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Abstract

Presented here is a study of a viscoelastic wave equation with supercritical source and damping terms. 
We employ the theory of monotone operators and nonlinear semigroups, combined with energy methods to 
establish the existence of a unique local weak solution. In addition, it is shown that the solution depends 
continuously on the initial data and is global provided the damping dominates the source in an appropriate 
sense.
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1. Introduction

1.1. Literature overview

The theory of viscoelasticity encompasses description of materials that exhibit a combination 
of elastic (able to recover the original shape after stress application) and viscous (deformation-
preserving after stress removal) characteristics. Quantitative description of such substances in-
volves a strain–stress relation that depends on time. The classical linearized model yields an 
integro-differential equation that augments the associated elastic stress tensor with an appropri-
ate memory term which encodes the history of the deformation gradient. The foundations of the 
theory go back to pioneering works of Boltzmann [10]. For fundamental modeling developments 
see [17] and the references therein.

When considering propagation of sound waves in viscoelastic fluids, if we neglect shear 
stresses then the stress tensor field may be expressed in terms of the acoustic pressure alone 
[31]. Thereby we obtain a scalar wave equation with a memory integral. This simplified formu-
lation in fact captures most of the critical difficulties associated with the well-posedness of the 
viscoelastic vectorial model [17,30], and therefore the multi-dimensional scalar wave equation 
with memory will be the subject of the subsequent discussion.

One can consider such an integro-differential equation with a finite or infinite time delay (the 
former being a special case of the infinite-delay where the strain is zero for all t < 0). When 
restricted to the finite memory setting the system does not generate a semigroup, whereas the 
infinite-delay model can be represented as a semigroup evolution with the help of an appropri-
ately defined history variable.

The (linear) viscoelastic problem with infinite memory and its stability were extensively ad-
dressed in [18,19,21]. Existence of global attractors for wave equations with infinite memory 
in the presence of nonlinear sources and linear internal damping (velocity feedback) was inves-
tigated in [30]. The “source” here refers to amplitude-dependent feedback nonlinearity whose 
growth rate is polynomially bounded with exponent p ≥ 1. Due to the regularity of finite-energy 
solutions for this problem—H 1 Sobolev level for the displacement variable—the source consid-
ered in the latter reference was subcritical (p < n/(n − 2) for dimensions n > 2) with respect 
to this energy. Subsequently in [20] the authors look at attractors for the problem with strong 
(Kelvin–Voigt) damping and higher-order sources, including exponents of maximal order for 
which the associated energy is defined (p = 5 in 3D).

A larger body of work is available on the finite-time delay problem. The papers in this list 
focus predominantly on well-posedness and asymptotic stability with energy dissipation due to 
memory and interior and/or boundary velocity feedbacks. In addition, the sources, if present are 
at most critical, i.e., p ≤ n/(n − 2) in dimensions above 2. See [13] for a treatment of interior 
and boundary memory with nonlinear boundary damping and no sources. Energy decay was in-
vestigated under localized interior dissipation and a source term was addressed in [14,15]. Local 
and global well-posedness with source, but now without additional frictional damping was the 
subject of the paper [3]. For systems of coupled waves with memory see [26]. Recent blow-up re-
sults for viscoelastic wave equations can be found in [27,28]. For quasilinear viscoelastic models 
with no sources and Kelvin–Voigt damping refer for example to [12,29].

Overall, it appears that the finite-time memory case has been more actively studied. Yet to our 
knowledge presently there are no works dealing with super-critical source exponents (i.e., p > 3
in 3D) in combination with memory terms. In light of this trend the present goal of this paper is 
two-fold:
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• Analyze the viscoelastic wave equation with sources beyond the critical level—so the poten-
tial energy is no longer defined,—for instance, when p > 5 in 3-space dimensions. Our study 
is inspired by the advances in [5–8] and the consequent developments in [4,24,25,23,35].

• Provide a treatment of this problem in the context of evolution semigroup framework with a 
self-contained detailed description of the generator and function spaces.

1.2. The model

Throughout, Ω ⊂R
3 is a bounded domain (open and connected) with boundary Γ of class C2. 

Our results extend easily to bounded domains in Rn, by accounting for the corresponding 
Sobolev embeddings, and accordingly adjusting the conditions imposed on the parameters. In 
this paper, we study the following model:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

utt − k(0)�u −
∞∫

0

k′(s)�u(t − s)ds + g(ut ) = f (u), in Ω × (0,∞),

u(x, t) = 0, on Γ ×R,

u(x, t) = u0(x, t), in Ω × (−∞,0],

(1.1)

where, as mentioned earlier, the unknown u is an R-valued function on Ω ×(0, ∞), which can be 
thought of as the acoustic pressure of sound waves in viscoelastic fluids. The differentiable scalar 
map k satisfies: k(0), k(∞) > 0 with k′(s) < 0 for all s > 0. Here, g is a monotone feedback, 
and f (u) is a source. The memory integral

∞∫
0

k′(s)�u(t − s)ds

quantifies the viscous resistance and provides a weak form of energy dissipation. It also accounts 
for the full past history as time goes to −∞, as opposed to the finite-memory model where the 
history is taken only over the interval [0, t].

A similar model to (1.1) was studied in [30], but with a linear interior damping and a source 
of a dissipative sign which is at most sub-critical. In our model (1.1), the power-type damping 
g(ut ) is nonlinear and not under any growth restrictions at the origin or at infinity; while the 
energy building source f (u) is possibly of supercritical order.

For simplicity, we set μ(s) = −k′(s) and k(∞) = 1, and so k(0) > 1. Thus, μ : R+ → R
+, 

where in Assumption 1.1 below precise assumptions on μ will be imposed.

1.3. Notation

The following notations will be used throughout the paper:

‖u‖s = ‖u‖Ls(Ω); 〈u,v〉 = 〈u,v〉 −1 1 ; (u, v) = (u, v)L2(Ω). (1.2)
H (Ω)×H0 (Ω)
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The inner product on the weighted the Hilbert space L2
μ(R+, H 1

0 (Ω)) is defined by

(u, v)μ :=
∞∫

0

∫
Ω

∇u(s) · ∇v(s)dx μ(s)ds. (1.3)

Also, ‖ · ‖μ represents the norm in L2
μ(R+, H 1

0 (Ω)). Subsequently, we have:

H 1
μ

(
R

+,H 1
0 (Ω)
)= {u ∈ L2

μ

(
R

+,H 1
0 (Ω)
) : ut ∈ L2

μ

(
R

+,H 1
0 (Ω)
)}

. (1.4)

In particular, the space L2
μ(R−, H 1

0 (Ω)) consists of all functions u : (−∞, 0] → H 1
0 (Ω) such 

that u(−t) ∈ L2
μ(R+, H 1

0 (Ω)). Thus,

H 1
μ

(
R

−,H 1
0 (Ω)
)= {u ∈ L2

μ

(
R

−,H 1
0 (Ω)
) : ut ∈ L2

μ

(
R

−,H 1
0 (Ω)
)}

.

1.4. Main results

In light of the above discussion, the following assumptions will be imposed throughout the 
paper.

Assumption 1.1.

• g is a continuous and monotone increasing feedback with g(0) = 0. In addition, the follow-
ing growth condition at infinity holds: there exist positive constants a and b such that, for 
|s| ≥ 1,

a|s|m+1 ≤ g(s)s ≤ b|s|m+1, where m ≥ 1;
• f ∈ C1(R) such that |f ′(s)| ≤ C(|s|p−1 + 1), 1 ≤ p < 6;
• p m+1

m
< 6;

• μ ∈ C1(R+) ∩ L1(R+) such that μ(s) > 0 and μ′(s) ≤ 0 for all s > 0, and μ(∞) = 0;
• u0(x, t) ∈ L2

μ(R−, H 1
0 (Ω)) with ∂tu0(x, t) ∈ L2

μ(R−, L2(Ω)) such that u0 : R− → H 1
0 (Ω)

and ∂tu0(x, t) : R− → L2(Ω) are weakly continuous at t = 0. In addition, for all t ≤ 0, 
u0(x, t) = 0 on Γ .

Let us note here that in view of the Sobolev imbedding H 1(Ω) ↪→ L6(Ω) (in 3D), the Ne-
mytski operator f (u) is locally Lipschitz continuous from H 1

0 (Ω) into L2(Ω) for the values 
1 ≤ p ≤ 3. Hence, when the exponent of the sources p lies in 1 ≤ p < 3, we call the source 
sub-critical, and critical, if p = 3. For the values 3 < p ≤ 5 the source is called supercritical, 
and in this case the operator f (u) is not locally Lipschitz continuous from H 1

0 (Ω) into L2(Ω). 
When 5 < p < 6 the source is called super-supercritical. In this case, the potential energy may 
not be defined in the finite energy space and the problem itself is no longer within the framework 
of potential well theory.

Recently, the boundary value problem for the wave equation with nonlinear damping and 
supercritical source (but without the memory term):{

utt − �u + g(ut ) = f (u), in Ω × (0,∞),

∂ u + u + g (u ) = h(u), on Γ × (0,∞),
ν 0 t
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has been studied in a series of papers [4–8]. One may see [9] for a summary of these results. 
Also, for other related work on nonlinear wave equations with supercritical sources, we refer the 
reader to [2,24,25,23,33–35].

It should be mentioned here that (1.1) is a monotonic problem well-suited for utilizing the 
theory of nonlinear semigroups and monotone operators (see for instance [1,36]). Thus, for the 
local well-posedness of (1.1), our strategy draws substantially from ideas in [5,8,23,35]. The 
essence of this strategy is to write the problem as a Cauchy problem of semigroup form and 
set up an appropriate phase space in order to verify the semigroup generator is m-accretive. 
The difficulty lies in the justification of the maximal monotonicity and coercivity of a certain 
nonlinear operator, which requires a correct choice of the function space and a combination of 
various techniques in monotone operator theory.

In order to state our main results, we begin with the definition of a weak solution of (1.1).

