(vt)vtdxdt, if r ≤ 5. (4.34)

Likewise, since T |Γ| ≥ 1, we similarly derive

T∫

0

∫

Γ

|g(γut)γu|dΓdt ≤ 2ε

T∫

0

E (t)dt+ CεT |Γ|ϕ
⎛

⎝

T∫

0

∫

Γ

g(γut)γutdΓdt

⎞

⎠

+ Cε

T∫

0

∫

Γ

g(γut)γutdΓdt, if q ≤ 3. (4.35)

Case 2 : max{m, r} > 5 or q > 3.
In this case, we impose the additional assumption u ∈ L∞(R+;L

3
2 (m−1)(Ω)) if m > 5, v ∈

L∞(R+;L
3
2 (r−1)(Ω)) if r > 5, and γu ∈ L∞(R+;L2(q−1)(Γ)) if q > 3.

We evaluate the last term on the right-hand side of (4.28) for the case m > 5. By Hölder’s
inequality, we have

∫

B

|g1(ut)u|dxdt ≤
⎡

⎣

∫

B

|g1(ut)|m+1
m dxdt

⎤

⎦

m
m+1

⎡

⎣

∫

B

|u|m+1dxdt

⎤

⎦

1
m+1

. (4.36)

Since |g1(s)| ≤ b1|s|m for all |s| ≥ 1, one has
∫

B

|g1(ut)|m+1
m dxdt =

∫

B

|g1(ut)||g1(ut)| 1
m dxdt ≤ b

1
m
1

∫

B

|g1(ut)||ut|dxdt. (4.37)

We evaluate the last term in (4.36) using Hölder’s inequality:

∫

B

|u|m+1dxdt ≤
T∫

0

∫

Ω

|u|2|u|m−1dxdt ≤
T∫

0

‖u‖2
6 ‖u‖m−1

3
2 (m−1) dt

≤ C ‖u‖m−1

L∞(R+;L
3
2 (m−1)(Ω))

T∫

0

E (t)dt. (4.38)
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Now, combining (4.36)–(4.38) yields
∫

B

|g1(ut)u|dxdt

≤ C ‖u‖
m−1
m+1

L∞(R+;L
3
2 (m−1)(Ω))

⎛

⎝

T∫

0

E (t)dt

⎞

⎠

1
m+1

⎛

⎝

∫

B

|g1(ut)||ut|dxdt
⎞

⎠

m
m+1

≤ ε ‖u‖m−1

L∞(R+;L
3
2 (m−1)(Ω))

T∫

0

E (t)dt+ Cε

T∫

0

∫

Ω

g1(ut)utdxdt (4.39)

where we have used Young’s inequality.
By (4.28), (4.29) and (4.39), one has

T∫

0

∫

Ω

|g1(ut)u|dxdt ≤ ε

(

1 + ‖u‖m−1

L∞(R+;L
3
2 (m−1)(Ω))

) T∫

0

E (t)dt

+ CεT |Ω|ϕ1

⎛

⎝

T∫

0

∫

Ω

g1(ut)utdxdt

⎞

⎠ + Cε

T∫

0

∫

Ω

g1(ut)utdxdt, if m > 5. (4.40)

Similarly, we can deduce
T∫

0

∫

Ω

|g2(vt)v|dxdt ≤ ε

(

1 + ‖v‖r−1

L∞(R+;L
3
2 (r−1)(Ω))

) T∫

0

E (t)dt

+ CεT |Ω|ϕ2

⎛

⎝

T∫

0

∫

Ω

g2(vt)vtdxdt

⎞

⎠ + Cε

T∫

0

∫

Ω

g2(vt)vtdxdt, if r > 5; (4.41)

and
T∫

0

∫

Γ

|g(γut)γu|dxdt ≤ ε
(
1 + ‖γu‖q−1

L∞(R+;L2(q−1)(Γ))

) T∫

0

E (t)dt

+ CεT |Γ|ϕ
⎛

⎝

T∫

0

∫

Γ

g(γut)γutdΓdt

⎞

⎠ + Cε

T∫

0

∫

Γ

g(γut)γutdΓdt, if q > 3. (4.42)

Now, if we combine the estimates (4.17), (4.18), (4.25)–(4.27), (4.33)–(4.35), (4.40)–(4.42),
then by selecting ε sufficiently small and since T ≥ T0 ≥ 1, we conclude

1
2

T∫

0

E (t)dt ≤ c0

(
c

c− 2

)

(2E(T ) + D(T )) + C(ε, E(0))

T∫

0

(
‖u‖2

2 + ‖v‖2
2

)
dt

+ T · C(ε, |Ω|, |Γ|)Φ(D(T )). (4.43)

Since E (t) ≥ E(t) for all t ≥ 0 and E(t) is non-increasing, one has
T∫

0

E (t)dt ≥
T∫

0

E(t)dt ≥ TE(T ). (4.44)
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Appealing to the fact T ≥ T0 ≥ 8c0
(

c
c−2

)
, then (4.43) and (4.44) yield

1
4
TE(T ) ≤ c0

(
c

c− 2

)

D(T ) + C(ε, E(0))

T∫

0

(
‖u‖2

2 + ‖v‖2
2

)
dt

+ T · C(ε, |Ω|, |Γ|)Φ(D(T )). (4.45)

Since T ≥ 1, dividing both sides of (4.45) by T yields

1
4
E(T ) ≤ c0

(
c

c− 2

)

D(T ) + C(ε, E(0))

T∫

0

(
‖u‖2

2 + ‖v‖2
2

)
dt

+ C(ε, |Ω|, |Γ|)Φ(D(T )). (4.46)

Finally, if we put Ĉ := 4[c0
(

c
c−2

)
+ C(ε, |Ω|, |Γ|) + C(ε, E(0))], then (4.46) shows

E(T ) ≤ Ĉ

⎡

⎣Φ(D(T )) +

T∫

0

(
‖u(t)‖2

2 + ‖v(t)‖2
2

)
dt

⎤

⎦ (4.47)

for all T ≥ T0 = max{1, 1
|Ω| ,

1
|Γ| , 8c0(

c
c−2 )}. �

4.2. Explicit approximation of the “good” part W1 of the potential well

In order to estimate the lower order terms
∫ T

0
(‖u(t)‖2

2+‖v(t)‖2
2)dt in (4.14), we shall construct an explicit

subset W̃1 ⊂ W1, which approximates the “good” part of the well W1. By the definition of J(u, v) in
(2.9) and the bounds in (2.7), it follows that

J(u, v) ≥ 1
2

(
‖u‖2

1,Ω + ‖v‖2
1,Ω

)
−M

(
‖u‖p+1

p+1 + ‖v‖p+1
p+1 + |γu|k+1

k+1

)
.

By recalling the constants defined in (2.28), we have

J(u, v) ≥ 1
2

(
‖u‖2

1,Ω + ‖v‖2
1,Ω

)
−MR1

(
‖u‖p+1

1,Ω + ‖v‖p+1
1,Ω

)
−MR2 ‖u‖k+1

1,Ω

≥ 1
2

‖(u, v)‖2
X −MR1 ‖(u, v)‖p+1

X −MR2 ‖(u, v)‖k+1
X (4.48)

where X = H1(Ω) ×H1
0 (Ω).

