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Abstract

We prove the existence of inertial manifolds for the incompressible hyperviscous Navier–Stokes equa-
tions on the two or three-dimensional torus:

{
ut + ν(−�)βu + (u · ∇)u + ∇p = f, (t, x) ∈R+ ×Td ,

divu = 0,

where d = 2 or 3 and β ≥ 3/2. Since the spectral gap condition is not necessarily satisfied for the aforemen-
tioned problem in three dimensions, we employ the spatial averaging method introduced by Mallet-Paret 
and Sell in [26].
© 2018 Elsevier Inc. All rights reserved.
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1. Introduction

Let us consider the following hyperviscous version of the Navier–Stokes equations of incom-
pressible fluid flow on a torus,
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{
ut + ν(−�)βu + (u · ∇)u + ∇p = f, (t, x) ∈R+ ×Td,

divu = 0, u|t=0 = u0,
(1.1)

where β ≥ d/4 +1/2 for the spatial dimension d ≥ 3, and β ≥ 1 for d = 2. Here, Td = [−π,π]d

is endowed with the periodic boundary condition. It is well-known that the regularized system 
(1.1) is globally well-posed in the L2 space (see, e.g., [8]). It has been used, among others, by 
numerical analysts as a substitute model for the standard case β = 1 and plays a key role in 
understanding turbulent phenomena in science (cf. Avrin [2], Borue and Orszag [4], Basdevant 
et al. [6], Browning and Kreiss [7], Cerruto et al. [10], Fornberg [20] and McWilliams [27]). 
Besides, the system (1.1) has some physical meaning (see again [10]). Given the nonlinear na-
ture of turbulent incompressible viscous flows and the ensuing multiscale interactions, the direct 
numerical simulation of the Navier–Stokes equations is still presently lacking apart from some 
investigations performed on regularized systems which still retain the basic nonlinear structure 
and the essential features of the full hydrodynamic Navier–Stokes equations (cf. Holst et al. [22], 
Gal and Medjo [21]). Among such regularized models, it is worth noting the following globally 
well-posed systems in three dimensions: the Leray-α model (cf. Cheskidov et al. [11]), the sim-
plified Bardina model (cf. Cao et al. [9]), the Navier–Stokes-α equations (cf. Foias et al. [16]) 
and the Navier–Stokes–Voight equations (cf. Kalantarov and Titi [23], Coti-Zelati and Gal [14]). 
One advantage of using the hyperviscous Navier–Stokes equations (1.1) with β ≥ 5/4 in the 
three-dimensional domain is that the system only modifies the spectral distribution of energy, 
and the global well-posedness (i.e., existence, uniqueness and stability with respect to the initial 
data) of the solutions can be rigorously proven unlike for the three-dimensional Navier–Stokes 
equations (see [2,8]). On the other hand, (1.1) has also been proposed and investigated for the 
purpose of direct numerical simulations of turbulent incompressible viscous flows, although or-
ders of dissipation β ≥ 2 have typically been used (see again [7,10,20,27]). The existence of 
finite-dimensional global attractors for the regularized family (1.1) can be proven by employing 
standard theory of attractors. For the sake of completeness, we provide a brief proof of the global 
well-posedness and existence of global attractors of (1.1) in the appendix.

Furthermore, by directly verifying a spectral gap condition it was shown in [33] that the hyper-
viscous Navier–Stokes equations (1.1) possess an inertial manifold in L2 provided β > d for any 
spatial dimension d ≥ 2. Exploiting the same strategy and a more refined analysis, the existence 
of inertial manifolds for (1.1) with β > 5/2 in three-dimensional domains was established in [3]
(the results in [3] actually hold for a general family of hyperviscous operators). The purpose of 
this manuscript is to prove the existence of an inertial manifold for (1.1) with β ≥ 3/2 in two 
or three dimensions when the spectral gap condition is not necessarily fulfilled. The motivation 
for this line of research is the long-standing open problem concerning the existence of inertial 
manifolds for the Navier–Stokes equation (β = 1).

We recall that the existence of an inertial manifold guarantees that, in the long-term, the sys-
tem resembles a finite-dimensional system of ordinary differential equations, which describes the 
limit dynamics of the original system as time goes to infinity (see, e.g. [18,35]). Indeed, spectral 
gap conditions have been widely used in the literature to establish the existence of inertial man-
ifolds for many dissipative evolution equations (cf. [1,13,17–19,32,34]). However, for a system 
that lacks the spectral gap condition, in their pioneering work [26], Mallet-Paret and Sell have 
introduced the so-called spatial averaging method to prove the existence of inertial manifolds for 
a three-dimensional reaction–diffusion equation. This technique was further simplified by Zelik 
[35], and extended by Kostianko and Zelik to the three-dimensional Cahn–Hilliard equation [25], 
and by Kostianko to the three-dimensional modified Leray-α model [24].
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In the present work, we employ the spatial averaging method to establish the existence of 
inertial manifolds for the system (1.1) in the hyperdissipation range β ≥ 3/2 in three dimensions 
when the spectral gap condition fails, whereas in two dimensions an arbitrarily large spectral gap 
is available. We draw techniques from the contributions [18,24–26,35]. In particular, we would 
like to mention the article [25] by Kostianko and Zelik in which they studied the existence of 
inertial manifolds for a model problem that can be associated with the Cahn–Hilliard equation 
subject to periodic boundary conditions on T3. The model problem in [25] reads

ut + A2u + AF (u) = 0, u|t=0 = u0, (1.2)

where A is a positive self-adjoint operator in some Hilbert space H , with compact inverse. The 
Cahn–Hilliard equation on T3 is an example of (1.2) when A = −� with periodic boundary 
conditions on T3 and F (u) = u3 − u. It is well known that the Cahn–Hilliard equation can 
be also obtained as the conserved gradient flow in H−1 (i.e., the dual of a proper subspace of 
H 1) associated with the Fréchet derivative of some free energy functional. Indeed, the Cahn–
Hilliard equation is naturally dissipative in H−1 in the sense that the solution semigroup is 
well-defined in H−1, possessing an absorbing ball in H−1. Based on this interpretation, one 
may then employ analytical techniques that are similar to ones for the reaction–diffusion equa-
tion ut +Au +F (u) = 0. Roughly speaking, this is also the approach used in [25] where in order 
to verify the existence of an inertial manifold for the Cahn–Hilliard equation, one constructs in-
variant cones in H−1 and adopts the spatial averaging method that was initially developed for 
the 3D reaction–diffusion equation in [26].

Inspired by [25,26,35], we study an abstract model in some Hilbert space H ,

ut + Aβu + A1/2F(u) = f, u|t=0 = u0, (1.3)

for β ≥ 3/2. Notice that the hyperviscous Navier–Stokes equations (1.1) with ν = 1 coincides 
with the model problem (1.3) when A = −� and F (u) = A−1/2B(u, u), where B (u, v) =
Pσ ((u · ∇)v) is the bilinear form associated with the advection term in (1.1). Here Pσ is the 
Helmholtz–Leray orthogonal projection operator. Then one needs to extend the aforementioned 
invariant cone and spatial averaging method to our model (1.3) for establishing the existence of 
a Lipschitz inertial manifold. Our argument also relies on number theoretic results from [29] by 
Richards, and from [26] by Mallet-Paret and Sell. Specifically, we explicitly use the fact that 
the size of the gap among certain quadratic forms of integers is logarithmic growing (see The-
orem 4.3). The most technical and essential content of this paper is contained in the proof of 
Theorem 2.4.