Definition 1.2. A function u(x, t) is said to be a weak solution of (1.1) on (−∞, T ]
if u ∈ L2

μ((−∞, T ]; H 1
0 (Ω)) ∩ C([0, T ]; H 1

0 (Ω)) such that ut ∈ L2
μ((−∞, T ]; L2(Ω)) ∩

C([0, T ]; L2(Ω)) ∩ Lm+1(Ω × (0, T )) with:

• u(x, t) = u0(x, t) for t ≤ 0;
• The following variational identity holds for all t ∈ [0, T ], and all test functions φ ∈ F :

(
ut (t), φ(t)

)− (ut (0),φ(0)
)−

t∫
0

∫
Ω

ut (τ )φt (τ )dxdτ + k(0)

t∫
0

∫
Ω

∇u(τ) · ∇φ(τ)dxdτ

+
t∫

0

∞∫
0

∫
Ω

∇u(τ − s) · ∇φ(τ)dxk′(s)dsdτ +
t∫

0

∫
Ω

g
(
ut (τ )
)
φ(τ)dxdτ

=
t∫

0

∫
Ω

f
(
u(τ)
)
φ(τ)dxdτ, (1.5)

where

F = {φ: φ ∈ C
([0, T ];H 1

0 (Ω)
)∩ Lm+1(Ω × (0, T )

)
with φt ∈ C

([0, T ];L2(Ω)
)}

.

Our first theorem gives the existence and uniqueness of local weak solutions.

Theorem 1.3 (Short-time existence). Assume the validity of Assumption 1.1, then there exists a 
local (in time) weak solution u to (1.1) defined on (−∞, T ] for some T > 0 depending on the 
initial energy E(0). Furthermore, the following energy identity holds:

E(t) +
t∫

0

∫
Ω

g(ut )utdxdτ − 1

2

t∫
0

∞∫
0

∥∥∇w(τ, s)
∥∥2

2μ
′(s)dsdτ

= E(0) +
t∫ ∫

f (u)utdxdτ, (1.6)
0 Ω
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where w(x, τ, s) = u(x, τ) − u(x, τ − s), and the quadratic energy is defined by

E(t) = 1

2

(∥∥ut (t)
∥∥2

2 + ∥∥∇u(t)
∥∥2

2 +
∞∫

0

∥∥∇w(t, s)
∥∥2

2μ(s)ds

)
. (1.7)

Our next result states that weak solutions of (1.1) depend continuously on the initial data.

Theorem 1.4 (Continuous dependence on initial data). In addition to Assumption 1.1, assume 

that u0(0) ∈ L
3(p−1)

2 (Ω) and f ∈ C2(R) such that |f ′′(s)| ≤ C(|s|p−2 + 1), for p > 3. If 
un

0 ∈ L2
μ(R−, H 1

0 (Ω)) is a sequence of initial data such that un
0 → u0 in L2

μ(R−, H 1
0 (Ω)) with 

un
0(0) → u0(0) in H 1

0 (Ω) and in L
3(p−1)

2 (Ω), d
dt

un
0(0) → d

dt
u0(0) in L2(Ω), then the corre-

sponding weak solutions un and u of (1.1) satisfy

un → u in C
([0, T ];H 1(Ω)

)
and u′

n → u′ in C
([0, T ];L2(Ω)

)
.

The uniqueness of weak solutions is a corollary of Theorem 1.4.

Corollary 1.5 (Uniqueness). In addition to Assumption 1.1, we assume u0(0) ∈ L
3(p−1)

2 (Ω) and 
f ∈ C2(R) such that |f ′′(s)| ≤ C(|s|p−2 + 1), for p > 3. Then, weak solutions of (1.1) are 
unique.

Our final result states: if the damping dominates the source term, then the solution is global. 
More precisely, we have

Theorem 1.6 (Global existence). In addition to Assumption 1.1, further assume u0(0) ∈
Lp+1(Ω). If m ≥ p, then the weak solution of (1.1) is global.

Remark 1.7. The classical condition that the “damping dominates the source,” m ≥ p, in Theo-
rem 1.6 can be dispensed with if the source f (u) in the equation satisfies suitable dissipativity 
conditions. For example, if the scalar function f is monotone decreasing with f (s)s ≤ 0 for all 
s ∈R, then the assumption m ≥ p can be removed.

2. Local solutions

This section is devoted to prove the local existence statement in Theorem 1.3.

2.1. Operator theoretic formulation

In order to study the local solvability of (1.1), we exploit a remarkable idea due to Dafermos 
[18,19]: in addition to the displacement and velocity, we regard the past history of the displace-
ment as a third variable. More precisely, introduce the history function:

w(x, t, s) = u(x, t) − u(x, t − s), s ≥ 0. (2.1)

After simple manipulations, problem (1.1) can be put into the following coupled system:
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ut (x, t) = v(x, t)

vt (x, t) = �u(x, t) +
∞∫

0

μ(s)�w(x, t, s)ds − g
(
v(x, t)
)+ f
(
u(x, t)
)

wt(x, t, s) = v(x, t) − ws(x, t, s),

(2.2)

with boundary and initial conditions

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(x, t) = 0 on Γ × [0,∞),

w(x, t, s) = 0 on Γ × [0,∞) × [0,∞)

u(x,0) = u0(x,0)

v(x,0) = ∂u0

∂t
(x,0)

w(x,0, s) = u0(x,0) − u0(x,−s)

w(x, t,0) = 0.

(2.3)

Remark 2.1. System (2.2) with the given initial and boundary conditions is equivalent to the 
original system (1.1). In fact, by using the method of characteristics (in the (t, s)-plane where x
is regarded as a fixed parameter), one can see that the equations wt = v − ws and ut = v in (2.2)
with the condition w(x, t, 0) = 0 imply w(x, t, s) = u(x, t) − u(x, t − s) for s ≥ 0.

We establish the local in time existence of weak solutions in the so-called past history frame-
work, i.e., the unknown function (u, v, w) is in the phase space

H := H 1
0 (Ω) × L2(Ω) × L2

μ

(
R

+,H 1
0 (Ω)
)
.

If U = (u, v, w), Û = (û, v̂, ŵ) ∈ H , then the inner product on the Hilbert space H is the natural 
inner product given by:

(U, Û)H :=
∫
Ω

∇u · ∇û dx + (v, v̂) + (w, ŵ)μ,

where (v, v̂) and (w, ŵ)μ, are given in (1.2)–(1.3).
If ξ ∈ L2

μ(R+, H 2(Ω) ∩ H 1
0 (Ω)), then clearly 

∫∞
0 μ(s)�ξ(s)ds ∈ L2(Ω) ⊂ H−1(Ω). Thus, 

for all φ ∈ H 1
0 (Ω), we have

〈 ∞∫
0

μ(s)�ξ(s)ds,φ

〉
=
∫
Ω

( ∞∫
0

μ(s)�ξ(s)ds

)
φdx

= −
∞∫

0

∫
Ω

∇ξ(s) · ∇φdxμ(s)ds = −(ξ,φ)μ, (2.4)

where (ξ, φ)μ is defined in (1.3).
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Now, we define the operator L : D(L) ⊂ L2
μ(R+, H 1

0 (Ω)) → H−1(Ω) by

L(ξ) =
∞∫

0

μ(s)�ξ(s)ds

where D(L) = L2
μ(R+, H 2(Ω) ∩ H 1

0 (Ω)). It follows from (2.4) that 〈L(ξ), φ〉 = −(ξ, φ)μ for 
all φ ∈ H 1

0 (Ω). Clearly, L is a linear mapping, and in addition, L is bounded from D(L) into 
H−1(Ω). Indeed, for all ξ ∈ D(L), we have

∥∥L(ξ)
∥∥

H−1(Ω)
= sup

‖φ‖
H1

0 (Ω)
=1

∣∣(ξ,φ)μ
∣∣≤ ‖ξ‖μ

( ∞∫
0

μ(s)ds

) 1
2

= ‖ξ‖μ

(
k(0) − 1

)
.

Therefore, we can extend L to be a bounded linear operator (which is still denoted by L) from 
L2

μ(R+, H 1
0 (Ω)) to H−1(Ω) such that, for any ξ ∈ L2

μ(R+, H 1
0 (Ω)),

〈
L(ξ),φ

〉= −(ξ,φ)μ (2.5)

for all φ ∈ H 1
0 (Ω).

To this end, we define an (abstract) operator A : D(A ) ⊂ H → H by

A (U) =
( −v

−�u + g(v) −L(w) − f (u)

−v + ws

)tr

with its domain

D(A ) = {(u, v,w) ∈ H 1
0 (Ω) × H 1

0 (Ω) × H 1
μ

(
R

+,H 1
0 (Ω)
) : g(v) ∈ H−1(Ω) ∩ L1(Ω),

− �u + g(v) −L(w) − f (u) ∈ L2(Ω), w(0) = 0
}
.

Since the original w is a function of the three variables (x, t, s), then, in the definition of the 
operator A above, by saying w ∈ H 1

μ(R+, H 1
0 (Ω)) we only mean the mapping: R+ � s �→

w(·, s) belongs to H 1
μ(R+, H 1

0 (Ω)), as defined in (1.4).
Henceforth, system (2.2) can be reduced to the Cauchy problem:

{
Ut + A U = 0,

U(0) = U0 = (u0(x,0), ∂tu0(x,0), u0(x,0) − u0(x,−s)
)
.

(2.6)

2.2. Globally Lipschitz source

Our first proposition gives the existence of a global solution to the Cauchy problem (2.6)
provided the source f is globally Lipschitz from H 1(Ω) to L2(Ω).
0
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Proposition 2.2. Assume g is a continuous and monotone increasing function such that g(0) = 0. 
In addition, assume f : H 1

0 (Ω) → L2(Ω) is globally Lipschitz continuous. Then, system (2.6)
has a unique global strong solution U ∈ W 1,∞(0, T ; H) for arbitrary T > 0 provided the initial 
datum U0 ∈ D(A ).

Proof. In order to prove Proposition 2.2, it suffices to show that the operator A + αI is 
m-accretive for some positive α. We say an operator A : D(A ) ⊂ H → H is accretive if 
(A x1 − A x2, x1 − x2)H ≥ 0, for all x1, x2 ∈D(A ), and it is m-accretive if, in addition, A + I

maps D(A ) onto H . It follows from Kato’s Theorem (see [36] for instance) that, if A + αI

is m-accretive for some positive α, then for each U0 ∈ D(A ) there is a unique global strong 
solution U of the Cauchy problem (2.6).

Step 1. We show that A + αI : D(A ) ⊂ H → H is an accretive operator for some α > 0. Let 
U = (u, v, w), Û = (û, v̂, ŵ) ∈ D(A ). For sake of simplifying the notation in this proof, we use 
the notation 〈·, ·〉 to denote the standard duality pairing between H−1(Ω) and H 1

0 (Ω); while 
(·, ·) represents the inner product in L2(Ω).