By recalling the function G(s) defined in (2.27), namely

G(s) :=
1
2
s2 −MR1s

p+1 −MR2s
k+1,

then inequality (4.48) is equivalent to

J(u, v) ≥ G(‖(u, v)‖X). (4.49)

Since p, k > 1, then

G′(s) = s
(
1 −MR1(p+ 1)sp−1 −MR2(k + 1)sk−1

)

has only one positive zero at, say at s0 > 0, where s0 satisfies:

MR1(p+ 1)sp−1
0 +MR2(k + 1)sk−1

0 = 1. (4.50)
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It is easy to verify that sups∈[0,∞) G(s) = G(s0) > 0. Thus, we can define the following set as in (2.29):

W̃1 := {(u, v) ∈ X : ‖(u, v)‖X < s0, J(u, v) < G(s0)}.
It is important to note W̃1 is not a trivial set. In fact, for any (u, v) ∈ X, there exists a scalar ε > 0 such
that ε(u, v) ∈ W̃1. Moreover, we have the following result.

Proposition 4.2. W̃1 is a subset of W1.

Proof. We first show G(s0) ≤ d. Fix (u, v) ∈ X \ {(0, 0)}, then (4.49) yields J(λ(u, v)) ≥ G(λ ‖(u, v)‖X)
for all λ ≥ 0. It follows that

sup
λ≥0

J(λ(u, v)) ≥ G(s0).

Therefore, by Lemma 2.7, one has

d = inf
(u,v)∈X\{(0,0)}

sup
λ≥0

J(λ(u, v)) ≥ G(s0). (4.51)

Moreover, for all ‖(u, v)‖X < s0, by employing (2.7) and (2.28), we argue

(p+ 1)
∫

Ω

F (u, v)dx+ (k + 1)
∫

Γ

H(γu)dΓ

≤ (p+ 1)MR1

(
‖u‖p+1

1,Ω + ‖v‖p+1
1,Ω

)
+ (k + 1)MR2 ‖u‖k+1

1,Ω

≤ ‖(u, v)‖2
X

[
(p+ 1)MR1 ‖(u, v)‖p−1

X + (k + 1)MR2 ‖(u, v)‖k−1
X

]

< ‖(u, v)‖2
X

[
(p+ 1)MR1s

p−1
0 + (k + 1)MR2s

k−1
0

]

= ‖(u, v)‖2
X = ‖u‖2

1,Ω + ‖v‖2
1,Ω (4.52)

where we have used (4.50). Therefore, by the definition of W1, it follows that W̃1 ⊂ W1. �

For each fixed sufficiently small δ > 0, we can define a closed subset of W̃1 as in (2.30), namely,

W̃δ
1 := {(u, v) ∈ X : ‖(u, v)‖X ≤ s0 − δ, J(u, v) ≤ G(s0 − δ)},

and we show W̃δ
1 is invariant under the dynamics.

Proposition 4.3. Assume δ > 0 is sufficiently small and E(0) ≤ G(s0 − δ). If (u, v) is the global solution
of (1.1) furnished by Theorem 2.8 and (u0, v0) ∈ W̃δ

1 , then (u(t), v(t)) ∈ W̃δ
1 for all t ≥ 0.

Proof. By the fact J(u(t), v(t)) ≤ E(t) ≤ E(0) and by assumption E(0) ≤ G(s0 − δ), we obtain
J(u(t), v(t)) ≤ G(s0 − δ) for all t ≥ 0. To show ‖(u(t), v(t))‖X ≤ s0 − δ for all t ≥ 0, we argue by
contradiction. Since ‖(u0, v0)‖X ≤ s0 − δ and (u, v) ∈ C(R+;X), we can assume in contrary that there
exists t1 > 0 such that ‖(u(t1), v(t1))‖X = s0 − δ + ε for some ε ∈ (0, δ). Therefore, by (4.49), we obtain
that J((u(t1), v(t1))) ≥ G(s0 − δ+ ε) > G(s0 − δ) since G(t) is strictly increasing on (0, s0). However, this
contradicts the fact that J(u(t), v(t)) ≤ G(s0 − δ) for all t ≥ 0. �

4.3. Absorption of the lower order terms

Proposition 4.4. In addition to Assumptions 1.1 and 2.4, further assume (u0, v0) ∈ W̃δ
1 and E(0) <

G(s0 − δ) for some δ > 0. If 1 < p < 5 and 1 < k < 3, then the global solution (u, v) of the system (1.1)
furnished by Theorem 2.8 satisfies the inequality
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T∫

0

(
‖u(t)‖2

2 + ‖v(t)‖2
2

)
dt ≤ CT Φ(D(T )) (4.53)

for all T ≥ T0, where T0 is specified in (4.13).

Proof. We follow the standard compactness-uniqueness approach and argue by contradiction.
Step 1: Limit problem from the contradiction hypothesis. Let us fix T ≥ T0. Suppose there is a

sequence of initial data

{un
0 , v

n
0 , u

n
1 , v

n
1 } ⊂ Wδ

1 × (L2(Ω))2

such that the corresponding weak solutions (un, vn) verify

lim
n→∞

Φ(Dn(T ))
∫ T

0

(
‖un(t)‖2

2 + ‖vn(t)‖2
2

)
dt

= 0, (4.54)

where

Dn(T ) :=

T∫

0

∫

Ω

[g1 (un
t )un

t + g2 (vn
t ) vn

t ] dxdt+

T∫

0

∫

Γ

g (γun
t ) γun

t dΓdt.

By the energy estimate (2.25), we have
∫ T

0
(‖un(t)‖2

2+‖vn(t)‖2
2)dt ≤ 2Td( c

c−2 ) for all n ∈ N. Therefore,
it follows from (4.54) that

lim
n→∞ Φ(Dn(T )) = 0. (4.55)

By recalling (4.26)–(4.27) and (4.55), one has

lim
n→∞

T∫

0

(
‖un

t ‖2
2 + ‖vn

t ‖2
2

)
dt = 0. (4.56)

By Assumption 1.1, we know a1|s|m+1 ≤ g1(s)s ≤ b1|s|m+1 for all |s| ≥ 1, and so

|g1(s)|m+1
m ≤ b

m+1
m

1 |s|m+1 ≤ b
m+1

m
1

1
a1
g1(s)s, for all |s| ≥ 1. (4.57)

In addition, since g1 is increasing and vanishing at the origin, we know

|g1(s)| ≤ b1, for all |s| < 1. (4.58)

If we define the sets

An := {(x, t) ∈ Ω × (0, T ) : |un
t (x, t)| < 1}

Bn := {(x, t) ∈ Ω × (0, T ) : |un
t (x, t)| ≥ 1}, (4.59)

then (4.57) and (4.58) imply

T∫

0

∫

Ω

|g1 (un
t ) |m+1

m dxdt =
∫

An

|g1 (un
t ) |m+1

m dxdt+
∫

Bn

|g1 (un
t ) |m+1

m dxdt

≤ b
m+1

m
1 |Ω|T + b

m+1
m

1

1
a1

T∫

0

∫

Ω

g1 (un
t )un

t dxdt. (4.60)
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Since
∫ T

0

∫

Ω
g1(un

t )un
t dxdt → 0, as n → ∞, (implied by (4.55)), then (4.60) shows

sup
n∈N

T∫

0

∫

Ω

|g1 (un
t ) |m+1

m dxdt < ∞. (4.61)

Note (4.56) implies, on a subsequence, un
t → 0 a.e. in Ω × (0, T ). Thus, g1(un

t ) → 0 a.e. in Ω × (0, T ).
Consequently, by (4.61) and the fact m+1

m > 1, we conclude,

g1 (un
t ) → 0 weakly in L

m+1
m (Ω × (0, T )). (4.62)

Similarly, by following (4.57)–(4.61) step by step, we may deduce

sup
n∈N

T∫

0

∫

Γ

|g (γun
t ) | q+1

q dΓdt < ∞. (4.63)

Notice (4.55) shows
∫ T

0

∫

Γ
g(γun

t )γun
t dΓdt → 0 as n → ∞. So on a subsequence g(γun

t )γun
t → 0 a.e. in

Γ × (0, T ), and since g is increasing and vanishing at the origin, we see g(γun
t ) → 0 a.e. in Γ × (0, T ).