This manuscript is divided into sections as follows. Section 2 is devoted to a treatment of the 
model problem (1.3) by finding sufficient conditions that guarantee the existence of an inertial 
manifold. In particular, in Subsection 2.1, we state a well-known optimal spectral gap condition 
which immediately implies the existence of inertial manifolds for (1.3). Next, in Subsection 2.2
we adapt the method of spatial averaging developed in [26] and further exploited by [25], to treat 
the critical case β = 3/2 of (1.3), when the spectral gap condition is violated. Section 3 is de-
voted to an application of the theory established on the abstract model (1.3) to the hyperviscous 
Navier–Stokes equations (1.1). Specifically, in Subsection 3.1 we briefly verify the existence of 
a compact global attractor for (1.1) with β ≥ 3/2 by showing the existence of an absorbing ball 
in H 4. Then, in Subsection 3.2, by adopting the technique in [24], we modify (1.1) outside of 
this absorbing ball in such a way that the new equation possesses an inertial manifold. As usual, 
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this inertial manifold will still be invariant with respect to the solution semigroup associated with 
(1.1) at least in the neighborhood of the global attractor and therefore will contain all of its non-
trivial dynamics. All the corresponding conditions of our abstract theorem are verified directly in 
Subsection 3.3. The appendix contains some supporting material from number theory (see Ap-
pendix 4.1), and the proof of a standard result which says that the cone invariance property and 
the decay property together imply the existence of inertial manifolds for the model problem (1.3)
(see Appendix 4.2). For the sake of completeness, in the appendix we also provide the verifica-
tion of the strong cone property for (1.3) when the optimal spectral gap condition is fulfilled (see 
Appendix 4.3), as well as a brief proof of the global well-posedness of weak solutions and the 
existence of the global attractor for the hyperviscous Navier–Stokes equations (1.1) for β ≥ 5/4
in three dimensions (see Appendix 4.4).

2. The abstract model

First, let H be a Hilbert space. We study the following abstract model in H ,

ut + Aβu + A1/2F(u) = f, u|t=0 = u0, (2.1)

for β ≥ 3/2. Here F is an operator mapping from H to H , and A : D(A) → H is a linear 
self-adjoint positive operator with compact inverse. The operator A possesses the complete or-
thonormal system of eigenvectors {ej }∞j=1 in H which corresponds to eigenvalues λj such that 
λj → ∞ as j → ∞ and

Aej = λjej , 0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · (2.2)

Throughout, we denote by | · | the norm of H and (·, ·) denotes the inner product in H . For 
N ∈N, let us now define the following projection operators

PNv =
N∑

j=1

vj ej , QNv =
∞∑

j=N+1

vj ej , (2.3)

where vj = (v, ej ).
Our goal in this section is to find sufficient conditions on the operator A and F such that the 

model problem (2.1) possesses an inertial manifold in H . An application to the hyperviscous 
Navier–Stokes equations (1.1) shall be discussed in the subsequent section. Let us first recall the 
notion of inertial manifold for a dynamical system (see, e.g., [18,35]).

Definition 2.1. Let H be a Hilbert space. A subset M ⊂ H is called an inertial manifold for 
a dynamical system in H associated with the semigroup S(t) if the following conditions are 
satisfied:

(1) M is invariant with respect to the semigroup S(t), i.e. S(t)M =M, for all t ≥ 0;
(2) M is a finite-dimensional Lipschitz manifold, i.e. there exists a Lipschitz continuous func-

tion 	 : PNH → QNH such that

M := {u+ + 	(u+), u+ ∈ PNH }.
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(3) The exponential tracking property holds, namely, there exist C, α > 0 such that for every 
u0 ∈ H , there exists v0 ∈ M such that

|S(t)u0 − S(t)v0| ≤ Ce−αt |u0 − v0|, for all t ≥ 0.

2.1. A spectral gap condition

We state the following well-known optimal spectral gap condition which guarantees the exis-
tence of inertial manifolds for (2.1) (see [28,30,35]).

Theorem 2.2. Let the above assumptions on the operator A hold, and assume F : H → H is 
globally Lipschitz continuous with Lipschitz constant L. Suppose there exists N ∈ N such that 
the following spectral gap condition is satisfied:

λ
β
N+1 − λ

β
N

λ
1/2
N+1 + λ

1/2
N

> L. (2.4)

Then (2.1) possesses an N -dimensional inertial manifold in the sense of Definition 2.1.

Remark 2.3. If β > 3/2, then the spectral gap condition (2.4) is satisfied if we assume that 
λj → ∞ as j → ∞, and λN+1 −λN ≥ 1 for some large N . However, in the critical case β = 3/2, 
the condition (2.4) demands a large spectral gap. Indeed, if λN+1 − λN ≥ 2L, then (2.4) is valid 
for β = 3/2.

This result with sharp spectral gap condition (2.4) was derived by Miklavcic [28] and Ro-
manov [30] (see also Zelik [35]). The condition (2.4) is optimal in the sense that one can find 
globally Lipschitz nonlinearity F such that (2.1) does not possess an inertial manifold if (2.4) is 
violated (cf. [15,31,35]).

For the reader’s convenience, in Appendix 4.3 we prove a strong cone property provided the 
optimal spectral gap (2.4) is satisfied, which eventually leads to the existence of inertial manifolds 
for the model problem (2.1).

2.2. The spatial averaging scheme

In the above subsection, we have pointed out that, regarding the critical case β = 3/2 for the 
model (2.1), the spectral gap condition (2.4) demands a sufficiently large spectral gap for the 
operator A, which may not be available. This motivates us to consider the model problem (2.1)
in the critical case

ut + A3/2u + A1/2F(u) = f, (2.5)

under the scenario when the eigenvalues of A do not have a sufficiently large gap.
We define the projection operators on the low, high and intermediate Fourier modes, respec-

tively, as follows:
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Pk,Nu :=
∑

λj <λN−k

uj ej , Qk,Nu :=
∑

λj >λN+k

uj ej , Rk,Nu :=
∑

λN−k≤λj ≤λN+k

uj ej ,

where uj = (u, ej ), for some k < λN .

The following theorem states that if the spectral gap condition for (2.5) (i.e. λ3/2
N+1 − λ

3/2
N >

L(λ
1/2
N+1 + λ

1/2
N )) is not fulfilled, but the spatial averaging condition (2.6) is valid, then a strong 

cone property can be obtained, which implies the existence of an inertial manifold for (2.5).

Theorem 2.4. Let u1 and u2 be two solutions of (2.5) in H . Set v = u1 − u2. Define V (t) =
|q|2 − |p|2 where p = PNv and q = QNv. Assume F : H → H is Gateaux differentiable with 
|F ′(u)|L(H,H) ≤ L for all u ∈ H , and for some L ≥ 1. Suppose there exist N ∈ N and k ∈
[γ logλN, λN) for some γ ∈ (0, 1] such that λN ≥ e40L2/γ with 1 ≤ λN+1 − λN ≤ 2L, and the 
spatial averaging condition holds:

|Rk,NF ′(u)Rk,Nv| ≤ δ|v|, for all u ∈ H, (2.6)

for some δ ≤ 1
50 . Then the following strong cone property is valid,

d

dt
V (t) +

(
λ

3/2
N+1 + λ

3/2
N

)
V (t) ≤ −λ

1/2
N

4
|v(t)|2, for all t ≥ 0. (2.7)

Proof. Let u1 and u2 be two solutions of (2.5) and set v = u1 − u2, then one has

vt + A3/2v + A1/2[F(u1) − F(u2)] = 0. (2.8)

Set p = PNv and q = QNv. Take the scalar product of (2.8) with p and q respectively:

{
1
2

d
dt

|p|2 + |A3/4p|2 + (F (u1) − F(u2),A
1/2p) = 0,

1
2

d
dt

|q|2 + |A3/4q|2 + (F (u1) − F(u2),A
1/2q) = 0.