Then,

(
(A + αI)U − (A + αI)Û ,U − Û

)
H

= (A (U) − A (Û),U − Û
)
H

+ α‖U − Û‖2
H

= −(∇(v − v̂),∇(u − û)
)− 〈�(u − û), v − v̂

〉+ 〈g(v) − g(v̂), v − v̂
〉

− 〈L(w − ŵ), v − v̂
〉− (f (u) − f (û), v − v̂

)
− (v − v̂,w − ŵ)μ + (ws − ŵs,w − ŵ)μ + α‖U − Û‖2

H . (2.7)

First, thanks to (2.5), we have

−〈L(w − ŵ), v − v̂
〉= (w − ŵ, v − v̂)μ. (2.8)

Since U and Û ∈ D(A ), we know g(v) −g(v̂) ∈ H−1(Ω) ∩L1(Ω). Thus, by the monotonic-
ity of g and Lemma 2.6 in [1], one has (g(v) − g(v̂))(v − v̂) ∈ L1(Ω) and

〈
g(v) − g(v̂), v − v̂

〉= ∫
Ω

(
g(v) − g(v̂)

)
(v − v̂)dx ≥ 0. (2.9)

Since w − ŵ ∈ H 1
μ(R+, H 1

0 (Ω)), then by virtue of (1.3),

(ws − ŵs,w − ŵ)μ = 1

2

∞∫
0

d

ds

(∫
Ω

∣∣∇(w(s) − ŵ(s)
)∣∣2dx

)
μ(s)ds

= −1

2

∞∫
0

(∫
Ω

∣∣∇(w(s) − ŵ(s)
)∣∣2dx

)
μ′(s)ds ≥ 0, (2.10)

where we have used integration by parts and the facts: μ(∞) = 0, μ′(s) ≤ 0 and w(0) = 0.
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Since f is globally Lipschitz continuous from H 1
0 (Ω) into L2(Ω) with Lipschitz constant Lf , 

it follows that

(
f (u) − f (û), v − v̂

)≤ Lf

∥∥∇(u − û)
∥∥

2‖v − v̂‖2

≤ Lf

2

(∥∥∇(u − û)
∥∥2

2 + ‖v − v̂‖2
2

)
. (2.11)

Therefore, (2.7)–(2.11) yield

(
(A + kI)U − (A + kI)Û ,U − Û

)
H

≥ −Lf

2

(‖u − û‖2
2 + ‖v − v̂‖2

2

)+ α‖U − Û‖2
H

≥
(

α − Lf

2

)
‖U − Û‖2

H ≥ 0; (2.12)

provided α ≥ Lf

2 .

Step 2. We show that A + λI is m-accretive for some λ > 0. To this end, it suffices to show that 
the range of A + λI is all of H , for some λ > 0 (see for example [36]).

Let (a, b, c) ∈ H . We aim to show that there exists (u, v, w) ∈ D(A ) such that (A + λI) ×
(u, v, w) = (a, b, c), for some λ > 0, i.e.,

⎧⎨
⎩

−v + λu = a

−�u + g(v) −L(w) − f (u) + λv = b

−v + ws + λw = c.

(2.13)

Notice that, (2.13) is equivalent to⎧⎨
⎩−1

λ
�v + g(v) −L(w) − f

(
v + a

λ

)
+ λv = b + 1

λ
�a

−v + ws + λw = c.

(2.14)

Let X = H 1
0 (Ω) × L2

μ(R+, H 1
0 (Ω)) where X is endowed with the natural inner product, i.e., 

if U = (v, w), Û = (v̂, ŵ) ∈ X, then

(U, Û)X :=
∫
Ω

∇v · ∇v̂ dx + (w, ŵ)μ.

Define an operator T : D(T ) ⊂ X → X′ by

T

(
v

w

)tr

=
(− 1

λ
�v + g(v) −L(w) − f (v+a

λ
) + λv

−v + ws + λw

)tr

where,

D(T ) = {(v,w) ∈ X : g(v) ∈ H−1(Ω) ∩ L1(Ω), w ∈ H 1(
R

+,H 1(Ω)
)
, w(0) = 0

}
.
μ 0
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It is important to note here that we consider L2
μ(R+, H 1

0 (Ω)) as a Hilbert space identified with 
its own dual, and thus, X′ = H−1(Ω) × L2

μ(R+, H 1
0 (Ω)).

To justify the surjectivity of T , it is sufficient to show that the operator T is coercive and 
maximal monotone (Corollary 2.2 in [1]).

We split T as a summation of three operators. First, we define T1 : X → X′ by

T1

(
v

w

)tr

=
(− 1

λ
�v −L(w) − f (v+a

λ
) + λv

−v + λw

)tr

.

The operator T2 : D(T2) ⊂ H 1
0 (Ω) → H−1(Ω) is defined by

T2(v) = g(v)

where D(T2) = {v ∈ H 1
0 (Ω) : g(v) ∈ H−1(Ω) ∩ L1(Ω)}. By a result due to Brézis [11], T2 is 

the sub-differential of the convex functional J : H 1
0 (Ω) → [0, ∞] defined by J (u) = ∫

Ω
j (u)dx, 

where j (s) = ∫ s0 g(τ)dτ . It is well-known that the subdifferential of a proper convex function is 
maximal monotone, and thus T2 is a maximal monotone operator.

We further define T3 : D(T3) ⊂ L2
μ(R+, H 1

0 (Ω)) → L2
μ(R+, H 1

0 (Ω)) by

T3(w) = ∂sw

where D(T3) = {w ∈ H 1
μ(R+, H 1

0 (Ω)) : w(0) = 0}. Notice that the monotonicity of T3 follows 
from (2.10). In addition, it is clear that the operator T3 + I is surjective. Therefore, T3 is maximal 
monotone (see Theorem 2.2 in [1]).

To see T1 is maximal monotone from X to X′, it is enough to verify that T1 is monotone and 
hemicontinuous. For checking the monotonicity of T1, we consider

〈
T1

(
v

w

)tr

− T1

(
v̂

ŵ

)tr

,

(
v

w

)tr

−
(

v̂

ŵ

)tr〉
X′×X

= 1

λ

∥∥∇(v − v̂)
∥∥2

2 + (w − ŵ, v − v̂)μ −
(

f

(
v + a

λ

)
− f

(
v̂ + a

λ

)
, v − v̂

)

+ λ‖v − v̂‖2
2 − (v − v̂,w − ŵ)μ + λ‖w − ŵ‖2

μ

= 1

λ

∥∥∇(v − v̂)
∥∥2

2 + λ‖v − v̂‖2
2 −
(

f

(
v + a

λ

)
− f

(
v̂ + a

λ

)
, v − v̂

)

+ λ‖w − ŵ‖2
μ. (2.15)

Since f is globally Lipschitz continuous from H 1
0 (Ω) into L2(Ω) with Lipschitz constant Lf , 

one has

(
f

(
v + a

λ

)
− f

(
v̂ + a

λ

)
, v − v̂

)
≤
∥∥∥∥f
(

v + a

λ

)
− f

(
v̂ + a

λ

)∥∥∥∥
2
‖v − v̂‖2

≤ Lf ∥∥∇(v − v̂)
∥∥ ‖v − v̂‖2 ≤ 1 ∥∥∇(v − v̂)

∥∥2 + 1
L2

f ‖v − v̂‖2
2. (2.16)
λ 2 2λ2 2 2
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Combining (2.15) and (2.16) gives

〈
T1

(
v

w

)tr

− T1

(
v̂

ŵ

)tr

,

(
v

w

)tr

−
(

v̂

ŵ

)tr〉
X′×X

≥
(

1

λ
− 1

2λ2

)∥∥∇(v − v̂)
∥∥2

2 +
(

λ − 1

2
L2

f

)
‖v − v̂‖2

2 + λ‖w − ŵ‖2
μ. (2.17)

Thus, it follows from (2.17) that T1 is strongly monotone; provided λ > 1
2 max{L2

f , 1}. Also, it 
is easy to see that strong monotonicity implies coercivity of T1.

Next we verify T1 : X → X′ is hemicontinuous. Clearly, any linear operator is hemicontin-
uous. So, we merely consider the nonlinear term f (v+a

λ
). The fact that f is globally Lipschitz 

from H 1
0 (Ω) into L2(Ω), trivially implies that f (v+a

λ
) is continuous from H 1

0 (Ω) into H−1(Ω). 
Hence, T1 is hemicontinuous, and so, T1 is maximal monotone.

Now, it is important to note that

T

(
v

w

)tr

= T1

(
v

w

)tr

+
(

T2(v)

T3(w)

)tr

,

where T2 and T3 are both maximal monotone which act on different components of the vector ( v
w

)tr . By Proposition 7.1 in [23], it follows that the mapping 
( v

w

)tr �→ ( T2(v)

T3(w)

)tr is maximal 
monotone from D(T ) to X′. Moreover, due to the maximal monotonicity of T1 and the fact that 
the domain of T1 is the entire space X, we conclude that T is maximal monotone (Theorem 2.6 
in [1]).

In addition, we know T is coercive, since T1 is coercive and both of T2 and T3 are monotone. 
Therefore, T is maximal monotone and coercive, which yields the surjectivity of T , i.e., there 
exists (v, w) ∈ D(T ) that satisfies (2.14) for any (a, b, c) ∈ H . By (2.13), u = v+a

λ
∈ H 1

0 (Ω)

and −�u + g(v) − L(w) − f (u) = b − λv ∈ L2(Ω). Consequently, (u, v, w) ∈ D(A ) which 
concludes the proof of Proposition 2.2. �
2.3. Locally Lipschitz source

In this subsection, we loosen the restriction on the source by allowing f to be locally Lipschitz 
continuous. More precisely, we have the following result.

Proposition 2.3. Assume g is a continuous and monotone increasing function vanishing at the 
origin such that g(s)s ≥ a|s|m+1 for all |s| ≥ 1, where a > 0 and m ≥ 1. In addition, assume 
f : H 1

0 (Ω) → L2(Ω) is locally Lipschitz continuous. Then, system (2.6) has a unique local 
strong solution U ∈ W 1,∞(0, T ; H), for some T > 0, provided the initial datum U0 ∈ D(A ).

Proof. We employ a standard truncation of the source. Define

fK(u) =
{

f (u) if ‖∇u‖2 ≤ K,

f ( Ku ) if ‖∇u‖2 > K,
‖∇u‖2
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where K is a positive constant. With this setting, we consider the following K-truncated problem:

Ut + AKU = 0 (2.18)

with the same initial condition as in problem (2.6), where the operator AK : D(AK) ⊂ H → H

is defined by

AK(U) =
( −v

−�u + g(v) −L(w) − fK(u)

−v + ws

)tr

with its domain D(AK) = D(A ).
Since the truncated source fK : H 1

0 (Ω) → L2(Ω) is globally Lipschitz continuous for each K

(see [16]), then by Proposition 2.2, the truncated problem (2.18) has a unique global strong 
solution UK ∈ W 1,∞(0, T ; H) for any T > 0; provided the initial datum U0 ∈ D(A ).