Therefore, by (4.63), it follows that

g (γun
t ) → 0 weakly in L

q+1
q (Γ × (0, T )). (4.64)

Now, notice (2.25) implies that the sequence of quadratic energy En(t) := 1
2 (‖un‖2

1,Ω + ‖vn‖2
1,Ω +

‖un
t ‖2

2 + ‖vn
t ‖2

2) is uniformly bounded on [0, T ]. Therefore, {un, vn, un
t , v

n
t } is a bounded sequence in

L∞(0, T ;H1(Ω) ×H1
0 (Ω) × L2(Ω) × L2(Ω)). So, on a subsequence, we have

un −→ u weakly∗ in L∞(0, T ;H1(Ω)),

vn −→ v weakly∗ in L∞(0, T ;H1
0 (Ω)). (4.65)

We note here that for any 0 < ε ≤ 1, the imbedding H1(Ω) ↪→ H1−ε(Ω) is compact, and H1−ε(Ω) ↪→
L2(Ω). Thus, by Aubin’s Compactness Theorem, for any α > 1, there exists a subsequence such that

un −→ u strongly in Lα(0, T ;H1−ε(Ω)),

vn −→ v strongly in Lα(0, T ;H1−ε
0 (Ω)). (4.66)

In addition, for any fixed 1 ≤ s < 6, we know H1−ε(Ω) ↪→ Ls(Ω) for sufficiently small ε > 0. Hence, it
follows from (4.66) that

un −→ u and vn −→ v strongly in Ls(Ω × (0, T )), (4.67)

for any 1 ≤ s < 6. Similarly, by (4.66), one also has

γun −→ γu strongly in Ls0(Γ × (0, T )), (4.68)

for any s0 < 4. Consequently, on a subsequence,

un → u and vn → v a.e. in Ω × (0, T ),

γun → γu a.e. in Γ × (0, T ). (4.69)

Now let t ∈ (0, T ) be fixed. If φ ∈ C(Ω × (0, t)), then by (3.4), we have

|fj(un, vn)φ| ≤ C(|un|p + |vn|p) in Ω × (0, t), j = 1, 2. (4.70)

Since p < 5, using (4.67), (4.69)–(4.70), and the Generalized Dominated Convergence Theorem, we arrive
at

lim
n→∞

t∫

0

∫

Ω

fj(un, vn)φdxdτ =

t∫

0

∫

Ω

fj(u, v)φdxdτ, j = 1, 2. (4.71)
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Similarly, applying (4.68)–(4.69), the assumption k < 4 and |h(s)| ≤ C|s|k, we may deduce

lim
n→∞

t∫

0

∫

Γ

h(γun)γφdΓdτ =

t∫

0

∫

Γ

h(γu)γφdΓdτ. (4.72)

If we select a test function φ ∈ C(Ω × (0, t)) ∩ C([0, t];H1(Ω)) such that φ(t) = φ(0) = 0 and
φt ∈ L2(Ω × (0, t)), then (2.2) gives

t∫

0

[− (un
t , φt)Ω + (un, φ)1,Ω] dτ +

t∫

0

∫

Ω

g1 (un
t )φdxdτ +

t∫

0

∫

Γ

g (γun
t ) γφdΓdτ

=

t∫

0

∫

Ω

f1(un, vn)φdxdτ +

t∫

0

∫

Γ

h(γun)γφdΓdτ. (4.73)

By employing (4.56), (4.62), (4.64), (4.65), (4.71)–(4.72), we can pass to the limit in (4.73) to obtain
t∫

0

(u, φ)1,Ωdτ =

t∫

0

∫

Ω

f1(u, v)φdxdτ +

t∫

0

∫

Γ

h(γu)γφdΓdτ. (4.74)

Now we fix φ̃ ∈ H1(Ω) ∩ C(Ω) and substitute φ(x, τ) := τ(t − τ)φ̃(x) into (4.74). Differentiating the
result twice with respect to t yields

(u(t), φ̃)1,Ω =
∫

Ω

f1(u(t), v(t))φ̃dx+
∫

Γ

h(γu(t))γφ̃dΓ. (4.75)

If we select a sequence φ̃n ∈ H1(Ω) ∩ C(Ω) such that φ̃n → u(t) in H1(Ω), for a fixed t, then φ̃n → u(t)
in L6(Ω). Now, since |f1(u, v)| ≤ C(|u|p + |v|p) with p < 5, |h(s)| ≤ C|s|k with k < 3, then by Hölder’s
inequality, we can pass to the limit as n → ∞ in (4.75) (where φ̃ is replaced by φ̃n), to obtain

‖u(t)‖2
1,Ω =

∫

Ω

f1(u(t), v(t))u(t)dx+
∫

Γ

h(γu(t))γu(t)dΓ. (4.76)

In addition, by repeating (4.73)–(4.76) for (2.3), we can derive

‖v(t)‖2
1,Ω =

∫

Ω

f2(u(t), v(t))v(t)dx. (4.77)

Adding (4.76) and (4.77) gives

‖u(t)‖2
1,Ω + ‖v(t)‖2

1,Ω =
∫

Ω

(f1(u(t), v(t))u(t) + f2(u(t), v(t))v(t))dx

+
∫

Γ

h(γu(t))γu(t)dΓ, for any t ∈ (0, T ). (4.78)

Next, we show (u(t), v(t)) ∈ W̃δ
1 a.e. on [0, T ]. Indeed, by (4.65)–(4.66) and referring to Proposition

2.9 in [28], we obtain, on a subsequence

un(t) −→ u(t) weakly in H1(Ω) a.e. t ∈ [0, T ];

vn(t) −→ v(t) weakly in H1
0 (Ω) a.e. t ∈ [0, T ]. (4.79)
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It follows that

‖u(t)‖1,Ω ≤ lim inf
n→∞ ‖un(t)‖1,Ω and ‖v(t)‖1,Ω ≤ lim inf

n→∞ ‖vn(t)‖1,Ω , (4.80)

for a.e. t ∈ [0, T ]. Since the initial data {un
0 , v

n
0 } ∈ W̃δ

1 and E(0) < G(s0 − δ), then Proposition 4.3 shows
the corresponding global solutions {un(t), vn(t)} ∈ W̃δ

1 for all t ≥ 0. Then, by the definition of W̃δ
1 one

knows ‖(un(t), vn(t))‖X ≤ s0 − δ, and J(un(t), vn(t)) ≤ G(s0 − δ) for all t ≥ 0. Thus, (4.80) implies
‖(u(t), v(t))‖X ≤ s0 − δ a.e. on [0, T ]. In order to show J(u(t), v(t)) ≤ G(s0 − δ) a.e. on [0, T ], we note
that

G(s0 − δ) ≥ J(un(t), vn(t))