(2.9)

By subtracting the two equations in (2.9), we obtain

d

dt
V (t) = −2(|A3/4q|2 − |A3/4p|2) + 2(F (u1) − F(u2),A

1/2p − A1/2q). (2.10)

Due to the fundamental theorem of calculus for the Gateaux derivative, we have

F(u1) − F(u2) =
1∫

0

F ′(su1 + (1 − s)u2)vds. (2.11)

Therefore, by setting α := λ
3/2
N+1+λ

3/2
N , and due to (2.10) and (2.11), we have
2
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d

dt
V (t) + 2αV (t) =

[
αV (t) − (|A3/4q|2 − |A3/4p|2)

]
− (|A3/4q|2 − α|q|2)

− (α|p|2 − |A3/4p|2) + 2

1∫
0

(
F ′(su1 + (1 − s)u2)v,A1/2p − A1/2q

)
ds. (2.12)

The idea is to properly bound each of the summands on the right-hand side of (2.12). Since 
|v|2 = |p|2 + |q|2 and 

∣∣A3/4q
∣∣2 ≥ λ

3/2
N+1 |q|2, 

∣∣A3/4p
∣∣2 ≤ λ

3/2
N |p|2, we have

αV (t) − (|A3/4q|2 − |A3/4p|2)

≤ λ
3/2
N+1 + λ

3/2
N

2
(|q|2 − |p|2) − λ

3/2
N+1|q|2 + λ

3/2
N |p|2

= −λ
3/2
N+1 − λ

3/2
N

2
|v|2. (2.13)

For any real numbers a ≥ b ≥ 0, the following elementary inequality holds:

a3 − b3 = (a − b)(a2 + ab + b2) ≥ 1

2
(a − b)(a2 + 2ab + b2) = 1

2
(a2 − b2)(a + b). (2.14)

Hence,

λ
3/2
N+1 − λ

3/2
N

2
≥ 1

4
(λN+1 − λN)(λ

1/2
N+1 + λ

1/2
N ) ≥ 1

2
λ

1/2
N , (2.15)

owing to the assumption λN+1 − λN ≥ 1.
Applying (2.15) to (2.13) yields

αV (t) − (|A3/4q|2 − |A3/4p|2) ≤ −1

2
λ

1/2
N |v|2. (2.16)

Next notice that p = Pk,Nv + Rk,Np. Thus, since 
∣∣Pk,NA3/4v

∣∣2 ≤ (λN − k)3/2
∣∣Pk,Nv

∣∣2 and ∣∣Rk,NA3/4p
∣∣2 ≤ λ

3/2
N

∣∣Rk,Np
∣∣2, we have

α|p|2 − |A3/4p|2

= λ
3/2
N+1 + λ

3/2
N

2

(
|Pk,Nv|2 + |Rk,Np|2

)
−
(
|Pk,NA3/4v|2 + |Rk,NA3/4p|2

)

≥
[

λ
3/2
N+1 + λ

3/2
N

2
− (λN − k)3/2

]
|Pk,Nv|2 + λ

3/2
N+1 − λ

3/2
N

2
|Rk,Np|2. (2.17)

Since λN+1 ≥ λN and due to the elementary inequality (2.14), one has
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λ
3/2
N+1 + λ

3/2
N

2
− (λN − k)3/2 ≥ λ

3/2
N − (λN − k)3/2

≥ 1

2
[λN − (λN − k)][λ1/2

N + (λN − k)1/2] ≥ k

2
λ

1/2
N . (2.18)

Thus, applying (2.18) and (2.15) to (2.17) shows that

α|p|2 − |A3/4p|2 ≥ k

2
λ

1/2
N |Pk,Nv|2 + 1

2
λ

1/2
N |Rk,Np|2. (2.19)

Since q = Qk,Nv + Rk,Nq , we write |A3/4q|2 − α|q|2 as follows:

|A3/4q|2 − α|q|2 = (|Qk,NA3/4v|2 − α|Qk,Nv|2) + (|Rk,NA3/4q|2 − α|Rk,Nq|2). (2.20)

Clearly, |Rk,NA3/4q|2 ≥ λ
3/2
N+1|Rk,Nq|2, then by using (2.15), we have

|Rk,NA3/4q|2 − α|Rk,Nq|2 ≥ λ
3/2
N+1 − λ

3/2
N

2
|Rk,Nq|2 ≥ 1

2
λ

1/2
N |Rk,Nq|2. (2.21)

By the assumption k ≥ γ logλN and λN ≥ e40L2/γ , one has

k ≥ 40L2. (2.22)

Moreover, note that |Qk,NA3/4v|2 ≥ (λN + k)3/2|Qk,Nv|2. Then using α = λ
3/2
N+1+λ

3/2
N

2 ≤
λ

3/2
N+1, as well as the elementary inequality (2.14), we obtain

|Qk,NA3/4v|2 − α|Qk,Nv|2 ≥
[
(λN + k)3/2 − λ

3/2
N+1

]
|Qk,Nv|2

≥ 1

2
(λN + k − λN+1)

[
(λN + k)1/2 + λ

1/2
N+1

]
|Qk,Nv|2

≥ (k − 2L)λ
1/2
N+1|Qk,Nv|2 (2.23)

by the assumption λN+1 − λN ≤ 2L. Also we have used λN + k ≥ λN + 2L ≥ λN+1, where the 
first inequality is due to (2.22) as well as L ≥ 1.

However, we may find another lower bound for |Qk,NA3/4v|2 − α|Qk,Nv|2 different from 
(2.23). Indeed,

|Qk,NA3/4v|2 − α|Qk,Nv|2

≥ γ logλN

λN

|Qk,NA3/4v|2 +
[(

1 − γ logλN

λN

)
|Qk,NA3/4v|2 − α|Qk,Nv|2

]

≥ γ logλN

λ
1/2
N

|Qk,NA1/2v|2 +
[(

1 − γ logλN

λN

)
|Qk,NA3/4v|2 − α|Qk,Nv|2

]
. (2.24)
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We shall show that the second term on the right-hand side of (2.24) is nonnegative. By the 
assumptions λN > k ≥ γ logλN for some γ ∈ (0, 1] and λN+1 ≤ λN + 2L, we evaluate

(
1 − γ logλN

λN

)
|Qk,NA3/4v|2 − α|Qk,Nv|2

≥
(

1 − γ logλN

λN

)
(λN + k)3/2|Qk,Nv|2 − λ

3/2
N+1|Qk,Nv|2

≥
[(

1 − γ logλN

λN

)
(λN + γ logλN)3/2 − (λN + 2L)3/2

]
|Qk,Nv|2. (2.25)

Now, we calculate

(
1 − γ logλN

λN

)2

(λN + γ logλN)3

= λ3
N + λ2

Nγ logλN − 2λN(γ logλN)2 − 2(γ logλN)3 + (γ logλN)4

λN

+ (γ logλN)5

λ2
N

≥ λ3
N + 1

2
λ2

Nγ logλN ≥ λ3
N + 20L2λ2

N ≥ (λN + 2L)3, (2.26)

since we assume λN ≥ e40L2/γ , where L ≥ 1. The inequality (2.26) implies that the right-hand 
side of (2.25) is non-negative, and then due to (2.24), we obtain

|Qk,NA3/4v|2 − α|Qk,Nv|2 ≥ γ logλN

λ
1/2
N

|Qk,NA1/2v|2. (2.27)

We apply the estimates (2.21), (2.23) and (2.27) to the equality (2.20). Then

|A3/4q|2 − α|q|2 ≥ γ logλN

2λ
1/2
N

|Qk,NA1/2v|2 + k − 2L

2
λ

1/2
N+1|Qk,Nv|2 + 1

2
λ

1/2
N |Rk,Nq|2.