For simplifying the notation in the rest of the proof, we shall express UK as U . First, we aim 
to derive the associated energy identity for (2.18). Since U = (u, v, w) is a strong solution of 
(2.18), the following equation holds:

vt − �u + g(v) −L(w) − fK(u) = 0, a.e. [0, T ]. (2.19)

By the regularity of the solution U , we can multiply (2.19) by v = ut and integrate on Ω × (0, t)
where 0 < t < T , to obtain,

1

2

(∥∥v(t)
∥∥2

2 + ∥∥∇u(t)
∥∥2

2

)+
t∫

0

∫
Ω

g(v)vdxdτ +
t∫

0

(w,v)μdτ

= 1

2

(∥∥v(0)
∥∥2

2 + ∥∥∇u(0)
∥∥2

2

)+
t∫

0

∫
Ω

fK(u)vdxdτ, (2.20)

where (2.20) holds for any t > 0, as T > 0 is arbitrary.
Since v = wt + ws , we compute

t∫
0

(w,v)μdτ =
t∫

0

(w,wt + ws)μdτ

=
t∫

0

∞∫
0

∫
Ω

∇w(τ, s) · ∇wt(τ, s)dxμ(s)dsdτ

+
t∫ ∞∫ ∫

∇w(τ, s) · ∇ws(τ, s)dxμ(s)dsdτ
0 0 Ω
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= 1

2

∞∫
0

(∥∥∇w(t, s)
∥∥2

2 − ∥∥∇w(0, s)
∥∥2

2

)
μ(s)ds

− 1

2

t∫
0

∞∫
0

∥∥∇w(τ, s)
∥∥2

2μ
′(s)dsdτ, (2.21)

where we have used integration by parts with the fact μ(∞) = 0 and w(x, t, 0) = 0. Therefore, 
(2.20) and (2.21) yield the following energy identity:

E(t) +
t∫

0

∫
Ω

g(v)vdxdτ − 1

2

t∫
0

∞∫
0

∥∥∇w(τ, s)
∥∥2

2μ
′(s)dsdτ

= E(0) +
t∫

0

∫
Ω

fK(u)vdxdτ, (2.22)

where the quadratic energy E(t) is defined in (1.7). Since μ′(s) ≤ 0, then for all s > 0, we have

E(t) +
t∫

0

∫
Ω

g(v)vdxdτ ≤ E(0) +
t∫

0

∫
Ω

fK(u)vdxdτ. (2.23)

Let us note here that, straightforward calculation shows fK : H 1
0 (Ω) → L

m+1
m (Ω) is globally 

Lipschitz with Lipschitz constant LK (see [16]). Thus, we estimate term due to the source on the 
right-hand side of the energy inequality (2.23) as follows:

t∫
0

∫
Ω

fK(u)vdxdτ ≤
t∫

0

∥∥fK(u)
∥∥

m+1
m

‖v‖m+1dτ

≤ ε

t∫
0

‖v‖m+1
m+1dτ + Cε

t∫
0

∥∥fK(u)
∥∥m+1

m
m+1
m

dτ

≤ ε

t∫
0

‖v‖m+1
m+1dτ + CεL

m+1
m

K

t∫
0

‖∇u‖
m+1
m

2 dτ + Cεt
∣∣f (0)
∣∣m+1

m |Ω|. (2.24)

By recalling the assumption on the damping that g(s)s ≥ a|s|m+1 for all |s| ≥ 1, we have

t∫
0

∫
Ω

g(v)vdxdτ ≥ a

t∫
0

‖v‖m+1
m+1dτ − at |Ω|. (2.25)

Thus, (2.23)–(2.25) and the fact m+1 ≤ 2 yield,

m
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E(t) + a

t∫
0

‖v‖m+1
m+1dτ

≤ E(0) + ε

t∫
0

‖v‖m+1
m+1dτ + CεL

m+1
m

K

t∫
0

‖∇u‖
m+1
m

2 dτ + at |Ω| + Cεt
∣∣f (0)
∣∣m+1

m |Ω|

≤ E(0) + ε

t∫
0

‖v‖m+1
m+1dτ + 2CεL

m+1
m

K

t∫
0

E(t)dτ + tC0 (2.26)

where C0 depends on ε, LK , f (0), |Ω| and m. By choosing ε ≤ a one has,

E(t) ≤ E(0) + C0T + C(LK)

t∫
0

E(τ)dτ, for all t ∈ [0, T ],

where C(LK) = 2CεL
m+1
m

K , and T will be chosen below. By Gronwall’s inequality, one has

E(t) ≤ (E(0) + C0T
)
eC(LK)t , for all t ∈ [0, T ].

If we select

T = min

{
1

C0
,

1

C(LK)
log 2

}
, (2.27)

then

E(t) ≤ 2
(
E(0) + 1

)≤ K2/2, for all t ∈ [0, T ]; (2.28)

provided we choose

K2 ≥ 4
(
E(0) + 1

)
. (2.29)

We note here that (2.28) shows ‖∇u‖2 ≤ K , for all t ∈ [0, T ], and thus, by the definition of 
fK , we see that fK(u) = f (u) on [0, T ]. By the uniqueness of solutions, the solution of the 
truncated problem (2.18) coincides with the solution of the original problem (2.6) for t ∈ [0, T ]. 
This completes the proof of Proposition 2.3. �
Remark 2.4. In Lemma 2.3, the local existence time T depends on LK , which is the locally Lip-
schitz constant of f : H 1

0 (Ω) → L2(Ω); nevertheless, T is independent of the locally Lipschitz 

constant of f : H 1
0 (Ω) → L

m+1
m (Ω). This observation is crucial for the next step.
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2.4. Completion of the proof for the local existence

To extend the existence result in Proposition 2.3 to the situation where the source f (u) is not 
necessary locally Lipschitz from H 1

0 (Ω) into L2(Ω), we employ the following truncation of the 
source (first used in [32]). Namely, put:

fn(u) = f (u)ηn(u) (2.30)

where ηn ∈ C∞
0 (R) is a smooth cutoff function such that: 0 ≤ ηn ≤ 1; ηn(u) = 1 if |u| ≤ n; 

ηn(u) = 0 if |u| ≥ 2n; and |η′(u)| ≤ C/n.
The following result is already known in [8,35].

Proposition 2.5. Suppose m ≥ 1, 0 < ε < 1. Assume f : R → R such that |f ′(s)| ≤
C(|s|p−1 + 1), where p m+1

m
≤ 6

1+2ε
. Let fn be defined in (2.30). Then,

• fn : H 1
0 (Ω) → L2(Ω) is globally Lipschitz continuous with Lipschitz constant depending 

on n.
• fn : H 1−ε

0 (Ω) → L
m+1
m (Ω) is locally Lipschitz continuous with a local Lipschitz constant 

independent of n.

We are now ready to prove the local existence statement in Theorem 1.3.

Proof. By using the truncated source fn defined in (2.30), we define the nonlinear operator

An(U) =
( −v

−�u + g(v) −L(w) − fn(u)

−v + ws

)

with its domain

D(An) = {(u, v,w) ∈ H 1
0 (Ω) × H 1

0 (Ω) × H 1
μ

(
R

+,H 1
0 (Ω)
) : g(v) ∈ H−1(Ω) ∩ L1(Ω),

− �u + g(v) −L(w) − fn(u) ∈ L2(Ω), w(0) = 0
}
.

By Proposition 2.5, fn(u) ∈ L2(Ω) for all u ∈ H 1
0 (Ω), so D(An) is uniform for all n. For 

the initial data u0(x, t) ∈ L2
μ(R−, H 1

0 (Ω)) satisfying Assumption 1.1, there exists un
0(x, t) ∈

H 1
μ(R−, C2

0(Ω)), n ∈ N, such that un
0(x, t) → u0(x, t) in L2

μ(R−, H 1
0 (Ω)) with un

0(x, 0) →
u0(x, 0) in H 1

0 (Ω) and vn
0 (x, 0) → v0(x, 0) in L2(Ω), where vn

0 = d
dt

un
0 and v0 = d

dt
u0. Put 

wn
0 (x, s) = un

0(x, 0) − un
0(x, −s). Notice, Un

0 := (un
0(x, 0), vn

0 (x, 0), wn
0 (x, s)) ∈ D(An), for ev-

ery n ∈N. Therefore, by Propositions 2.3 and 2.5, the approximate system

Ut + AnU = 0 (2.31)

with the initial data Un
0 has a unique local strong solution Un = (un, vn, wn) ∈ W 1,∞(0, T ; H). 

Thanks to Proposition 2.5, the life span T of each solution Un, given in (2.27), is independent 
of n, since the local Lipschitz constant of the mapping fn : H 1(Ω) → L

m+1
m (Ω) is indepen-

dent of n. Also, we known that T depends on K , where K2 ≥ 4(E(0) + 1); nonetheless, since 
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En(0) → E(0), we can choose K sufficiently large so that K is independent of n. Now, by (2.28)
one has En(t) ≤ K2/2, which implies the uniform boundedness of ‖Un(t)‖H on [0, T ]. More 
precisely, we have

∥∥Un(t)
∥∥2

H
= ∥∥∇un(t)

∥∥2
2 + ∥∥u′

n(t)
∥∥2

2 +
∞∫

0

∥∥∇wn(t, s)
∥∥2

2μ(s)ds ≤ K2 (2.32)

for all t ∈ [0, T ] and all n ∈N. By choosing ε ≤ a/2 in (2.26) and by the fact En(t) is uniformly 
bounded on [0, T ], one has

T∫
0

∥∥u′
n

∥∥m+1
m+1dt ≤ CK (2.33)

for some constant CK > 0 depending on K . In addition, by Remark 2.1, one has wn(x, t, s) =
un(x, t) − un(x, t − s), for all t , s ≥ 0.

It follows from (2.32) and (2.33) that there exists U = (u, v, w) ∈ L∞(0, T ; H) such that, on 
a subsequence,

Un → U weak∗ in L∞(0, T ;H) (2.34)

and

u′
n → u′ weakly in Lm+1(Ω × (0, T )

)
. (2.35)

Also, it is straightforward to show that v = u′ and w(x, t, s) = u(x, t) − u(x, t − s) for a.e. 
t, s ≥ 0.