=
1
2

(
‖un(t)‖1,Ω + ‖vn(t)‖1,Ω

)
−
∫

Ω

F (un(t), vn(t))dx−
∫

Γ

H(γun(t))dΓ. (4.81)

Since the imbedding H1(Ω) → H1−ε(Ω) is compact and p < 5, k < 3, we obtain from (4.79) that

un(t) −→ u(t), vn(t) −→ v(t) strongly in Lp+1(Ω), a.e. on [0, T ]

γun(t) −→ γu(t) strongly in Lk+1(Γ), a.e. on [0, T ]. (4.82)

By (2.7), (4.82), and the Generalized Dominated Convergence Theorem, one has, on a subsequence

lim
n→∞

∫

Ω

F (un(t), vn(t))dx =
∫

Ω

F (u(t), v(t))dx, a.e. on [0, T ],

lim
n→∞

∫

Γ

H(γun(t))dΓ =
∫

Γ

H(γu(t))dΓ, a.e. on [0, T ]. (4.83)

Applying (4.80) and (4.83), we can take the limit inferior on both side of the inequality (4.81) to obtain

G(s0 − δ) ≥ J(u(t), v(t)), a.e. on [0, T ].

Hence (u(t), v(t)) ∈ W̃δ
1 ⊂ W1 a.e. on [0, T ]. Therefore, by the definition of W1 and (4.78), necessarily we

have (u(t), v(t)) = (0, 0) a.e. on [0, T ]. Therefore, (4.67) implies

un −→ 0 and vn −→ 0 strongly in Ls(Ω × (0, T )), for any s < 6. (4.84)

Step 2: Re-normalize the sequence {un, vn}. We define

Nn :=

⎛

⎝

T∫

0

(
‖un‖2

2 + ‖vn‖2
2

)
dt

⎞

⎠

1
2

.

By (4.84), one has un −→ 0 and vn −→ 0 in L2(Ω × (0, T )), and so, Nn −→ 0 as n → ∞. If we set

yn :=
un

Nn
and zn :=

vn

Nn
,

then clearly
T∫

0

(
‖yn‖2

2 + ‖zn‖2
2

)
dt = 1. (4.85)

By the contradiction hypothesis (4.54), namely

lim
n→∞

Φ(Dn(T ))
N2

n

= 0, (4.86)
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and along with (4.26)–(4.27), we obtain

lim
n→∞

∫ T

0

(
‖un

t ‖2
2 + ‖vn

t ‖2
2

)
dt

N2
n

= 0,

which is equivalent to

lim
n→∞

T∫

0

(
‖yn

t ‖2
2 + ‖zn

t ‖2
2

)
dt = 0. (4.87)

We next show
g1(un

t )
Nn

−→ 0 strongly in L
m+1

m (Ω × (0, T )). (4.88)

Recall the definition of the sets An and Bn in (4.59). Since Nn −→ 0 as n → ∞, we can let n be
sufficiently large such that Nn < 1, then by using (4.1), (4.57), Hölder’s and Jensen’s inequalities, we
deduce

T∫

0

∫

Ω

∣
∣
∣
∣
g1(un

t )
Nn

∣
∣
∣
∣

m+1
m

dxdt =
∫

An

∣
∣
∣
∣
g1(un

t )
Nn

∣
∣
∣
∣

m+1
m

dxdt+
∫

Bn

∣
∣
∣
∣
g1(un

t )
Nn

∣
∣
∣
∣

m+1
m

dxdt

≤ C(T, |Ω|)
⎛

⎝

∫

An

∣
∣
∣
∣
g1(un

t )
Nn

∣
∣
∣
∣

2

dxdt

⎞

⎠

m+1
2m

+
1
N2

n

∫

Bn

|g1(un
t )|m+1

m dxdt

≤ C(T, |Ω|)
⎛

⎝
1
N2

n

∫

An

ϕ1(g1(un
t )un

t )dxdt

⎞

⎠

m+1
2m

+
b

m+1
m

1

a1N2
n

∫

Bn

g1(un
t )un

t dxdt

≤ C(T, |Ω|)
(

Φ(Dn(T ))
N2

n

)m+1
2m

+
b

m+1
m

1

a1

Φ(Dn(T ))
N2

n

−→ 0, as n → ∞,

where we have used (4.86) and the fact T ≥ T0 ≥ 1
|Ω| . Thus, our desired result (4.88) follows.

Likewise, we can prove

g(γun
t )

Nn
−→ 0 strongly in L

q+1
q (Γ × (0, T )). (4.89)

Let En be the total energy corresponding to the solution (un, vn). So (2.26) shows En(t) ≥ 0 for all
t ≥ 0. Also by (4.14) and (4.85)–(4.86), we obtain limn→∞

En(T )
N2

n
≤ Ĉ, which implies {En(T )

N2
n

} is uniformly

bounded. The energy identity (4.12) shows En(T ) + Dn(T ) = En(0), and thus {En(0)
N2

n
} is also uniformly

bounded. Moreover, since E′
n(t) ≤ 0 for all t ≥ 0, one has {En(t)

N2
n

} is uniformly bounded on [0, T ], and
along with the energy inequality (2.26), we conclude that the sequence

{
En(t)
N2

n

=
1
2

(
‖yn‖2

1,Ω + ‖zn‖2
1,Ω + ‖yn

t ‖2
2 + ‖zn

t ‖2
2

)}

is uniformly bounded on [0, T ], where En is the quadratic energy corresponding to (un, vn). Therefore,
{yn, zn, yn

t , z
n
t } is a bounded sequence in L∞(0, T ;H1(Ω) × H1

0 (Ω) × L2(Ω) × L2(Ω)). Therefore, on a
subsequence,

yn −→ y weakly∗ in L∞(0, T ;H1(Ω)),
zn −→ z weakly∗ in L∞(0, T ;H1

0 (Ω)). (4.90)
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As in (4.66)–(4.69), we may deduce that, on subsequences

yn −→ y and zn −→ z strongly in Ls(Ω × (0, T )), (4.91)

for any s < 6, and

γyn −→ γy strongly in Ls0(Γ × (0, T )), (4.92)

for any s0 < 4. Note (4.85) and (4.91) show that

lim
n→∞

T∫

0

(
‖yn‖2

2 + ‖zn‖2
2

)
dt =

T∫

0

(
‖y‖2

2 + ‖z‖2
2

)
dt = 1. (4.93)

However, by Hölder’s inequality,

T∫

0

∫

Ω

|yn||un|p−1dxdt ≤
⎛

⎝

T∫

0

∫

Ω

|yn|5dxdt
⎞

⎠

1
5
⎛

⎝

T∫

0

∫

Ω

|un| 5
4 (p−1)dxdt

⎞

⎠

4
5

−→ ‖y‖L5(Ω×(0,T )) · 0 = 0 (4.94)

where we have used (4.91), (4.84), and the fact 5
4 (p− 1) < 5.