(2.28)

In order to deal with the nonlinear term in (2.12), we evaluate (F ′(u)v, A1/2p − A1/2q) for 
any u ∈ H as follows.

(F ′(u)v,A1/2p − A1/2q)

= (Rk,NF ′(u)v,A1/2p − A1/2q) + (Pk,NF ′(u)v,A1/2p − A1/2q)

+ (Qk,NF ′(u)v,A1/2p − A1/2q)

= (Rk,NF ′(u)Rk,Nv,A1/2p − A1/2q) + (Rk,NF ′(u)Pk,Nv,A1/2p − A1/2q)

+ (Rk,NF ′(u)Qk,Nv,A1/2p − A1/2q) + (Pk,NF ′(u)v,A1/2p − A1/2q)

+ (Qk,NF ′(u)v,A1/2p − A1/2q)

= (Rk,NF ′(u)Rk,Nv,A1/2p − A1/2q) + (F ′(u)Pk,Nv,Rk,NA1/2p)
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− (F ′(u)Pk,Nv,Rk,NA1/2q) + (F ′(u)Qk,Nv,Rk,NA1/2p) − (F ′(u)Qk,Nv,Rk,NA1/2q)

+ (F ′(u)v,Pk,NA1/2v) − (F ′(u)v,Qk,NA1/2v). (2.29)

We shall estimate every term on the right-hand side of (2.29). Since |F ′(u)|L(H,H) ≤ L, we 
notice that

|(F ′(u)Pk,Nv,Rk,NA1/2p)| + |(F ′(u)Qk,Nv,Rk,NA1/2p)|
≤ L(|Pk,Nv| + |Qk,Nv|)|Rk,NA1/2p|
≤ Lλ

1/2
N (|Pk,Nv| + |Qk,Nv|)|Rk,Np|

≤ L2λ
1/2
N

(
|Pk,Nv|2 + |Qk,Nv|2

)
+ λ

1/2
N

4
|Rk,Np|2. (2.30)

Similarly,

|(F ′(u)Pk,Nv,Rk,NA1/2q)| + |(F ′(u)Qk,Nv,Rk,NA1/2q)|
≤ L(|Pk,Nv| + |Qk,Nv|)|Rk,NA1/2q|
≤ L(|Pk,Nv| + |Qk,Nv|)(λN + k)1/2|Rk,Nq|
≤ L(|Pk,Nv| + |Qk,Nv|)(2λN)1/2|Rk,Nq|

≤ 4L2λ
1/2
N

(
|Pk,Nv|2 + |Qk,Nv|2

)
+ λ

1/2
N

8
|Rk,Nq|2, (2.31)

where we have used the assumption k < λN .
Next,

|(F ′(u)v,Pk,NA1/2v)| ≤ L|v||Pk,NA1/2v| ≤ L|v| (λN − k)1/2 |Pk,Nv|

≤ L |v|λ1/2
N |Pk,Nv| ≤ 5L2λ

1/2
N |Pk,Nv|2 + λ

1/2
N

20
|v|2. (2.32)

Also,

|(F ′(u)v,Qk,NA1/2v)| ≤ L|v||Qk,NA1/2v|

≤ 2L2λ
1/2
N

γ logλN

|v|2 + γ logλN

8λ
1/2
N

|Qk,NA1/2v|2. (2.33)

Moreover, by the spatial averaging condition |Rk,NF ′(u)Rk,Nv| ≤ δ|v| (see (2.6)), we obtain

|(Rk,NF ′(u)Rk,Nv,A1/2p − A1/2q)| ≤ δ|v||A1/2p − A1/2q| ≤ δ|v||A1/2p| + δ|v||A1/2q|
≤ δλ

1/2
N |v||p| + δ|v||Qk,NA1/2v| + δ|v||Rk,NA1/2q|

≤ δλ
1/2|v|2 + δ|v||Qk,NA1/2v| + δ(2λN)1/2|v||Rk,Nq|
N
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≤ δλ
1/2
N |v|2 + 2δ2λ

1/2
N

γ logλN

|v|2 + γ logλN

8λ
1/2
N

|Qk,NA1/2v|2 + 4δ2λ
1/2
N |v|2 + λ

1/2
N

8
|Rk,Nq|2

=
[
δ + 2δ2

γ logλN

+ 4δ2
]

λ
1/2
N |v|2 + γ logλN

8λ
1/2
N

|Qk,NA1/2v|2 + λ
1/2
N

8
|Rk,Nq|2. (2.34)

Substituting (2.30)–(2.34) into (2.29) yields

|(F ′(u)v,A1/2p − A1/2q)| ≤
[
δ + 2(δ2 + L2)

γ logλN

+ 4δ2 + 1

20

]
λ

1/2
N |v|2

+ γ logλN

4λ
1/2
N

|Qk,NA1/2v|2 + 5L2λ
1/2
N |Qk,Nv|2 + 10L2λ

1/2
N |Pk,Nv|2

+ λ
1/2
N

4
|Rk,Nq|2 + λ

1/2
N

4
|Rk,Np|2, (2.35)

for any u ∈ H .
Now we apply (2.16), (2.19), (2.28), and (2.35) to the equality (2.12). It follows that

d

dt
V (t) + 2αV (t)

≤ −
[

1

2
− 2δ − 4(δ2 + L2)

γ logλN

− 8δ2 − 1

10

]
λ

1/2
N |v|2

−
[
k − 2L

2
− 10L2

]
λ

1/2
N |Qk,Nv|2 −

[
k

2
− 20L2

]
λ

1/2
N |Pk,Nv|2. (2.36)

By (2.22) we know that k ≥ 40L2, where L ≥ 1, then clearly

k − 2L

2
− 10L2 > 0 and

k

2
− 20L2 ≥ 0.

Since δ ≤ 1/50 and γ logλN ≥ 40L2 with L ≥ 1, then

1

2
− 2δ − 4(δ2 + L2)

γ logλN

− 8δ2 − 1

10
≥ 1

4
. (2.37)

By (2.36)–(2.37), we conclude that

d

dt
V (t) + 2αV (t) ≤ −λ

1/2
N

4
|v|2, for all t ≥ 0,

where α = λ
3/2
N+1+λ

3/2
N

2 . This completes the proof. �
The following result shows that the strong cone property (2.7) implies the cone invariance 

property and the decay property.
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Proposition 2.5. Let u1 and u2 be two solutions of (2.5) in H . Set v = u1 − u2. Define V (t) =
|q|2 − |p|2 where p = PNv and q = QNv. Assume F : H → H is globally Lipschitz continuous 
with Lipschitz constant L. Suppose the strong cone property

d

dt
V (t) + αV (t) ≤ −μ|v(t)|2, for all t ≥ 0, (2.38)

holds for some constants α, μ > 0. Then, the following properties hold.

• Cone invariance property: If V (0) ≤ 0, then V (t) ≤ 0 for all t ≥ 0.
• Decay property: If V (T ) > 0 for some T > 0, then

|v(t)|2 ≤ Ce−αt |v(0)|2, for all t ∈ [0, T ], (2.39)

where C > 0. (This is also called the squeezing property.)

Remark 2.6. Notice that, the cone invariance property implies that, if V (T ) > 0 for some T > 0, 
then V (t) > 0 for all t ∈ [0, T ].