By virtue of (2.32) and (2.34), we infer

E(t) = 1

2

(∥∥∇u(t)
∥∥2

2 + ∥∥u′(t)
∥∥2

2 +
∞∫

0

∥∥∇w(t, s)
∥∥2

2μ(s)ds

)

= 1

2

∥∥U(t)
∥∥2

H
≤ K2

2
(2.36)

for all t ∈ [0, T ]. Similarly, from (2.33) and (2.35), it follows that

T∫
0

∥∥u′∥∥m+1
m+1dt ≤ CK. (2.37)

Furthermore, by using (2.34) and Aubin’s compactness theorem (see for instance [37]), we 
infer

un → u strongly in L∞(0, T ;H 1−ε(Ω)
)
, (2.38)
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for 0 < ε < 1. Since Un ∈ D(An) is a strong solution of (2.31), the following variational formula 
holds:

(
u′

n(t), φ(t)
)
Ω

− (u′
n(0),φ(0)

)
Ω

−
t∫

0

∫
Ω

u′
n(τ )φ′(τ )dxdτ +

t∫
0

∫
Ω

∇un(τ) · ∇φ(τ)dxdτ

+
t∫

0

∫
Ω

g
(
u′

n(τ )
)
φ(τ)dxdτ +

t∫
0

∞∫
0

∫
Ω

∇wn(τ, s) · ∇φ(τ)dxμ(s)dsdτ

=
t∫

0

∫
Ω

fn

(
un(τ)
)
φ(τ)dxdτ. (2.39)

for all φ ∈ C([0, T ]; H 1
0 (Ω)) ∩ Lm+1(Ω × (0, T )) with φt ∈ C([0, T ]; L2(Ω)) and for a.e. t ∈

[0, T ].
Now, we fix an arbitrary t ∈ [0, T ], and show the convergence of nonlinear terms in (2.39).
We shall first show:

lim
n→∞

t∫
0

∫
Ω

fn(un)φdxdτ =
t∫

0

∫
Ω

f (u)φdxdτ, (2.40)

for all φ ∈ C([0, T ]; H 1
0 (Ω)) ∩ Lm+1(Ω × (0, T )) and a.e. t ∈ [0, T ]. Indeed, we have

∣∣∣∣∣
t∫

0

∫
Ω

(
fn(un) − f (u)

)
φdxdτ

∣∣∣∣∣
≤

t∫
0

∫
Ω

∣∣fn(un) − fn(u)
∣∣|φ|dxdτ +

t∫
0

∫
Ω

∣∣fn(u) − f (u)
∣∣|φ|dxdτ. (2.41)

We shall estimate each term on the right hand side of (2.41). By recalling Proposition 2.5, 
we know that fn is locally Lipschitz continuous from H 1−ε(Ω) → L

m+1
m (Ω) with the Lipschitz 

constant independent of n. Thus,

t∫
0

∫
Ω

∣∣fn(un) − fn(u)
∣∣|φ|dxdτ

≤
( t∫

0

∫
Ω

∣∣fn(un) − fn(u)
∣∣m+1

m dxdτ

) m
m+1
( t∫

0

∫
Ω

|φ|m+1dxdτ

) 1
m+1

≤ C(K)‖φ‖Lm+1(Ω×(0,T ))

( t∫
0

‖un − u‖
m+1
m

H 1−ε(Ω)
dτ

) m
m+1

→ 0, (2.42)

where we have used the strong convergence (2.38).
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The second term on the right hand side of (2.41) is handled as follows:

t∫
0

∫
Ω

∣∣fn(u) − f (u)
∣∣|φ|dxdτ

≤
( t∫

0

∫
Ω

∣∣fn(u) − f (u)
∣∣m+1

m dxdτ

) m
m+1
( t∫

0

∫
Ω

|φ|m+1dxdτ

) 1
m+1

≤ ‖φ‖Lm+1(Ω×(0,T ))

( t∫
0

∫
Ω

∣∣f (u)
∣∣m+1

m
∣∣ηn(u) − 1

∣∣m+1
m dxdτ

) m
m+1

. (2.43)

Thanks to the assumptions |f (u)| ≤ C(|u|p + 1), p m+1
m

< 6, and the Sobolev imbedding 

H 1
0 (Ω) ↪→ L6(Ω), it can be easily shown that f (u) ∈ L

m+1
m (Ω × (0, T )), for each u ∈ H 1

0 (Ω). 
Also, notice ηn(u(x)) → 1 a.e. in Ω . Thus, by the Lebesgue Dominated Convergence Theorem, 
it follows that the right hand side of (2.43) converges to zero, and along with (2.42), we conclude 
the right hand side of (2.41) is also convergent to zero. Therefore, (2.40) follows.

In order to deal with the term due to damping in (2.39), we recall the assumption g(s)s ≤
|s|m+1 for all |s| ≥ 1, then by (2.33) one has g(u′

n) is uniformly bounded in the space L
m+1
m (Ω ×

(0, t)). Therefore, there exists g∗ ∈ L
m+1
m (Ω × (0, t)) such that, on a subsequence

g
(
u′

n

)→ g∗ weakly in L
m+1
m
(
Ω × (0, t)

)
. (2.44)

We aim to show g∗ = g(u′). To accomplish this assertion, we consider two solutions Un and Uj

of the approximate problem (2.31) corresponding to the parameters n and j , respectively. By 
denoting Ũ = Un − Uj , then the following energy inequality holds:

Ẽ(t) +
t∫

0

∫
Ω

(
g
(
u′

n

)− g
(
u′

j

))
ũ′dxdτ ≤ Ẽ(0) +

t∫
0

∫
Ω

∣∣fn(un) − fj (uj )
∣∣∣∣ũ′∣∣dxdτ, (2.45)

where Ẽ(t) = 1
2 (‖ũ′(t)‖2

2 + ‖∇ũ(t)‖2
2 + ∫∞0 ‖∇w̃(t, s)‖2

2μ(s)ds).
Let us show first that 

∫ t
0

∫
Ω

|fn(un) − fj (uj )|ũ′dxdτ → 0 as n, j → ∞. Indeed,

t∫
0

∫
Ω

∣∣fn(un) − fj (uj )
∣∣∣∣ũ′∣∣dxdτ

≤
t∫

0

∫
Ω

∣∣fn(un) − fn(u)
∣∣∣∣ũ′∣∣dxdτ +

t∫
0

∫
Ω

∣∣fn(u) − f (u)
∣∣∣∣ũ′∣∣dxdτ

+
t∫ ∫ ∣∣f (u) − fj (u)

∣∣∣∣ũ′∣∣dxdτ +
t∫ ∫ ∣∣fj (u) − fj (uj )

∣∣∣∣ũ′∣∣dxdτ. (2.46)
0 Ω 0 Ω
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By replacing φ by ũ′ in (2.42) and (2.43), we conclude that the right hand side of (2.46) converges 
to zero, and along with the fact Un

0 → U0 in H , it follows that the right hand side of (2.45)
converges to zero. Thus,

t∫
0

(
g
(
u′

n

)− g
(
u′

j

))(
u′

n − u′
j

)
dxdτ → 0 (2.47)

as n, j → ∞. Note, since the function g is increasing, it is straightforward to show the operator 
g(·) : Lm+1(Ω × (0, t)) → L

m+1
m (Ω × (0, t)) is monotone and hemicontinuous, which implies 

it is maximal monotone. Thus, with this in hand, it follows from (2.44) and (2.47) that (see 
Lemma 2.3 in [1]), g∗ = g(u′). Hence,

g
(
u′

n

)→ g
(
u′) weakly in L

m+1
m
(
Ω × (0, t)

)
. (2.48)

Now, by (2.34), (2.40) and (2.48), we can pass to limit on (2.39), and conclude that (1.5)
holds.

It remains to show the continuity of the solution, and verify that u satisfies the initial condition. 
Indeed, since g is a increasing function, then (2.45) yields

Ẽ(t) ≤ Ẽ(0) +
T∫

0

∫
Ω

∣∣fn(un) − fj (uj )
∣∣∣∣ũ′∣∣dxdτ, for all t ∈ [0, T ]. (2.49)

Notice that the right hand side of (2.49) does not depend on the value of t and it does converge 
to zero as n, j → ∞. Therefore, it follows that

un → u in H 1
0 (Ω) and u′

n → u′ in L2(Ω), uniformly on [0, T ]. (2.50)

Since un ∈ W 1,∞([0, T ]; H 1
0 (Ω)) and u′

n ∈ W 1,∞([0, T ]; L2(Ω)), then the uniform conver-
gence in (2.50) implies that u ∈ C([0, T ]; H 1

0 (Ω)) and u′ ∈ C([0, T ]; L2(Ω)). In addition, (2.50)
shows un(x, 0) → u(x, 0) in H 1

0 (Ω), and since un
0(x, 0) → u0(x, 0) in H 1

0 (Ω), then u(x, 0) =
u0(x, 0) ∈ H 1(Ω). Also, since u(x, t) = u0(x, t) for t < 0, it follows that u(x, t) = u0(x, t) for 
all t ≤ 0. This completes the proof of the local existence statement in Theorem 1.3. �
Remark 2.6. It can be easily shown, the weak solutions obtained in the proof above, satisfy the 
following energy inequality:

E(t) +
t∫

0

∫
Ω

g(ut )utdxdτ ≤ E(0) +
t∫

0

∫
Ω

f (u)utdxdτ. (2.51)

In the next section, we shall prove all weak solutions of (1.1) in the sense of Definition 1.2 satisfy 
the energy identity (1.6) and we will use this fact to justify the uniqueness of solutions.
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3. Uniqueness of weak solutions

3.1. Energy identity

In order to prove the uniqueness of weak solutions, we shall justify the energy identity (1.6)
rigorously. Notice that the energy identity can be derived formally by testing Eq. (1.1) by ut , 
however, such calculation is not rigorous, due to the fact that ut is not sufficiently regular to be 
the test function in as required in Definition 1.2. To resolve this issue, we employ the operator 
Tε := (I − ε�)−1 to smooth functions in space. Some important properties of Tε can be found 
in Appendix A. Denote uε = Tεu.

We prove the energy identity (1.6) as follows.