Similarly,

lim
n→∞

T∫

0

∫

Ω

|zn||vn|p−1dxdt = 0 and lim
n→∞

T∫

0

∫

Γ

|γyn||γun|k−1dΓdt = 0. (4.95)

Since |fj(un, vn)| ≤ C(|un|p + |vn|p), j = 1, 2, it follows that,

t∫

0

∫

Ω

∣
∣
∣
∣
fj(un, vn)

Nn
φ

∣
∣
∣
∣ dxdτ ≤ C

t∫

0

∫

Ω

(|yn||un|p−1 + |zn||vn|p−1)dxdτ −→ 0, (4.96)

for any t ∈ (0, T ), φ ∈ C(Ω × (0, t)), and where we have used (4.94)–(4.95). Likewise,

t∫

0

∫

Γ

∣
∣
∣
∣
h(γun)
Nn

γφ

∣
∣
∣
∣ dΓdτ ≤ C

t∫

0

∫

Ω

|γyn||γun|k−1dΓdτ −→ 0. (4.97)

Dividing both sides of (4.73) by Nn yields

t∫

0

[−(yn
t , φt)Ω + (yn, φ)1,Ω]dτ +

t∫

0

∫

Ω

g1(un
t )

Nn
φdxdτ +

t∫

0

∫

Γ

g(γun
t )

Nn
γφdΓdτ

=

t∫

0

∫

Ω

f1(un, vn)
Nn

φdxdτ +

t∫

0

∫

Γ

h(γun)
Nn

γφdΓdτ. (4.98)

where φ ∈ C(Ω × (0, t)) ∩ C([0, t];H1(Ω)) such that φ(t) = φ(0) = 0 and φt ∈ L2(Ω × (0, t)).
By using (4.87), (4.88)–(4.89), (4.90), and (4.96)–(4.97), we can pass to the limit in (4.98) to find

t∫

0

(yn, φ)1,Ωdτ = 0, for all t ∈ (0, T ). (4.99)



Vol. 64 (2013) Systems of wave equations 649

Now, fix an arbitrary φ̃ ∈ H1(Ω)∩C(Ω) and substitute φ(x, τ) = τ(t− τ)φ̃(x) into (4.99). Differentiating
the result twice yields

(y(t), φ̃)1,Ω = 0, for all t ∈ (0, T ), (4.100)

which implies y(t) = 0 in H1(Ω) for all t ∈ (0, T ). Similarly, we can show z(t) = 0 in H1
0 (Ω) for all

t ∈ (0, T ). However, this contradicts the fact (4.93). Hence, the proof of Proposition 4.4 is complete. �

Remark 4.5. We can iterate the estimate (4.53) on time intervals [mT, (m + 1)T ], m = 0, 1, 2, . . ., and
obtain

(m+1)T∫

mT

(
‖u(t)‖2

2 + ‖v(t)‖2
2

)
dt ≤ CT Φ(D(T )), m = 0, 1, 2, . . . (4.101)

It is important to note, by the contradiction hypothesis made in the proof of Proposition 4.4, the constant
CT in (4.101) does not depend on m.

4.4. Proof of Theorem 2.9

We are now ready to prove Theorem 2.9: the uniform decay rates of energy.

Proof. Combining Propositions 4.1 and 4.4 yields E(T ) ≤ Ĉ(1 + CT )Φ(D(T )) for all T ≥ T0. If we set
ΦT = Ĉ(1 + CT )Φ, where CT is as given in (4.53), then the energy identity (4.12) shows that

E(T ) ≤ ΦT (D(T )) = ΦT (E(0) − E(T )),

which implies

E(T ) + Φ−1
T (E(T )) ≤ E(0).

By iterating the estimate on intervals [mT, (m+ 1)T ], m = 0, 1, 2, . . ., we have

E((m+ 1)T ) + Φ−1
T (E((m+ 1)T )) ≤ E(mT ), m = 0, 1, 2, . . .

Therefore, by Lemma 3.3 in [19], one has

E(mT ) ≤ S(m) for all m = 0, 1, 2, . . . (4.102)

where S is the solution the ODE:

S′ +
[
I − (

I + Φ−1
T

)−1
]
(S) = 0, S(0) = E(0), (4.103)

where I denotes the identity mapping. However, we note that

I − (
I + Φ−1

T

)−1
=

(
I + Φ−1

T

) ◦ (I + Φ−1
T

)−1 − (
I + Φ−1

T

)−1
= Φ−1

T ◦ (I + Φ−1
T

)−1

= Φ−1
T ◦ (ΦT ◦ Φ−1

T + Φ−1
T

)−1
= Φ−1

T ◦ ΦT ◦ (I + ΦT )−1 = (I + ΦT )−1.

It follows that the ODE (4.103) can be reduced to:

S′ + (I + ΦT )−1(S) = 0, S(0) = E(0), (4.104)

where (4.104) has a unique solutions defined on [0,∞). Since ΦT is increasing passing through the ori-
gin, we have (I + ΦT )−1 is also increasing and vanishing at zero. So if we write (4.104) in the form
S′ = −(I + ΦT )−1(S), then it follows that S(t) is decreasing and S(t) → 0 as t → ∞.

For any t > T , there exists m ∈ N such that t = mT + δ with 0 ≤ δ < T , and so m = t
T − δ

T > t
T − 1.

By (4.102) and the fact E(t) and S(t) are decreasing, we obtain

E(t) = E(mT + δ) ≤ E(mT ) ≤ S(m) ≤ S

(
t

T
− 1

)

, for any t > T. (4.105)
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If g1, g2, g are linearly bounded near the origin, then (4.5) shows that ϕ1, ϕ2, ϕ are linear, and it
follows that ΦT is linear, which implies (I+ΦT )−1 is also linear. Therefore, the ODE (4.104) is of the form
S′ +w0S = 0, S(0) = E(0) (for some positive constant w0), whose solution is given by: S(t) = E(0)e−w0t.
Thus, from (4.105) we know

E(t) ≤ E(0)e−w0( t
T −1) = (ew0E(0))e− w0

T t

for t > T . Consequently, if we set w := w0
T and choose C̃ sufficiently large, then we conclude

E(t) ≤ C̃E(0)e−wt, t ≥ 0,

which provides the exponential decay estimate (2.31).
If at least one of g1, g2, and g are not linearly bounded near the origin, then we can show the decay

of E(t) is algebraic. Indeed, by (4.8) we may choose ϕ1(s) = C1s
z1 , ϕ2(s) = C2s

z2 , ϕ(s) = C3s
z, where

0 < z1, z2, z ≤ 1 are given in (4.9). Also recall that j := max{ 1
z1
, 1

z2
, 1

z } > 1, as defined in (4.10). Now,
we study the function (I + ΦT )−1. Notice, if y = (I + ΦT )−1(s) for s ≥ 0, then y ≥ 0. In addition,

s = (I + ΦT )y = y + Ĉ(1 + CT )(ϕ1(y) + ϕ2(y) + ϕ(y) + y)

≤ C(ϕ1(y) + ϕ2(y) + ϕ(y) + y) ≤ Cymin{z1,z2,z}, for all 0 ≤ y ≤ 1.

It follows that there exists C0 > 0 such that y ≥ C0s
j for all 0 ≤ y ≤ 1, that is,

(I + ΦT )−1(s) ≥ C0s
j provided 0 ≤ (I + ΦT )−1(s) ≤ 1. (4.106)

Recall we have pointed out that S(t) is decreasing to zero as t → ∞, so (I + ΦT )−1(S(t)) is also
decreasing to zero as t → ∞. Hence, there exists t0 ≥ 0 such that (I +ΦT )−1(S(t)) ≤ 1, whenever t ≥ t0.
Therefore, (4.106) implies

S′(t) = −(I + ΦT )−1(S(t)) ≤ −C0S(t)j if t ≥ t0.