Proof. The argument adopts the proof of [35, Corollary 2.22]. The cone invariance property 
follows directly from (2.38). It remains to show the decay property. Indeed, taking the scalar 
product of (2.8) with v yields

1

2

d

dt
|v|2 + |A3/4v|2 ≤ |(F (u1) − F(u2),A

1/2v)| ≤ L2

2
|v|2 + |A1/2v|2

2
,

by using the Lipschitz continuity |F(u1) −F(u2)| ≤ L|v|. Without loss of generality, we assume 
the eigenvalues λj of A satisfy λj ≥ 1 for all j ∈N, so that |A3/4v| ≥ |A1/2v|. It follows that

d

dt
|v|2 ≤ L2|v|2. (2.40)

Define Vε(t) = ε|v(t)|2 + V (t). Multiply (2.40) by ε and add to (2.38), then

d

dt
Vε(t) + αVε(t) ≤ [ε(α + L2) − μ]|v|2 = 0,

by choosing ε = μ

α+L2 . It follows that

Vε(t) ≤ e−αtVε(0), for t ≥ 0. (2.41)

If V (T ) > 0 for some T > 0, then by the cone invariance property, we have V (t) > 0 for all 
t ∈ [0, T ]. Also, notice that V (t) = |q|2 − |p|2 ≤ |q|2 + |p|2 = |v|2. Therefore, due to (2.41),

ε|v(t)|2 ≤ ε|v(t)|2 + V (t) ≤ e−αt
(
ε|v(0)|2 + V (0)

)
≤ (ε + 1)e−αt |v(0)|2, (2.42)

for all t ∈ [0, T ]. Then, |v(t)|2 ≤ (1 + 1 )e−αt |v(0)|2, for all t ∈ [0, T ]. �

ε
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It is expected that the cone invariance property along with the decay property should imply 
the existence of inertial manifolds. This result is stated in Theorem 2.7 below. For the sake of 
completeness, we refer the reader for a proof of Theorem 2.7 in Appendix 4.2.

Theorem 2.7. Assume F : H → H is globally Lipschitz and |A−1/4F(u)| ≤ C for all u ∈ H . 
Assume that the solutions of (2.5) satisfy the cone invariance property and the decay property 
stated in Proposition 2.5. Then problem (2.5) possesses an N -dimensional inertial manifold M
in the sense of Definition 2.1.

Finally, owing to Proposition 2.5 and Theorem 2.7, we conclude that the spatial averaging 
condition of Theorem 2.2 guarantees the existence of an inertial manifold for the model problem 
(2.5). In particular, we have the following corollary.

Corollary 2.8. Suppose the assumptions of Theorem 2.4 are satisfied and |A−1/4F(u)| ≤ C for 
all u ∈ H . Then problem (2.5) possesses an N -dimensional inertial manifold M in the sense of 
Definition 2.1.

3. Application to the hyperviscous Navier–Stokes equations

We aim to employ the theory that has been established on the abstract model (2.1) in Section 2
to prove the existence of an inertial manifold for the hyperviscous Navier–Stokes equation (1.1)
in two or three dimensions. We focus on the scenario when the hyperviscosity ν(−�)βu has the 
critical power β = 3/2, because for the case of β > 3/2 the spectral gap condition (2.4) is satis-
fied. Moreover, we shall concentrate on the case of the three-dimensional spatial domain. Indeed, 
the two-dimensional setting is much easier to study since the required spectral gap condition (2.4)
in Theorem 2.2 is fulfilled by a number theoretical result (Theorem 4.2) due to Richards [29].

Specifically, we consider the incompressible hyperviscous Navier–Stokes equation on the 
three-dimensional torus:{

ut + ν(−�)3/2u + (u · ∇)u + ∇p = f, (t, x) ∈R+ ×T3;
divu = 0, u|t=0 = u0.

(3.1)

Set the phase space H as

H := {u ∈ (L2(T3))3 :
∫
T3

udx = 0, divu = 0}.

We denote by | · | the norm of H .
Notice that, if u ∈ (L2(T3))3, then u =∑j∈Z3 ûj e

ij ·x where ûj are Fourier coefficients. Thus, ∫
T3 udx = 0 is equivalent to û0 = 0. Therefore, if u ∈ H , then

u =
∑

j∈Z3\{0}
ûj e

ij ·x.

We denote by Pσ : (L2(T3))3 → H the Helmholtz–Leray orthogonal projection operator, and by 
A = −Pσ � the Stokes operator. Since we work with the periodic space, it is known that



4348 C.G. Gal, Y. Guo / J. Differential Equations 265 (2018) 4335–4374
Au = −Pσ �u = −�u, for all u ∈ D(A). (3.2)

The operator A−1 is a self-adjoint positive definite compact operator from H to H .
As usual, the Sobolev spaces Hs := D(As/2), s > 0, with the norm | · |Hs = |A s

2 · |, are defined 
as

Hs =
⎧⎨
⎩u ∈ H : |u|2Hs =

∑
j∈Z3\{0}

|j |2s |ûj |2 < ∞
⎫⎬
⎭ .

For s < 0, one defines Hs as the completion of H with respect to the corresponding norm |·|Hs .
For w1, w2 ∈ H 1, we define the bilinear form

B(w1,w2) = Pσ ((w1 · ∇)w2).

Notice that (3.1) can be written in the equivalent form in H :

ut + νA3/2u + B(u,u) = f, u|t=0 = u0. (3.3)

Since the exact value of ν is not essential to our mathematical analysis, we assume without 
loss of generality that ν = 1. Thus in the following work we consider the equation

ut + A3/2u + B(u,u) = f, u|t=0 = u0. (3.4)

Given the vectors u = (u1, u2, u3), v = (v1, v2, v3), w = (w1, w2, w3), we denote

b(u, v,w) := (B(u, v),w) =
3∑

m,n=1

∫
T3

um∂mvnwndx (3.5)

whenever the integrals in (3.5) make sense. It is known that b(u, v, w) has the property

b(u, v,w) = −b(u,w,v), (3.6)

which implies that b(u, v, v) = 0.
We state the following global well-posedness result for problem (3.4). The solvability of (3.4)

will become clear from the dissipative estimates that we obtain in the subsequent subsection. We 
choose to omit the proof of Theorem 3.1 since it follows from classical arguments employed for 
the Navier–Stokes equations (see, e.g., [12,8]).

Theorem 3.1. Let f ∈ H−3/2. Then for every u0 ∈ H , problem (3.4) possesses a unique weak 
solution such that u ∈ C ([0, T ] ;H) ∩ L2(0, T ; H 3/2) for an arbitrary time T > 0. The weak 
solution depends continuously on the initial datum in a Lipschitz way.
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3.1. Dissipative estimates

This section is devoted to showing that the dynamics of (3.4) has an absorbing ball in H 4, such 
that (3.4) possesses a global attractor. Let S (t) : H → H be the solution semigroup generated by 
the system (3.4).

Theorem 3.2. Let f ∈ H 1. Then (S,H) possesses a compact global attractor G in the phase 
space H , which is a bounded subset of H 4.

Proof. We recall that the existence of a finite dimensional global attractor in H for a slightly 
more general problem than (3.4) is also proven in [3]. Here, for the sake of simplicity we pro-
vide the a priori estimates for the existence of a regular absorbing set for the semigroup. The 
conclusion of the theorem then follows in a standard way (see, e.g. [33]).

In the following estimates, we repeatedly use Hölder’s inequality, Young’s inequality and the 

Sobolev imbedding Hs ↪→ L
6

3−2s in three dimensions for s ∈ (0, 3/2).
Step 1 (L2-estimate). Take scalar product of (3.4) with u. We get

1

2

d

dt
|u|2 + |A3/4u|2 = (f,u) = (A−3/4f,A3/4u) ≤ 1

2
|f |2

H−3/2 + 1

2
|A3/4u|2.

It follows that

d

dt
|u|2 + |A3/4u|2 ≤ |f |2

H−3/2 . (3.7)

Therefore,

d

dt
|u|2 + |u|2 ≤ |f |2

H−3/2 .