Proof. Act the regularizing operator Tε on every term of the equation and multiply by u′
ε . After 

integrating in space and time, we obtain

t∫
0

∫
Ω

u′′
ε (τ ) · u′

ε(τ )dxdτ +
t∫

0

∫
Ω

∇uε(τ ) · ∇u′
ε(τ )dxdτ

+
t∫

0

∞∫
0

∫
Ω

∇(uε(τ ) − uε(τ − s)
) · ∇u′

ε(τ )dxμ(s)dsdτ +
t∫

0

∫
Ω

Tε

(
g
(
u′(τ )
))

u′
ε(τ )dxdτ

=
t∫

0

∫
Ω

Tε

(
f
(
u(τ)
))

u′
ε(τ )dxdτ. (3.1)

Since u ∈ H 1
0 (Ω) and u′ ∈ L2(Ω), by means of Proposition A.1, we have uε → u in H 1

0 (Ω)

and u′
ε → u′ in L2(Ω). Thus, the first two integrals on the left-hand side of (3.1) converge to

1

2

(∥∥u′(t)
∥∥2

2 − ∥∥u′(0)
∥∥2

2 + ∥∥∇u(t)
∥∥2

2 − ∥∥∇u(0)
∥∥2

2

)
.

Recall u′ ∈ Lm+1(Ω), g(u′) ∈ L
m+1
m (Ω), m ≥ 1. By Proposition A.2, one has ‖u′

ε‖m+1 ≤
‖u′‖m+1 and u′

ε → u′ in Lm+1(Ω), as well as ‖Tε(g(u′))‖m+1
m

≤ ‖g(u′)‖m+1
m

and Tε(g(u′)) →
g(u′) in L

m+1
m (Ω). Consequently, we can pass to the limit for the damping term in (3.1) by using 

the Lebesgue Dominated Convergence Theorem. This shows

lim
ε→0

t∫
0

∫
Ω

Tε

(
g
(
u′(τ )
))

u′
ε(τ )dxdτ =

t∫
0

∫
Ω

g
(
u′(τ )
)
u′(τ )dxdτ.

On the other hand, u ∈ H 1(Ω) implies f (u) ∈ L6/p(Ω) due to the growth rate of f is p. With 
the assumption p m+1 < 6, we have f (u) ∈ L

m+1
m (Ω), and therefore similar as the damping term, 
m
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we can prove the convergence of the source term in (3.1). That is

lim
ε→0

t∫
0

∫
Ω

Tε

(
f
(
u(τ)
))

u′
ε(τ )dxdτ =

t∫
0

∫
Ω

f
(
u(τ)
)
u′(τ )dxdτ.

It remains to treat the memory term in (3.1). We split it as

t∫
0

∞∫
0

∫
Ω

∇(uε(τ ) − uε(τ − s)
) · ∇u′

ε(τ )dxμ(s)dsdτ

=
t∫

0

∞∫
0

∫
Ω

∇(uε(τ ) − uε(τ − s)
) · ∇(u′

ε(τ ) − u′
ε(τ − s)

)
dxμ(s)dsdτ

+
t∫

0

∞∫
0

∫
Ω

∇(uε(τ ) − uε(τ − s)
) · ∇u′

ε(τ − s)dxμ(s)dsdτ. (3.2)

Notice, by virtue of Proposition A.1, the first integral on the right-hand side of (3.2) converges to

1

2

∞∫
0

(∥∥∇(u(t) − u(t − s)
)∥∥2

2 − ∥∥∇(u(0) − u(−s)
)∥∥2

2

)
μ(s)ds,

where we have used the assumption u0(x, t) ∈ L2
μ(R−, H 1

0 (Ω)). Next, we consider the second 
term on the right-hand side of (3.2):

t∫
0

∞∫
0

∫
Ω

∇(uε(τ ) − uε(τ − s)
) · ∇∂τuε(τ − s)dxμ(s)dsdτ

=
t∫

0

∞∫
0

∫
Ω

∇(uε(τ ) − uε(τ − s)
) · ∇∂s

(
uε(τ ) − uε(τ − s)

)
dxμ(s)dsdτ

= 1

2

t∫
0

∞∫
0

∥∥∇(uε(τ ) − uε(τ − s)
)∥∥2

2

(−μ′(s)
)
dsdτ, (3.3)

where we performed the integration by parts with respect to the time variable s and used the 
assumption μ(∞) = 0. Notice that (3.3) is non-negative due to μ′(s) ≤ 0. In order to see that the 
limit of (3.3) exists as ε → 0, we employ (3.1)–(3.3) to get:
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0 ≤ lim
ε→0

1

2

t∫
0

∞∫
0

∥∥∇(uε(τ ) − uε(τ − s)
)∥∥2

2

(−μ′(s)
)
dsdτ

= − lim
ε→0

t∫
0

∞∫
0

∫
Ω

∇(uε(τ ) − uε(τ − s)
) · ∇(u′

ε(τ ) − u′
ε(τ − s)

)
dxμ(s)dsdτ

− lim
ε→0

t∫
0

∫
Ω

u′′
ε (τ ) · u′

ε(τ )dxdτ − lim
ε→0

t∫
0

∫
Ω

∇uε(τ ) · ∇u′
ε(τ )dxdτ

− lim
ε→0

t∫
0

∫
Ω

Tε

(
g
(
u′(τ )
))

u′
ε(τ )dxdτ + lim

ε→0

t∫
0

∫
Ω

Tε

(
f
(
u(τ)
))

u′
ε(τ )dxdτ < ∞,

(3.4)

since we have shown that each limit on the right-hand side of (3.4) converges to a finite value.
Applying the convergence of uε in H 1

0 (Ω) and (3.4), it follows from Fatou’s Lemma that

1

2

t∫
0

∞∫
0

∥∥∇(u(τ) − u(τ − s)
)∥∥2

2

(−μ′(s)
)
dsdτ

≤ lim
ε→0

1

2

t∫
0

∞∫
0

∥∥∇(uε(τ ) − uε(τ − s)
)∥∥2

2

(−μ′(s)
)
dsdτ

≤ 1

2

t∫
0

∞∫
0

∥∥∇(u(τ) − u(τ − s)
)∥∥2

2

(−μ′(s)
)
dsdτ, (3.5)

where the last inequality is due to the fact ‖∇(uε(τ ) − uε(τ − s))‖2 ≤ ‖∇(u(τ) − u(τ − s))‖2
by means of Proposition A.1. This implies that the inequalities in (3.5) are actually equalities, 
which gives us the desired limit of (3.3) as ε → 0. �
3.2. Continuous dependence on initial data

This subsection is devoted to the proof of Theorem 1.4, which states that the solution of 
system (1.1) depends continuously on the initial data. The uniqueness of solutions then follows 
immediately.

Proof. Let un
0, u0 ∈ L2

μ(R−, H 1
0 (Ω)), n ∈ N, such that un

0 → u0 in L2
μ(R−, H 1

0 (Ω)) with 

un
0(0) → u0(0) in H 1

0 (Ω) and in L
3(p−1)

2 (Ω), d
dt

un
0(0) → d

dt
u0(0) in L2(Ω). Let {un} and u

be weak solutions on [0, T ] corresponding to the initial data {un
0} and u0, respectively. It is im-

portant to note here that the local existence time T can be selected independent of n. To see 
this, recall (2.27) and (2.29), which imply that T depends on K , while K depends on the initial 
energy. Nonetheless, we can choose K sufficiently large so that K2 ≥ 4(En(0) + 1), for all n, 
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and K2 ≥ 4(E(0) + 1), where En(t) and E(t) are quadratic energies corresponding to un and u, 
respectively. Thus, K and T are both independent of n. Furthermore, (2.36) and (2.37) yield

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

En(t) ≤ K2/2, E(t) ≤ K2/2, for all t ∈ [0, T ];
T∫

0

∥∥u′
n

∥∥m+1
m+1dt ≤ CK,

T∫
0

∥∥u′∥∥m+1
m+1dt ≤ CK,

(3.6)

for all n ∈N.
Now put: ũn = un − u and

Ẽn(t) := 1

2

(∥∥ũ′
n(t)
∥∥2

2 + ∥∥∇ũn(t)
∥∥2

2 +
∞∫

0

∥∥∇w̃n(t, s)
∥∥2

2μ(s)ds

)
,

where w̃n(x, t, s) = ũn(x, t) − ũn(x, t − s). By assumption, Ẽn(0) → 0. We aim to show 
Ẽn(t) → 0 uniformly on [0, T ].

Following the same approach in proving the energy identity (1.6), one can obtain that:

Ẽn(t) +
t∫

0

∫
Ω

(
g
(
u′

n

)− g
(
u′))(u′

n − u′)dxdτ − 1

2

t∫
0

∞∫
0

‖∇w̃n‖2
2μ

′(s)dsdτ

= Ẽn(0) +
t∫

0

∫
Ω

(
f (un) − f (u)

)(
u′

n − u′)dxdτ.

By the monotonicity of the function g and the assumption that μ′ < 0, then the following 
energy inequality holds:

Ẽn(t) ≤ Ẽn(0) +
t∫

0

∫
Ω

(
f (un) − f (u)

)
ũ′

ndxdτ. (3.7)

If 1 ≤ p ≤ 3, then the uniqueness of weak solutions can be obtained immediately by the 
energy inequality (3.7). To see this, we recall, if 1 ≤ p ≤ 3, then f : H 1

0 (Ω) → L2(Ω) is locally 
Lipschitz continuous, and along with (3.6), we infer

t∫
0

∫
Ω

(
f (un) − f (u)

)
ũ′

ndxdτ

≤ C(K)

( t∫
‖∇ũn‖2

2dτ

) 1
2
( t∫ ∥∥ũ′

n

∥∥2
2dτ

) 1
2

≤ C(K)

t∫
Ẽn(τ )dτ.
0 0 0
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Thus, it follows from (3.7) that

Ẽn(t) ≤ Ẽn(0) + C(K)

t∫
0

Ẽn(τ )dτ, for all t ∈ [0, T ].