So, S(t) ≤ Ŝ(t) for all t ≥ t0 where Ŝ is the solution of the ODE

Ŝ′(t) = −C0Ŝ(t)j , Ŝ(t0) = S(t0). (4.107)

Since the solution of (4.107) is

Ŝ(t) = [C0(j − 1)(t− t0) + S(t0)1−j ]−
1

j−1 for all t ≥ t0,

and along with (4.105), it follows that

E(t) ≤ S

(
t

T
− 1

)

≤ Ŝ

(
t

T
− 1

)

=
[

C0(j − 1)
(
t

T
− 1 − t0

)

+ S(t0)1−j

]− 1
j−1

for all t ≥ T (t0 + 1). Since S(t0) depends on the initial energy E(0), there exists a positive constant
C(E(0)) depending on E(0) such that

E(t) ≤ C(E(0))(1 + t)− 1
j−1 , for all t ≥ 0,

where j > 1. Thus, the proof of Theorem 2.9 is complete. �

5. Blow up of potential well solutions

This section is devoted to prove the blow-up result: Theorem 2.10. We begin by showing W2 is invariant
under the dynamics of (1.1). More precisely, we have the following lemma.
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Lemma 5.1. In addition to Assumptions 1.1 and 2.4, further assume that (u0, v0) ∈ W2 and E(0) < d. If
1 < p ≤ 5 and 1 < k ≤ 3, then the weak solution (u(t), v(t)) ∈ W2 for all t ∈ [0, T ), and

‖u(t)‖2
1,Ω + ‖v(t)‖2

1,Ω > 2min
{
p+ 1
p− 1

,
k + 1
k − 1

}

d, for all t ∈ [0, T ), (5.1)

where [0, T ) is the maximal interval of existence.

Proof. Since E(0) < d, we have shown in the proof of Theorem 2.8 that (u(t), v(t)) ∈ W for all t ∈ [0, T ).
To show that (u(t), v(t)) ∈ W2 for all t ∈ [0, T ), we proceed by contradiction. Assume there exists
t1 ∈ (0, T ) such that (u(t1), v(t1)) ∈ W2, then it must be (u(t1), v(t1)) ∈ W1. Recall that the weak solu-
tion (u, v) ∈ C([0, T );H1(Ω) ×H1

0 (Ω)), and in the proof of Theorem 2.8, we have shown the continuity
of the function

t �→ (p+ 1)
∫

Ω

F (u(t), v(t))dt+ (k + 1)
∫

Γ

H(γu(t))dΓ.

Since (u(0), v(0)) ∈ W2, and (u(t1), v(t1)) ∈ W1, it follows that there exists s ∈ (0, t1] such that

‖u(s)‖2
1,Ω + ‖v(s)‖2

1,Ω = (p+ 1)
∫

Ω

F (u(s), v(s))dx+ (k + 1)
∫

Γ

H(γu(s))dΓ. (5.2)

Now we define t∗ as the infinimum of all s ∈ (0, t1] satisfying (5.2). By continuity, one has t∗ ∈ (0, t1]
satisfying (5.2), and (u(t), v(t)) ∈ W2 for all t ∈ [0, t∗). Thus, we have two cases to consider.

Case 1 : (u(t∗), v(t∗)) = (0, 0). Since t∗ satisfies (5.2), it follows (u(t∗), v(t∗)) ∈ N , and by Lemma
2.6, we know J(u(t∗), v(t∗)) ≥ d. Thus E(t∗) ≥ d, contradicting E(t) ≤ E(0) < d for all t ∈ [0, T ).
Case 2 : (u(t∗), v(t∗)) = (0, 0). Since (u(t), v(t)) ∈ W2 for all t ∈ [0, t∗), by utilizing a similar argu-
ment as in the proof of Theorem 2.8, we obtain ‖(u(t), v(t))‖X > s1, for all t ∈ [0, t∗), where s1 > 0.
By the continuity of the weak solution (u(t), v(t)), we obtain that ‖(u(t∗), v(t∗))‖X ≥ s1 > 0, con-
tradicting the assumption (u(t∗), v(t∗)) = (0, 0). It follows that (u(t), v(t)) ∈ W2 for all t ∈ [0, T ).

It remains to show inequality (5.1). Let (u, v) ∈ W2 be fixed. By recalling (2.20) in Lemma 2.7 which
states that the only critical point in (0,∞) for the function λ �→ J(λ(u, v)) is λ0 > 0, where λ0 satisfies
the equation

(
‖u‖2

1,Ω + ‖v‖2
1,Ω

)
= (p+ 1)λp−1

0

∫

Ω

F (u, v)dx+ (k + 1)λk−1
0

∫

Γ

H(γu)dΓ. (5.3)

Since (u, v) ∈ W2, then λ0 < 1. In addition, we recall the function λ �→ J(λ(u, v)) attains its absolute
maximum over the positive axis at its critical point λ = λ0. Thus, by Lemma 2.7 and (5.3), it follows
that

d ≤ sup
λ≥0

J(λ(u, v)) = J(λ0(u, v))

=
1
2
λ2

0

(
‖u‖2

1,Ω + ‖v‖2
1,Ω

)
− λp+1

0

∫

Ω

F (u, v)dx− λk+1
0

∫

Γ

H(γu)dΓ

≤ λ2
0

[
1
2

(
‖u‖2

1,Ω + ‖v‖2
1,Ω

)
− min

{
1

p+ 1
,

1
k + 1

}(
‖u‖2

1,Ω + ‖v‖2
1,Ω

)]

=
1
2
λ2

0 max
{
p− 1
p+ 1

,
k − 1
k + 1

}(
‖u‖2

1,Ω + ‖v‖2
1,Ω

)
.

Since λ0 < 1, one has

‖u‖2
1,Ω + ‖v‖2

1,Ω ≥ 2d
λ2

0

min
{
p+ 1
p− 1

,
k + 1
k − 1

}

> 2min
{
p+ 1
p− 1

,
k + 1
k − 1

}

d,

completing the proof of Lemma 5.1. �
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Now, we prove Theorem 2.10: the blow up of potential well solutions.

Proof. In order to show the maximal existence time T is finite, we argue by contradiction. Assume
the weak solution (u(t), v(t)) can be extended to [0,∞), then Lemma 5.1 says (u(t), v(t)) ∈ W2 for all
t ∈ [0,∞). Moreover, by the assumption 0 ≤ E(0) < ρd, the energy E(t) remains nonnegative:

0 ≤ E(t) ≤ E(0) < ρd for all t ∈ [0,∞). (5.4)

To see this, assume that E(t0) < 0 for some t0 ∈ (0,∞). Then, the blow-up results in [15] assert that

‖u(t)‖1,Ω + ‖v(t)‖1,Ω → ∞,

as t → T−, for some 0 < T < ∞, that is, the weak solution (u(t), v(t)) must blow up in finite time, which
contradicts our assumption.

Now, define

N(t) := ‖u(t)‖2
2 + ‖v(t)‖2

2 ,

S(t) :=
∫

Ω

F (u(t), v(t))dx+
∫

Γ

H(γu(t))dΓ ≥ 0.