This implies

|u|2 ≤ |f |2
H−3/2(1 − e−t ) + e−t |u0|2. (3.8)

Consequently, we have

lim sup
t→+∞

|u(t)| ≤ |f |H−3/2 . (3.9)

Due to (3.9) there exists t0 > 0 such that

|u(t)| ≤ 2|f |H−3/2, for t ≥ t0. (3.10)

This shows that all trajectories of (3.4) enter an absorbing ball of radius 2|f |H−3/2 in H for t ≥ t0.

Step 2 (H 1-estimate). Take scalar product of (3.4) with Au. We get

1 d |A1/2u|2 + |A5/4u|2 + b(u,u,Au) = (f,Au) ≤ |f |2 −1/2 + 1 |A5/4u|2. (3.11)

2 dt H 4
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We estimate

|b(u,u,Au)| ≤ C|u|L6 |u|H 1 |Au|L3 ≤ C|u|2
H 1 |A5/4u| ≤ 1

4
|A5/4u|2 + C|u|4

H 1 . (3.12)

By (3.11) and (3.12), we see that

d

dt
|u|2

H 1 + |A5/4u|2 ≤ C|u|4
H 1 + 2|f |2

H−1/2 . (3.13)

Notice that, by integrating (3.7) from t to t + 1, we obtain

t+1∫
t

|u(τ)|2
H 3/2dτ ≤ |u(t)|2 + |f |2

H−3/2 ≤ 5|f |2
H−3/2, (3.14)

for t ≥ t0 by using (3.10). By (3.13) and (3.14) along with the uniform Gronwall inequality (see 
Appendix 4.1, Lemma 4.1), we have

|u(t)|2
H 1 ≤ ρ2

1 := exp
(
C|f |2

H−3/2

)(
5|f |2

H−3/2 + 2|f |2
H−1/2

)
, for t ≥ t0 + 1. (3.15)

Therefore, all trajectories of the dynamical system enter an absorbing ball of radius ρ1 in H 1

whenever t ≥ t0 + 1.
Step 3 (H 2-estimate). Take the scalar product of (3.4) with A2u. We deduce

1

2

d

dt
|Au|2 + |A7/4u|2 ≤ |b(u,u,A2u)| + |(f,A2u)|

≤ |b(u,u,A2u)| + |f |2
H 1/2 + 1

4
|A7/4u|2. (3.16)

We estimate

|b(u,u,A2u)| ≤ C
(
|u|H 1 |A1/2u|L6 |A3/2u|L3 + |u|L6 |Au||A3/2u|L3

)
≤ C|u|H 1 |Au||A7/4u|

≤ Cρ2
1 |Au|2 + 1

4
|A7/4u|2, (3.17)

for t ≥ t0 + 1, on account of (3.15).
We obtain from (3.16) and (3.17) that, for t ≥ t0 + 1,

d

dt
|u|2

H 2 + |u|2
H 7/2 ≤ Cρ2

1 |u|2
H 2 + 2|f |2

H 1/2 . (3.18)

In order to find an absorbing ball for u in H 2, we drop the term |u|2
H 7/2 in (3.18) and then integrate 

the inequality from s to t + 1 for t0 + 1 ≤ t ≤ s ≤ t + 1. One has
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|u(t + 1)|2
H 2 ≤ |u(s)|2

H 2 + Cρ2
1

t+1∫
t

|u(τ)|2
H 2dτ + 2|f |2

H 1/2 . (3.19)

Next, integrating (3.19) with respect to s from t to t + 1 yields

|u(t + 1)|2
H 2 ≤

(
Cρ2

1 + 1
) t+1∫

t

|u(τ)|2
H 2dτ + 2|f |2

H 1/2 . (3.20)

By integrating (3.13) from t to t + 1 and using (3.15), we obtain that

t+1∫
t

|u(τ)|2
H 5/2dτ ≤ ρ2

1 + Cρ4
1 + 2|f |2

H−1/2, (3.21)

for t ≥ t0 + 1.
By virtue of (3.20) and (3.21), we see that

|u(t)|2
H 2 ≤ ρ2

2 := C
(
ρ6

1 + ρ2
1 |f |2

H−1/2

)
+ 2|f |2

H 1/2, for t ≥ t0 + 2. (3.22)

This implies that any solution of (3.4) enters an absorbing ball of radius ρ2 in H 2 after a suffi-
ciently large time t ≥ t0 + 2.

Step 4 (H 4-estimate). Recall our assumption f ∈ H 1. Then, from equation (3.4), we have

A1/2ut + A2u + A1/2B(u,u) = A1/2f, in H. (3.23)

Since |A1/2B(u, u)| ≤ C|u|2
H 2 , we obtain from (3.23) and (3.22) that

|u|H 4 = |A2u| ≤ |ut |H 1 + C|u|2
H 2 + |f |H 1 ≤ |ut |H 1 + Cρ2

2 + |f |H 1, for t ≥ t0 + 2. (3.24)

It remains to show that |ut |H 1 has a uniform bound for large time. To this end, we take the scalar 
product of (3.4) with Aut :

|ut |2H 1 + 1

2

d

dt
|u|2

H 5/2 = −b(u,u,Aut ) + (f,Aut )

≤ C|u|2
H 2 |ut |H 1 + |f |H 1 |ut |H 1 ≤ 1

2
|ut |2 + Cρ4

2 + |f |2
H 1, for t ≥ t0 + 2.

Hence,

|ut |2H 1 + d

dt
|u|2

H 5/2 ≤ Cρ4
2 + 2|f |2

H 1, for t ≥ t0 + 2. (3.25)

Integrate (3.25) over [s, t + 1] for t0 + 2 ≤ t ≤ s ≤ t + 1:

|u(t + 1)|2 5/2 ≤ |u(s)|2 5/2 + Cρ4 + 2|f |2 1 . (3.26)

H H 2 H



4352 C.G. Gal, Y. Guo / J. Differential Equations 265 (2018) 4335–4374
Integrating (3.26) over [t, t + 1] with respect to s yields

|u(t + 1)|2
H 5/2 ≤

t+1∫
t

|u(s)|2
H 5/2ds + Cρ4

2 + 2|f |2
H 1

≤ ρ2
3 := ρ2

1 + Cρ4
1 + 2|f |2

H−1/2 + Cρ4
2 + 2|f |2

H 1, for t ≥ t0 + 2, (3.27)

due to estimate (3.21). Now integrating (3.25) over [t, t + 1] for t ≥ t0 + 3 and using (3.27), we 
obtain

t+1∫
t

|ut |2H 1dτ ≤ ρ2
3 + Cρ4

2 + 2|f |2
H 1, for t ≥ t0 + 3. (3.28)

Next we differentiate (3.4) in time,

utt + A3/2ut + B(ut , u) + B(u,ut ) = 0. (3.29)

By taking the scalar product of (3.29) with Aut , we have

1

2

d

dt
|ut |2H 1 + |ut |2H 5/2 = −b(ut , u,Aut ) − b(u,ut ,Aut ) ≤ C|ut |H 5/2 |ut |H 1 |u|H 1 .