By Gronwall’s inequality, we have

Ẽ(t) ≤ C(K,T )Ẽn(0)

for all t ∈ [0, T ]. Since Ẽn(0) → 0, then Ẽn(t) → 0 uniformly on [0, T ], for the case 1 ≤ p ≤ 3.
However, if 3 < p < 6, the estimate for the source term is more subtle. Here, we follow a 

clever idea that has been used in [7]. As in [7], we shall perform integration by parts twice with 
respect to the time variable t , which essentially convert ũ′

n ∈ L2(Ω) to the more regular term 
ũn ∈ H 1

0 (Ω) ↪→ L6(Ω). More precisely, we compute as follows:

t∫
0

∫
Ω

(
f (un) − f (u)

)
ũ′

ndxdτ

=
[∫

Ω

(
f (un) − f (u)

)
ũndx

]t
0
−

t∫
0

∫
Ω

(
f ′

1(un)u
′
n − f ′(u)u′)ũndxdτ

=
[∫

Ω

(
f (un) − f (u)

)
ũndx

]t
0
−

t∫
0

∫
Ω

(
f ′(un) − f ′(u)

)
u′

nũndxdτ

−
t∫

0

∫
Ω

f ′(u)ũ′
nũndxdτ

=
[∫

Ω

(
f (un) − f (u)

)
ũndx

]t
0
−

t∫
0

∫
Ω

(
f ′(un) − f ′(u)

)
u′

nũndxdτ

− 1

2

[∫
Ω

f ′(u)|ũn|2dx

]t
0
+ 1

2

t∫
0

∫
Ω

f ′′(u)u′|ũn|2dxdτ. (3.8)

By the assumptions on f , we have

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∣∣f ′′(u)
∣∣≤ C
(|u|p−2 + 1

)∣∣f ′(u)
∣∣≤ C
(|u|p−1 + 1

)∣∣f (un) − f (u)
∣∣≤ C
(|un|p−1 + |u|p−1 + 1

)|ũn|∣∣f ′(un) − f ′(u)
∣∣≤ C
(|un|p−2 + |u|p−2 + 1

)|ũn|.
(3.9)

By using (3.9), then we estimate (3.8) as follows:
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t∫
0

∫
Ω

(
f (un) − f (u)

)
ũ′

ndxdτ

≤
∫
Ω

(∣∣ũn(t)
∣∣2 + ∣∣ũn(0)

∣∣2)dx +
∫
Ω

(∣∣un(t)
∣∣p−1 + ∣∣u(t)

∣∣p−1)∣∣ũn(t)
∣∣2dx

+
∫
Ω

(∣∣un(0)
∣∣p−1 + ∣∣u(0)

∣∣p−1)∣∣ũn(0)
∣∣2dx +

t∫
0

∫
Ω

|ũn|2
(∣∣u′

n

∣∣+ ∣∣u′∣∣)dxdτ

+
t∫

0

∫
Ω

(|un|p−2 + |u|p−2)|ũn|2
(∣∣u′

n

∣∣+ ∣∣u′∣∣)dxdτ

:= I1 + I2 + I3 + I4 + I5. (3.10)

The next step is to estimate each term on the right hand side of (3.10). First, let us look at

I1 =
∫
Ω

(∣∣ũn(t)
∣∣2 + ∣∣ũn(0)

∣∣2)dx =
∫
Ω

(∣∣∣∣∣ũn(0) +
t∫

0

ũ′
n(τ )dτ

∣∣∣∣∣
2

+ ∣∣ũn(0)
∣∣2)dx

≤ 3
∥∥ũn(0)
∥∥2

2 + 2t

t∫
0

∥∥ũ′
n(τ )
∥∥2

2dτ ≤ C

(
Ẽn(0) + T

t∫
0

Ẽn(τ )dτ

)
. (3.11)

Also, by Hölder’s inequality and the imbedding H 1(Ω) ↪→ L6(Ω), one has

I3 =
∫
Ω

(∣∣un(0)
∣∣p−1 + ∣∣u(0)

∣∣p−1)∣∣ũn(0)
∣∣2dx

≤ (∥∥un(0)
∥∥p−1

3(p−1)
2

+ ∥∥u(0)
∥∥p−1

3(p−1)
2

)∥∥ũn(0)
∥∥2

6 ≤ CẼn(0), (3.12)

where we have used the fact un(0) = un
0(0) → u(0) = u0(0) in L

3(p−1)
2 (Ω).

Similarly,

I4 =
t∫

0

∫
Ω

|ũn|2
(∣∣u′

n

∣∣+ ∣∣u′∣∣)dxdτ ≤ C

t∫
0

‖ũn‖2
6

(∥∥u′
n

∥∥
2 + ∥∥u′∥∥

2

)
dτ

≤ C

t∫
0

‖∇ũn‖2
2

(∥∥u′
n

∥∥
2 + ∥∥u′∥∥

2

)
dτ ≤ C(K)

t∫
0

Ẽn(τ )dτ. (3.13)

To estimate I5, we recall the assumption p m+1
m

< 6, which implies 6
6−p

< m + 1. Hence,

I5 =
t∫ ∫ (|un|p−2 + |u|p−2)|ũn|2

(∣∣u′
n

∣∣+ ∣∣u′∣∣)dxdτ
0 Ω
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≤ C

t∫
0

(‖un‖p−2
6 + ‖u‖p−2

6

)‖ũn‖2
6

(∥∥u′
n

∥∥ 6
6−p

+ ∥∥u′∥∥ 6
6−p

)
dτ

≤ C(K)

t∫
0

Ẽn(τ )
(∥∥u′

n

∥∥
m+1 + ∥∥u′∥∥

m+1

)
dτ. (3.14)

Finally, we estimate I2 = ∫
Ω

(|ũn(t)|p−1 + |u(t)|p−1)|ũn(t)|2dx. For the sake of clarification, 
we focus on the term 

∫
Ω

|ũn(t)|p−1|ũn(t)|2dx. The estimate for 
∫
Ω

|u(t)|p−1|ũn(t)|2dx will be 
the same. There are two different cases to be considered.

Case 1. 3 < p < 5. In this case, we split the integral to obtain∫
Ω

∣∣un(t)
∣∣p−1∣∣ũn(t)

∣∣2dx ≤
∫
Ω

∣∣ũn(t)
∣∣2dx +

∫
{x∈Ω:|ũn(t)|>1}

∣∣un(t)
∣∣p−1∣∣ũn(t)

∣∣2dx. (3.15)

Note that the first term on the right hand side of (3.15) has been estimated in (3.11). So, we only 
consider the second term. Let ε ∈ (0, 5 − p), so if |un| > 1, then |un|p−1 < |un|4−ε . It follows 
that ∫

{x∈Ω:|u(t)|>1}

∣∣un(t)
∣∣p−1∣∣ũn(t)

∣∣2dx ≤
∫
Ω

∣∣un(t)
∣∣4−ε∣∣ũn(t)

∣∣2dx ≤ ∥∥un(t)
∥∥4−ε

6

∥∥ũn(t)
∥∥2 6

1+ε/2

≤ C
∥∥∇un(t)

∥∥4−ε

2

∥∥ũn(t)
∥∥2

H 1−ε/4(Ω)

= C(K)
(
ε
∥∥∇ũn(t)

∥∥2
2 + Cε

∥∥ũn(t)
∥∥2

2

)
(3.16)

where we have use the imbedding H 1−δ(Ω) ↪→ L
6

1+2δ (Ω) and the interpolation inequality. We 
infer from (3.11), (3.15) and (3.16) that

∫
Ω

∣∣un(t)
∣∣p−1∣∣ũn(t)

∣∣2dx ≤ C(K,ε)

(
Ẽn(0) + T

t∫
0

Ẽn(τ )dτ

)
+ C(K)εẼn(t). (3.17)

Case 2. 5 ≤ p < 6. In this case, we require the initial data un
0(0), u0(0) ∈ L

3(p−1)
2 (Ω). Note, for 

any ε > 0, there exists φ ∈ C0(Ω) such that ‖u0(0) − φ‖ 3(p−1)
2

< ε
1

p−1 . We consider

∫
Ω

∣∣un(t)
∣∣p−1∣∣ũn(t)

∣∣2dx

≤ C

∫
Ω

∣∣un(t) − un
0(0)
∣∣p−1∣∣ũn(t)

∣∣2dx + C

∫
Ω

∣∣un
0(0) − u0(0)

∣∣p−1∣∣ũn(t)
∣∣2dx

+ C

∫ ∣∣u0(0) − φ
∣∣p−1∣∣ũn(t)

∣∣2dx + C

∫
|φ|p−1
∣∣ũn(t)
∣∣2dx. (3.18)
Ω Ω
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By the assumption p m+1
m

< 6 and 5 ≤ p < 6, we infer m > 5. In addition, we have

3(p − 1)

2(m + 1)
<

3(5m − 1)

2(m + 1)2
< 1,

for m > 5. Therefore, the first term on the right hand side of (3.18) can be estimated as follows:

∫
Ω

∣∣un(t) − un
0(0)
∣∣p−1∣∣ũn(t)

∣∣2 ≤
(∫

Ω

∣∣un(t) − un(0)
∣∣ 3(p−1)

2

)2/3∥∥ũn(t)
∥∥2

6

≤ C

(∫
Ω

∣∣∣∣∣
t∫

0

u′
n(τ )dτ

∣∣∣∣∣
3(p−1)

2

dx

)2/3∥∥ũn(t)
∥∥2

1,Ω

≤ C

[∫
Ω

( t∫
0

∣∣u′
n

∣∣m+1
dτ

) 3(p−1)
2(m+1)

dx

]2/3

T
m(p−1)

m+1 Ẽn(t)

≤ C(K)T
m(p−1)

m+1 Ẽn(t), (3.19)

where we have used the bound 
∫ T

0 ‖u′
n‖m+1

m+1dt ≤ K and the fact that 3(p−1)
2(m+1)

< 1.
Next, we consider the second term on the right hand side of (3.18).∫

Ω

∣∣un
0(0) − u0(0)

∣∣p−1∣∣ũn(t)
∣∣2dx ≤ ∥∥un

0(0) − u0(0)
∥∥p−1

3(p−1)
2

∥∥ũn(t)
∥∥2

6 ≤ εẼn(t), (3.20)

for n sufficiently large, due to the assumption un
0(0) → u0(0) in L

3(p−1)
2 (Ω).