Since ut, vt ∈ C([0,∞);L2(Ω)), it follows that

N ′(t) = 2
∫

Ω

[u(t)ut(t) + v(t)vt(t)]dx. (5.5)

Recall in the proof of Proposition 4.1, we have verified u and v enjoy, respectively, the regularity restric-
tions imposed on the test function φ and ψ, as stated in Definition 2.1. Consequently, we can replace φ
by u in (2.2) and ψ by v in (2.3) and sum the two equations to obtain:

1
2
N ′(t) =

∫

Ω

(u1u0 + v1v0)dx+

t∫

0

∫

Ω

(|ut|2 + |vt|2)dxdτ −
t∫

0

(
‖u‖2

1,Ω + ‖v‖2
1,Ω

)
dτ

−
t∫

0

∫

Ω

(g1(ut)u+ g2(vt)v)dxdτ −
t∫

0

∫

Γ

g(γut)γudΓdτ

+ (p+ 1)

t∫

0

∫

Ω

F (u, v)dxdτ + (k + 1)

t∫

0

∫

Γ

H(γu)dΓdτ, a.e. [0,∞), (5.6)

where we have used (2.6). Since p ≤ 5 and k ≤ 3, then by Assumption 1.1, one can check that the RHS
of (5.6) is absolutely continuous, and thus, we can differentiate both sides of (5.6) to obtain

1
2
N ′′(t) =

(
‖ut(t)‖2

2 + ‖vt(t)‖2
2

)
−
(
‖u(t)‖2

1,Ω + ‖v(t)‖2
1,Ω

)

−
∫

Ω

(g1(ut)u+ g2(vt)v)dx−
∫

Γ

g(γut)γudΓ

+ (p+ 1)
∫

Ω

F (u, v)dx+ (k + 1)
∫

Γ

H(γu)dΓ, a.e. [0,∞). (5.7)
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The assumption |g1(s)| ≤ b1|s|m for all s ∈ R implies
∣
∣
∣
∣
∣
∣

∫

Ω

g1(ut(t))u(t)dx

∣
∣
∣
∣
∣
∣
≤ b1

∫

Ω

|ut(t)|m|u(t)|dx

≤ C ‖u(t)‖m+1 ‖ut(t)‖m
m+1

≤ C ‖u(t)‖p+1 ‖ut(t)‖m
m+1 , (5.8)

where we have used Hölder’s inequality and the assumption p > m. In addition, the assumption F (u, v) ≥
α0(|u|p+1 + |v|p+1) for some α0 > 0 yields

‖u(t)‖p+1
p+1 + ‖v(t)‖p+1

p+1 ≤ 1
α0

∫

Ω

F (u(t), v(t))dx ≤ 1
α0
S(t). (5.9)

It follows from (5.8)–(5.9) that
∣
∣
∣
∣
∣
∣

∫

Ω

g1(ut(t))u(t)dx

∣
∣
∣
∣
∣
∣
≤ CS(t)

1
p+1 ‖ut(t)‖m

m+1 ≤ εS(t)
m+1
p+1 + Cε ‖ut(t)‖m+1

m+1 , (5.10)

where we have used Young’s inequality.
Since p > r, we may similarly deduce

∣
∣
∣
∣
∣
∣

∫

Ω

g2(vt(t))v(t)dx

∣
∣
∣
∣
∣
∣
≤ εS(t)

r+1
p+1 + Cε ‖vt(t)‖r+1

r+1 . (5.11)

In order to estimate | ∫
Γ
g(γut(t))γu(t)dΓ|, depending on different assumptions on parameters, there

are two cases to consider: either k > q or p > 2q − 1.
Case 1: k > q. In this case, the estimate is straightforward. As in (5.8), we have

∣
∣
∣
∣
∣
∣

∫

Γ

g(γut(t))γu(t)dx

∣
∣
∣
∣
∣
∣
≤ C|γu(t)|k+1|γut(t)|qq+1. (5.12)

Since H(s) is homogeneous of order k + 1 and H(s) > 0 for all s ∈ R, then H(s) ≥
min{H(1),H(−1)}|s|k+1, where H(1), H(−1) > 0. Thus,

∫

Γ

|γu(t)|k+1dΓ ≤ C

∫

Γ

H(γu(t))dΓ ≤ CS(t). (5.13)

It follows from (5.12)–(5.13), Young’s inequality, and the assumption k > q that
∣
∣
∣
∣
∣
∣

∫

Γ

g(γut(t))γu(t)dx

∣
∣
∣
∣
∣
∣
≤ CS(t)

1
k+1 |γut(t)|qq+1 ≤ εS(t)

q+1
k+1 + Cε|γut(t)|q+1

q+1. (5.14)

Case 2: p > 2q − 1. We shall employ a useful inequality that was shown in [15], namely,

|γu|q+1 ≤ C

(

‖u‖
2β

q+1
1,Ω + ‖u‖

(p+1)β
q+1

p+1

)

, (5.15)

where p−1
2(p−q) ≤ β < 1. Indeed, the proof of (5.15) requires careful analysis involving the following

trace and interpolation theorems:
• Trace theorem:

|γu|q+1 ≤ C ‖u‖W s,q+1(Ω) , where s >
1

q + 1
.
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• Interpolation theorem (see [32]):

W 1−θ,r(Ω) = [H1(Ω), Lp+1(Ω)]θ,

where r = 2(p+1)
(1−θ)(p+1)+2θ , θ ∈ [0, 1], and as usual [·, ·]θ denotes the interpolation bracket.

The reader may refer to [15] for the details of the proof of (5.15).
In addition, since (u(t), v(t)) ∈ W2 for all t ≥ 0, one has

‖u(t)‖2
1,Ω + ‖v(t)‖2

1,Ω ≤ max{p+ 1, k + 1}S(t), for all t ≥ 0. (5.16)

Now we apply (5.15) and the assumption |g(s)| ≤ b3|s|q to obtain
∣
∣
∣
∣
∣
∣

∫

Γ

g(γut(t))γu(t)dΓ

∣
∣
∣
∣
∣
∣
≤ b3

∫

Γ

|γu(t)||γut(t)|qdΓ ≤ b3|γu(t)|q+1|γut(t)|qq+1

≤ C

(

‖u‖
2β

q+1
1,Ω + ‖u‖

(p+1)β
q+1

p+1

)

|γut(t)|qq+1

≤ CS(t)
β

q+1 |γut(t)|qq+1 ≤ εS(t)β + Cε|γut(t)|q+1
q+1. (5.17)

where we have used (5.16), (5.9), and Young’s inequality.
Combining (5.7), (5.10)–(5.11), (5.14), and (5.17) yields

1
2
N ′′(t) + Cε

(
‖ut(t)‖m+1

m+1 + ‖vt(t)‖r+1
r+1 + |γut(t)|q+1

q+1

)

≥
(
‖ut(t)‖2

2 + ‖vt(t)‖2
2

)
−
(
‖u(t)‖2

1,Ω + ‖v(t)‖2
1,Ω

)

− ε
(
S(t)

m+1
p+1 + S(t)

r+1
p+1 + S(t)j0

)

+ (p+ 1)
∫

Ω

F (u, v)dx+ (k + 1)
∫

Γ

H(γu)dΓ, a.e. t ∈ [0,∞), (5.18)

where

j0 :=

{
q+1
k+1 , if k > q,

β, if p > 2q − 1.