It follows that

d

dt
|ut |2H 1 + |ut |2H 5/2 ≤ C|ut |2H 1 |u|2

H 1 ≤ Cρ2
1 |ut |2H 1, for t ≥ t0 + 1. (3.30)

Owing to (3.30) and (3.28), we deduce

|ut |2H 1 ≤ (Cρ2
1 + 1)(ρ2

3 + Cρ4
2 + 2|f |2

H 1), for t ≥ t0 + 4. (3.31)

Finally, by virtue of (3.24) and (3.31), we conclude

|u|H 4 ≤ ρ := C(ρ1 + 1)(ρ3 + ρ2
2 + |f |H 1), for t ≥ t0 + 4. (3.32)

That is, all trajectories of (3.4) enter an absorbing ball in H 4 with the radius ρ when t ≥ t0 + 4
if f ∈ H 1. The proof is complete. �
Remark 3.3. The existence of an absorbing ball in H 4 is crucial for the construction of an inertial 
manifold for (3.4) as we modify the nonlinearity outside the absorbing ball and show that the 
modified nonlinearity satisfies the spatial averaging condition in the subsequent sections. On the 
other hand, the global well-posedness of weak solutions and the existence of a global attractor for 
equation (1.1) for any β ≥ 5/4 in three dimensions can be shown by using the standard energy 
method. For the sake of completion, we briefly discuss in Appendix 4.4 the case β ≥ 5/4 for 
(1.1) in 3D.
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3.2. Modification of the nonlinearity outside the absorbing ball

Since we are concerned with the large-time behavior of the hyperviscous Navier–Stokes equa-
tions, we may freely modify the nonlinearity outside the absorbing ball in H 4. In this section we 
adopt the method by Kostianko [24] to truncate the nonlinearity of our system (3.4). To this end, 
let us introduce a smooth cut-off function θ ∈ C∞

0 (C) satisfying

θ(ξ) = ξ for |ξ | ≤ 1 and |θ(ξ)| ≤ 2 for all ξ ∈ C.

Also, we define the corresponding vector-valued cut-off function as

�θ := (θ(ξ1), θ(ξ2), θ(ξ3)) ∈ C3, for ξ = (ξ1, ξ2, ξ3) ∈C3.

Recall that H denotes the L2 divergence-free vector field with zero mean value. The Helmholtz–
Leray orthogonal projector Pσ : (L2(T3))3 → H is defined as

Pσ u =
∑

j∈Z3\{0}
Pj ûj e

ij ·x

where the 3 × 3 matrices Pj are given by

Pj := 1

|j |2

⎛
⎝ j2

2 + j2
3 −j1j2 −j1j3

−j1j2 j2
1 + j2

3 −j2j3

−j1j3 −j2j3 j2
1 + j2

2

⎞
⎠ .

Pj are orthonormal projectors in C3.
Following the idea in [24], we introduce the operator U : H → H defined as

U(u) :=
∑

j∈Z3\{0}

ρ

|j |4 Pj
�θ
(

|j |4ûj

ρ

)
eij ·x, (3.33)

where ρ is the radius of the absorbing ball in H 4 established in (3.32) for the system (3.4). We 
remark that, in two dimensions, the operator U can be defined in a similar way.

In order to modify the nonlinearity B(u, u) in (3.4) outside the absorbing ball in H 4, we shall 
replace B(u, u) by B(U(u), U(u)), and then prove the existence of an inertial manifold in H for 
the so-called “prepared” equation for (3.4), namely

ut + A3/2u + B(U(u),U(u)) = f, (3.34)

for f ∈ H 1. Indeed we shall see that the original equation (3.4) and the “prepared” equation 
(3.34) have the same large time behavior in the absorbing ball in H 4.

For the sake of preparation, we prove a few useful properties of the operator U .

Lemma 3.4. The function U : H → H has the following properties.

(1) U(u) = u, for all u ∈D(A2) with |u|H 4 ≤ ρ.

(2) U is a regularization operator: for any δ > 0, U : H → H
5
2 −δ and there exists a constant 

Cδ such that
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|U(u)|
H

5
2 −δ

≤ Cδ, for all u ∈ H. (3.35)

Moreover, the map U : H → H
5
2 −δ is continuous.

(3) U is Gateaux differentiable from H to H , and its derivative U ′ has the expression

U ′(u)v =
∑

j∈Z3\{0}
Pj

�θ ′
(

|j |4ûj

ρ

)
v̂j e

ij ·x, for u,v ∈ H. (3.36)

Moreover, there exists L1 > 0 such that

|U ′(u)|L(H,H) ≤ L1, for all u ∈ H. (3.37)

Furthermore, for each v ∈ H , the map u 
→ U ′(u)v is continuous from H to H .

Proof. The proof is similar to the arguments in [24].
(1) Let u ∈D(A2) such that

|u|2
H 4 =

∑
j∈Z3\{0}

|j |8|ûj |2 ≤ ρ2,

then obviously,

|j |4|ûj |
ρ

≤ 1, for all j ∈ Z3\{0}.

Since θ(ξ) = ξ for |ξ | ≤ 1, one has �θ
( |j |4ûj

ρ

)
= |j |4ûj

ρ
for all j ∈ Z3\{0}. Hence by the definition 

(3.33), we see that U(u) = u provided |u|H 4 ≤ ρ.

(2) Let u ∈ H . Since |θ(ξ)| ≤ 2 for all ξ ∈ C, then by (3.33), we calculate

|U(u)|2
H

5
2 −δ

≤ C
∑

j∈Z3\{0}
|j |5−2δ ρ2

|j |8 ≤ Cρ2
∑

j∈Z3\{0}

1

|j |3+2δ
≤ Cδ.

Next we show that U : H → H
5
2 −δ is continuous. Indeed, given ε > 0, let u, v ∈ H such that 

|u − v| ≤ σ . We estimate

|U(u) − U(v)|2
H

5
2 −δ

=
∑

j∈Z3\{0}

ρ2

|j |3+2δ

∣∣∣∣∣�θ
(

|j |4ûj

ρ

)
− �θ

(
|j |4v̂j

ρ

)∣∣∣∣∣
2

=
∑

1≤|j |≤N

ρ2

|j |3+2δ

∣∣∣∣∣�θ
(

|j |4ûj

ρ

)
− �θ

(
|j |4v̂j

ρ

)∣∣∣∣∣
2

+ C
∑

|j |>N

ρ2

|j |3+2δ
, (3.38)
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where we have used the fact that �θ is uniformly bounded in C3. Now we choose N sufficiently 

large such that C
∑

|j |>N
ρ2

|j |3+2δ ≤ ε
2 . Next, since |u − v| ≤ σ , one has |ûj − v̂j | ≤ σ for every 

j ∈ Z3\{0}, then by the uniform continuity of �θ , we may select σ > 0 small enough such that the 
1st summation on the right-hand side of (3.38) is bounded by ε2 .

(3) Let u, v ∈ H . We calculate

U(u + εv) − U(u)

ε

= 1

ε

∑
j∈Z3\{0}

ρ

|j |4 Pj

[
�θ
(

|j |4(ûj + εv̂j )

ρ

)
− �θ

(
|j |4ûj

ρ

)]
eij ·x

=
∑

j∈Z3\{0}
Pj

⎡
⎣v̂j

1∫
0

�θ ′
(

|j |4(ûj + τεv̂j )

ρ

)
dτ

⎤
⎦ eij ·x, (3.39)

where we have used the fundamental theorem of calculus.
If U ′(u)v is given by (3.36), we aim to show that the L2-norm of the difference of (3.36) and 

(3.39) converges to zero if ε → 0. Indeed,

∣∣∣∣U(u + εv) − U(u)

ε
− U ′(u)v

∣∣∣∣
2

H

=
∣∣∣∣∣∣
∑

j∈Z3\{0}
Pj

⎡
⎣v̂j

1∫
0

(
�θ ′
(

|j |4(ûj + τεv̂j )

ρ

)
− �θ ′

(
|j |4ûj

ρ

))
dτ

⎤
⎦ eij ·x

∣∣∣∣∣∣
2

H

≤
∑

j∈Z3\{0}
|v̂j |2

1∫
0

∣∣∣∣∣�θ ′
(

|j |4(ûj + τεv̂j )

ρ

)
− �θ ′

(
|j |4ûj

ρ

)∣∣∣∣∣
2

dτ

≤
∑

1≤|j |≤N

|v̂j |2
1∫

0

∣∣∣∣∣�θ ′
(

|j |4(ûj + τεv̂j )

ρ

)
− �θ ′

(
|j |4ûj

ρ

)∣∣∣∣∣
2

dτ + C
∑

|j |>N

|vj |2, (3.40)

where we have used �θ is uniformly bounded in C3. Let δ > 0. Since v ∈ H , we choose N
sufficiently large such that the C

∑
|j |>N |vj |2 ≤ δ

2 . Also, since �θ ′ is uniformly continuous, we 

can select ε small enough such that the 1st summation is less than δ
2 . This implies

∣∣∣∣U(u + εv) − U(u)

ε
− U ′(u)v

∣∣∣∣
2

H

≤ δ,

for sufficiently small ε, provided U ′(u)v is given by (3.36). Therefore, we conclude that (3.36)
is the correct expression for U ′(u)v.