Similarly, we have∫
Ω

∣∣u0(0) − φ
∣∣p−1∣∣ũn(t)

∣∣2dx ≤ ∥∥u0(0) − φ
∥∥p−1

3(p−1)
2

∥∥ũn(t)
∥∥2

6 ≤ CεẼn(t). (3.21)

In addition, since φ ∈ C0(Ω), it is clear that |φ(x)| ≤ C(ε), for all x ∈ Ω . So, by (3.11), we 
estimate the last term on the right hand side of (3.18) as follows:

∫
Ω

|φ|p−1
∣∣ũn(t)
∣∣2dx ≤ C(ε)

∫
Ω

∣∣ũn(t)
∣∣2dx ≤ C(ε)

(
Ẽn(0) + T

t∫
0

Ẽn(τ )dτ

)
. (3.22)

It follows from (3.18)–(3.22)) that∫
Ω

∣∣ũn(t)
∣∣p−1∣∣ũn(t)

∣∣2dx

≤ C(K)
(
T

m(p−1)
m+1 + ε

)
Ẽn(t) + C(ε)

(
Ẽn(0) + T

t∫
0

Ẽn(τ )dτ

)
, (3.23)

in the case 5 ≤ p < 6.
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By combining (3.17) and (3.23) for the both cases, we conclude that,

I2 ≤ C(K)
(
T

m(p−1)
m+1 + ε

)
Ẽn(t) + C(K,ε)

(
Ẽn(0) + T

t∫
0

Ẽn(τ )dτ

)
, (3.24)

for any 3 < p < 6.
Now, by combining (3.7), (3.10)–(3.14) and (3.24), we have

Ẽn(t) ≤ C(K)
(
T

m(p−1)
m+1 + ε

)
Ẽn(t) + C(K,ε)Ẽn(0)

+ C(K,T , ε)

t∫
0

Ẽn(τ )
(∥∥u′

n

∥∥
m+1 + ∥∥u′∥∥

m+1 + 1
)
dτ,

for all t ∈ [0, T ]. By selecting ε and T sufficiently small so that

C(K)
(
T

m(p−1)
m+1 + ε

)
< 1,

then by Gronwall’s inequality,

Ẽn(t) ≤ C(K,T , ε)Ẽn(0) exp

( t∫
0

(∥∥u′
n

∥∥
m+1 + ∥∥u′∥∥

m+1 + 1
)
dτ

)
.

Hence,

Ẽn(t) ≤ C(K,T , ε)Ẽn(0),

and since Ẽn(0) → 0, we conclude that Ẽn(t) → 0 uniformly on [0, T ]. �
4. Global existence

In this section we prove Theorem 1.6 stating that a local weak solution u on [0, T ] can be 
extended to [0, ∞) provided the damping term g(ut) dominates the source f (u), i.e., m ≥ p.

Proof. One may employ a standard continuation argument from ODE theory to obtain that the 
weak solution u is either global or there exists 0 < Tmax < ∞ such that

lim sup
t→T −

max

E(t) = +∞ (4.1)

where E(t) is the modified energy defined by

E(t) = E(t) + 1 ∥∥u(t)
∥∥p+1

p+1 (4.2)

p + 1
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and the quadratic energy E(t) is as defined in (1.7). We aim to show the latter cannot happen if 
m ≥ p.

Let u be a weak solution to (1.1) on [0, T ] in the sense of Definition 1.2. With the modified 
energy E(t), the energy identity (1.6) now reads

E(t) +
t∫

0

∫
Ω

g(ut )utdxdτ − 1

2

t∫
0

∞∫
0

‖∇w‖2
2μ

′(s)dsdτ

= E(0) +
t∫

0

∫
Ω

f (u)utdxdτ +
t∫

0

∫
Ω

|u|p−1uutdxdτ. (4.3)

By the assumption |f (u)| ≤ C(|u|p + 1), we deduce

∣∣∣∣∣
t∫

0

∫
Ω

f (u)utdxdτ

∣∣∣∣∣≤ C

t∫
0

∫
Ω

(|u|p + 1
)|ut |dxdτ

≤
t∫

0

‖ut‖p+1
(‖u‖p

p+1 + |Ω| p
p+1
)
dτ

≤ ε

t∫
0

‖ut‖p+1
p+1dτ + Cε

t∫
0

(‖u‖p+1
p+1 + |Ω|)dτ

≤ ε

t∫
0

‖ut‖p+1
p+1dτ + Cε

t∫
0

E(τ )dτ + CεT |Ω|, (4.4)

where ε > 0 to be chosen later. Similarly, we have

∣∣∣∣∣
t∫

0

∫
Ω

|u|p−1uutdxdτ

∣∣∣∣∣≤ ε

t∫
0

‖ut‖p+1
p+1dτ + Cε

t∫
0

E(τ )dτ. (4.5)

It follows from (4.4)–(4.5) and the assumptions g(s)s ≥ a|s|m+1, μ(s) ≤ 0, we infer from 
(4.3) that

E(t) + a

t∫
0

‖ut‖m+1
m+1dτ ≤ E(0) + ε

t∫
0

‖ut‖p+1
p+1dτ + Cε

t∫
0

E(τ )dτ + CT,ε

≤ E(0) + ε

t∫
0

‖ut‖m+1
m+1dτ + Cε

t∫
0

E(τ )dτ + CT,ε, (4.6)

where we have used the assumption m ≥ p, Hölder’s and Young’s inequalities.
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Now, if we choose ε < a, then (4.6) yields

E(t) ≤ E(0) + Cε

t∫
0

E(τ )dτ + CT,ε.

By Gronwall’s inequality, we conclude

E(t) ≤ (E(0) + CT,ε

)
eCεT ,

for all t ∈ [0, T ]. Thus, (4.1) cannot happen, which implies that u is a global weak solution. �
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Appendix A

Here we provide some properties of the regularizing operator (I − ε�)−1 that we used in the 
justification of the energy identity. Let u ∈ Lp(Ω), 1 < p < ∞. Set uε := (I − ε�)−1u with 
uε = 0 on ∂Ω .

Proposition A.1. The following statements hold.

• If u ∈ L2(Ω), then ‖uε‖2 ≤ ‖u‖2, and uε → u in L2(Ω), as ε → 0.
• If u ∈ H 1

0 (Ω), then ‖uε‖H 1
0

≤ ‖u‖H 1
0

, and uε → u in H 1
0 (Ω), as ε → 0.

Proof. The proof of these two statements are essentially the same. We only consider the sec-
ond one. Since Ω is bounded with boundary of class C2, it is well known that −�, with the 
domain H 2(Ω) ∩ H 1

0 (Ω), is positive, self-adjoint, and it is the inverse of a compact operator. 
Moreover, −� has an infinite sequence of positive eigenvalues 0 < λ1 ≤ λ2 ≤ · · · ≤ λj ≤ · · ·, 
and a corresponding sequence of eigenfunctions {ej : j = 1, 2, · · ·} that forms an orthonormal 
basis for L2(Ω), i.e., −�ej = λjej with ej = 0 on ∂Ω . Also, the sequence {ej : j = 1, 2, · · ·}
is an orthogonal basis for H 1

0 (Ω). In addition, the standard norm ‖u‖H 1
0 (Ω) is equivalent to 

(
∑∞

j=1 λj |(u, ej )|2)1/2. Therefore, we consider

‖u‖2
H 1

0 (Ω)
=

∞∑
λj

∣∣(u, ej )
∣∣2.
j=1
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We now have

‖uε‖2
H 1

0 (Ω)
=

∞∑
j=1

λj

(1 + ελj )2

∣∣(u, ej )
∣∣2 ≤

∞∑
j=1

λj

∣∣(u, ej )
∣∣2 = ‖u‖2

H 1
0
.

To see that uε → u in H 1
0 (Ω), we calculate

‖uε − u‖2
H 1

0 (Ω)
=

∞∑
j=1

(
ελj

1 + ελj

)2

λj

∣∣(u, ej )
∣∣2

=
N∑

j=1

(
ελj

1 + ελj

)2

λj

∣∣(u, ej )
∣∣2 +

∞∑
j=N+1

(
ελj

1 + ελj

)2

λj

∣∣(u, ej )
∣∣2

≤ ε2
N∑

j=1

λ3
j

∣∣(u, ej )
∣∣2 +

∞∑
j=N+1

λj

∣∣(u, ej )
∣∣2.

Since u ∈ H 1
0 (Ω), then 

∑∞
j=1 λj |(u, ej )|2 < ∞. Thus, by choosing N large enough and then 

selecting ε small enough, the conclusion follows. �
Proposition A.2. Let u ∈ Lp(Ω) with 1 < p < ∞, then ‖uε‖p ≤ ‖u‖p and uε → u in Lp(Ω), 
as ε → 0.

Proof. By the definition of uε , we have

{
uε − ε�uε = u in Ω;
uε = 0 on ∂Ω.

From the standard elliptic theory (see [22]), uε ∈ W 2,p(Ω) whenever u ∈ Lp(Ω), for 1 <
p < ∞.

Case 1: 2 ≤ p < ∞.
Multiply the equation by |uε|p−2uε and integration by parts:

‖uε‖p
p + ε

∫
Ω

∇uε · ∇(|uε |p−2uε

)
dx =
∫
Ω

u|uε |p−2uεdx.

A straightforward calculation gives

‖uε‖p
p + ε(p − 1)

∫
Ω

|uε |p−2|∇uε |2dx =
∫
Ω

u|uε |p−2uεdx.

Since the middle term is positive, one has

‖uε‖p
p ≤
∫

|u||uε |p−1dx ≤ ‖u‖p‖uε‖p−1
p .
Ω
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It follows that

‖uε‖p ≤ ‖u‖p, for 2 ≤ p < ∞. (A.1)

To show uε → u in Lp , we argue by contradiction. Suppose not, then there exist δ > 0 and 
a subsequence {uεj

} such that

‖uεj
− u‖p ≥ δ, for all j = 1,2, · · · . (A.2)

Due to the uniform bound (A.1) and the fact uε → u strongly in L2(Ω) from Proposition A.1, 
we can extract a further subsequence {uεjk

} such that uεjk
→ u weakly in Lp(Ω). As a result, 

the weak convergence and the uniform bound (A.1) imply

‖u‖p ≤ lim inf
k→0

‖uεjk
‖p ≤ lim sup

k→0
‖uεjk

‖p ≤ ‖u‖p.

This shows

lim
k→0

‖uεjk
‖p = ‖u‖p.

Since we already know uεjk
→ u weakly in Lp(Ω), it follows that uεjk

→ u strongly in Lp(Ω), 
which violates (A.2).

Case 2: 1 < p < 2.
In this case, the conjugate 2 < p∗ < ∞. We calculate

‖uε‖p = sup
‖ϕ‖p∗=1

∫
Ω

uεϕdx = sup
‖ϕ‖p∗=1

∫
Ω

uε

(
(I − ε�)ϕε

)
dx = sup

‖ϕ‖p∗=1

∫
Ω

(
(I − ε�)uε

)
ϕεdx

= sup
‖ϕ‖p∗=1

∫
Ω

uϕεdx ≤ sup
‖ϕ‖p∗=1

‖u‖p‖ϕε‖p∗ ≤ sup
‖ϕ‖p∗=1

‖u‖p‖ϕ‖p∗ = ‖u‖p,

where the uniform bound (A.1) has been used.
Finally, arguing as in Case 1, the convergence of uε in Lp(Ω) for 1 < p < 2 follows. �
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