Since β < 1, it follows j0 < 1.
Rearranging the terms in the definition (2.8) of the total energy E(t) gives

−
(
‖u(t)‖2

1,Ω + ‖v(t)‖2
1,Ω

)
=
(
‖ut(t)‖2

2 + ‖vt(t)‖2
2

)
− 2

∫

Ω

F (u(t), v(t))dx

− 2
∫

Γ

H(γu(t))dΓ − 2E(t). (5.19)

It follows from (5.18)–(5.19) that

1
2
N ′′(t) + Cε

(
‖ut(t)‖m+1

m+1 + ‖vt(t)‖r+1
r+1 + |γut(t)|q+1

q+1

)

≥ (p− 1)
∫

Ω

F (u(t), v(t))dx+ (k − 1)
∫

Γ

H(γu(t))dΓ

− 2E(t) − ε
(
S(t)

m+1
p+1 + S(t)

r+1
p+1 + S(t)j0

)
, a.e. t ∈ [0,∞). (5.20)
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Since (u(t), v(t)) ∈ W2 for all t ∈ [0,∞), then by Lemma 5.1, we deduce

(p− 1)
∫

Ω

F (u(t), v(t))dx+ (k − 1)
∫

Γ

H(γu(t))dΓ

> min
{
p− 1
p+ 1

,
k − 1
k + 1

}(
‖u(t)‖2

1,Ω + ‖v(t)‖2
1,Ω

)

> 2min
{
p− 1
p+ 1

,
k − 1
k + 1

}

· min
{
p+ 1
p− 1

,
k + 1
k − 1

}

d = 2ρd, (5.21)

for all t ∈ [0,∞), where ρ ≤ 1 is defined in (2.34).
Note (5.4) implies there exists δ > 0 such that

0 ≤ E(t) ≤ E(0) ≤ (1 − δ)ρd for all t ∈ [0,∞). (5.22)

Combining (5.20)–(5.22) yields
1
2
N ′′(t) + Cε

(
‖ut(t)‖m+1

m+1 + ‖vt(t)‖r+1
r+1 + |γut(t)|q+1

q+1

)

> δ

⎡

⎣(p− 1)
∫

Ω

F (u(t), v(t))dx+ (k − 1)
∫

Γ

H(γu(t))dΓ

⎤

⎦ + 2(1 − δ)ρd

− 2E(t) − ε
(
S(t)

m+1
p+1 + S(t)

r+1
p+1 + S(t)j0

)

≥ δ

⎡

⎣(p− 1)
∫

Ω

F (u(t), v(t))dx+ (k − 1)
∫

Γ

H(γu(t))dΓ

⎤

⎦

− ε
(
S(t)

m+1
p+1 + S(t)

r+1
p+1 + S(t)j0

)
, a.e. t ∈ [0,∞). (5.23)

Now, we consider two cases: S(t) > 1 and S(t) ≤ 1.
If S(t) > 1, then since p > max{m, r} and j0 < 1, one has S(t)

m+1
p+1 +S(t)

r+1
p+1 +S(t)j0 ≤ 3S(t). In this

case, we choose 0 < ε ≤ 1
6δmin{p− 1, k − 1}, and thus, (5.23) and the definition of S(t) imply

1
2
N ′′(t) + Cε

(
‖ut(t)‖m+1

m+1 + ‖vt(t)‖r+1
r+1 + |γut(t)|q+1

q+1

)

≥ δ

⎡

⎣(p− 1)
∫

Ω

F (u(t), v(t))dx+ (k − 1)
∫

Γ

H(γu(t))dΓ

⎤

⎦ − 3εS(t)

≥ 1
2
δ

⎡

⎣(p− 1)
∫

Ω

F (u(t), v(t))dx+ (k − 1)
∫

Γ

H(γu(t))dΓ

⎤

⎦ > δρd, (5.24)

for a.e. t ∈ [0,∞), where the inequality (5.21) has been used.
If S(t) ≤ 1, then S(t)

m+1
p+1 + S(t)

r+1
p+1 + S(t)j0 ≤ 3. In this case, we choose 0 < ε ≤ 1

3δρd. Thus, it
follows from (5.23) and (5.21) that

1
2
N ′′(t) + Cε

(
‖ut(t)‖m+1

m+1 + ‖vt(t)‖r+1
r+1 + |γut(t)|q+1

q+1

)

≥ δ

⎡

⎣(p− 1)
∫

Ω

F (u(t), v(t))dx+ (k − 1)
∫

Γ

H(γu(t))dΓ

⎤

⎦ − 3ε

> 2δρd− 3ε ≥ δρd, a.e. t ∈ [0,∞). (5.25)
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Therefore, if we choose ε ≤ 1
6δmin{p− 1, k − 1, 2ρd}, then it follows from (5.24)–(5.25) that

N ′′(t) + 2Cε

(
‖ut(t)‖m+1

m+1 + ‖vt(t)‖r+1
r+1 + |γut(t)|q+1

q+1

)
> 2δρd, a.e. t ∈ [0,∞). (5.26)

Integrating (5.26) yields

N ′(t) −N ′(0) + 2Cε

t∫

0

(
‖ut(τ)‖m+1

m+1 + ‖vt(τ)‖r+1
r+1 + |γut(τ)|q+1

q+1

)
dτ ≥ (2δρd)t, (5.27)

for all t ∈ [0,∞).
By the restrictions on damping in (2.33), one has

t∫

0

(
‖ut(τ)‖m+1

m+1 + ‖vt(τ)‖r+1
r+1 + |γut(τ)|q+1

q+1

)
dτ

≤ C

⎛

⎝

t∫

0

∫

Ω

(g1(ut)ut + g2(vt)vt)dxdτ +

t∫

0

∫

Γ

g(γut)γutdΓdτ

⎞

⎠

= C(E(0) − E(t)) < Cρd ≤ Cd, for all t ∈ [0,∞), (5.28)

where we have used the energy identity (3.1) and the energy estimate (5.4).
A combination of (5.27) and (5.28) yields

N ′(t) ≥ (2δρd)t+N ′(0) − C(ε)d, for all t ∈ [0,∞). (5.29)

Integrating (5.29) yields

N(t) ≥ (δρd)t2 + [N ′(0) − C(ε)d]t+N(0), for all t ∈ [0,∞). (5.30)

It is important to note here (5.30) asserts N(t) has a quadratic growth rate as t → ∞.
On the other hand, we can estimate N(t) directly as follows. Note,

‖u(t)‖2
2 =

∫

Ω

∣
∣
∣
∣
∣
∣
u0 +

t∫

0

ut(τ)dτ

∣
∣
∣
∣
∣
∣

2

dx

≤ 2 ‖u0‖2
2 + 2t

⎛

⎝

t∫

0

∫

Ω

|ut(τ)|2dxdτ
⎞

⎠

≤ 2 ‖u0‖2
2 + Ct1+

m−1
m+1

⎛

⎝

t∫

0

∫

Ω

|ut(τ)|m+1dxdτ

⎞

⎠

2
m+1

≤ 2 ‖u0‖2
2 + Cd

2
m+1 t

2m
m+1 , for all t ∈ [0,∞)

where we have used (5.28). Likewise,

‖v(t)‖2
2 ≤ 2 ‖v0‖2

2 + Cd
2

r+1 t
2r

r+1 , for all t ∈ [0,∞).

It follows that

N(t) ≤ 2
(
‖u0‖2

2 + ‖v0‖2
2

)
+ C(d

2
m+1 t

2m
m+1 + d

2
r+1 t

2r
r+1 ), for all t ∈ [0,∞). (5.31)

Since 2m
m+1 < 2 and 2r

r+1 < 2, then (5.31) contradicts the quadratic growth of N(t), as t → ∞. Therefore,
we conclude that weak solution (u(t), v(t)) cannot be extended to [0,∞), and thus, it must be the case
that there exists t0 ∈ (0,∞) such that E(t0) < 0. Hence, the proof of Theorem 2.10 is complete. �
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