Next, by (3.36) and the uniform boundedness of �θ ′, there exists L1 > 0 such that |U ′(u)v| ≤
L1|v|, for all u, v ∈ H , i.e., |U ′(u)|L(H,H) ≤ L1 for all u ∈ H .
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Finally, let v ∈ H , we show that the map u 
→ U ′(u)v is continuous from H to H . Indeed, 
given ε > 0, we let u, w ∈ H such that |u − w| ≤ σ . Due to (3.36), we have

|(U ′(u) − U ′(w))v|2

=
∑

j∈Z3\{0}

∣∣∣∣∣�θ ′
(

|j |4ûj

ρ

)
− �θ ′

(
|j |4ŵj

ρ

)∣∣∣∣∣
2

|v̂j |2

≤
∑

1≤|j |≤N

∣∣∣∣∣�θ ′
(

|j |4ûj

ρ

)
− �θ ′

(
|j |4ŵj

ρ

)∣∣∣∣∣
2

|v̂j |2 + C
∑

|j |>N

|v̂j |2, (3.41)

where we have used �θ is uniformly bounded in C3. Since v ∈ H , we may choose N sufficiently 
large such that C

∑
|j |>N |v̂j |2 ≤ ε

2 . Also, since |u − w| ≤ σ , one has |ûj − ŵj | ≤ σ for any 

j ∈ Z3\{0}, and then by the uniform continuity of �θ ′, we may select σ > 0 small enough such that ∑
1≤|j |≤N

∣∣∣�θ ′
( |j |4ûj

ρ

)
− �θ ′

( |j |4ŵj

ρ

)∣∣∣2 |v̂j |2 ≤ ε
2 . Therefore, we have |(U ′(u) − U ′(w))v|2 ≤ ε if 

|u − w| ≤ σ . �
3.3. Verification of the spatial averaging condition

This subsection is devoted to verifying the spatial averaging condition for the “prepared” 
equation (3.34). In fact, in order to employ our theory established on the abstract model (2.5), 
we write the hyperviscous Navier–Stokes equations (3.4) in the form of (2.5):

ut + A3/2u + A1/2F(u) = f, where F(u) := A−1/2B(u,u). (3.42)

Notice that, for the operator A = −�, the eigenvector eij ·x corresponds to the eigenvalue |j |2. 
We modify F(u) outside the absorbing ball in H 4 by replacing u by U(u). Namely, we define 
F : H → H by

F (u) := F(U(u)) = A−1/2B(U(u),U(u)). (3.43)

By Lemma 3.4, for any u ∈ D(A2) such that |u|H 4 ≤ ρ, one has U(u) = u, and thus F (u) =
F(U(u)) = F(u) if |u|H 4 ≤ ρ. Hence, after the trajectory u(t) enters the absorbing ball in H 4

with radius ρ, the equation (3.42) is equivalent to

ut + A3/2u + A1/2F (u) = f, where F (u) = A−1/2B(U(u),U(u)), (3.44)

for f ∈ H 1. Recall that (3.44) is named the “prepared” equation for (3.42), since equations (3.42)
and (3.44) have the same large time behavior in the absorbing ball in H 4.

Before showing that F is Gateaux differentiable from H to H (see Proposition 3.5 below), 
we formally compute the Gateaux derivative of F : H → H at the point u ∈ H in the direction 
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of v ∈ H . In fact, for any w ∈ H ,

(F ′(u)v,w) = lim
ε→0

(
F (u + εv) − F (u)

ε
,w

)

= lim
ε→0

(
B(U(u + εv),U(u + εv)) − B(U(u),U(u))

ε
,A−1/2w

)

= (B(U(u),U ′(u)v),A−1/2w) + (B(U ′(u)v,U(u)),A−1/2w)

= −b(U(u),A−1/2w,U ′(u)v) − b(U ′(u)v,A−1/2w,U(u)), (3.45)

where we have used (3.5) and (3.6).

Proposition 3.5. Let F be the operator defined by (3.43). Then F is uniformly bounded from 
H to H 2, i.e., there exists C > 0 with |F (u)|H 2 ≤ C for all u ∈ H . Moreover, F is Gateaux 
differentiable from H to H , and its derivative F ′ has the expression:

(F ′(u)v,w) = −b(U(u),A−1/2w,U ′(u)v) − b(U ′(u)v,A−1/2w,U(u)), (3.46)

for u, v, w ∈ H . In addition, there exists L > 0 such that

|F ′(u)|L(H,H) ≤ L, for all u ∈ H.

Proof. To show that F is uniformly bounded from H to H 2, we take an arbitrary w ∈ H and 
estimate

(AF (u),w) = (A1/2B(U(u),U(u)),w)

≤ C|w|
(
|A1/2U(u)|2

L4 + |U(u)|L∞|AU(u)|
)

≤ C|w||U(u)|2
H 2 .

Thus |AF (u)| ≤ |U(u)|2
H 2 ≤ C, for all u ∈ H , by virtue of (3.35).

Next, we show that F is Gateaux differentiable from H to H . Indeed, for any u, v, w ∈ H , 
we calculate

(
F (u + εv) − F (u)

ε
,w

)
=
(

B(U(u + εv),U(u + εv)) − B(U(u),U(u))

ε
,A−1/2w

)

= −b

(
U(u + εv),A−1/2w,

U(u + εv) − U(u)

ε

)

− b

(
U(u + εv) − U(u)

ε
,A−1/2w,U(u)

)
, (3.47)

where we have used (3.5) and (3.6).
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In order to show that b
(
U(u + εv),A−1/2w,

U(u+εv)−U(u)
ε

)
→ b(U(u), A−1/2w, U ′(u)v) as 

ε → 0, we evaluate the difference:∣∣∣∣b
(

U(u + εv),A−1/2w,
U(u + εv) − U(u)

ε

)
− b(U(u),A−1/2w,U ′(u)v)

∣∣∣∣
≤
∣∣∣∣b
(

U(u + εv) − U(u),A−1/2w,
U(u + εv) − U(u)

ε

)∣∣∣∣
+
∣∣∣∣b
(

U(u),A−1/2w,
U(u + εv) − U(u)

ε
− U ′(u)v

)∣∣∣∣ . (3.48)

We shall show that the right-hand side of (3.48) converges to zero. Since U is Gateaux dif-
ferentiable and the map u 
→ U ′(u)v is continuous from H to H due to Lemma 3.4, by the 
fundamental theorem of calculus for the Gateaux derivative, we have

U(u + εv) − U(u) =
1∫

0

U ′(u + τεv)εvdτ. (3.49)

As a result, ∣∣∣∣b
(

U(u + εv) − U(u),A−1/2w,
U(u + εv) − U(u)

ε

)∣∣∣∣
≤
∣∣∣∣∣∣b
⎛
⎝U(u + εv) − U(u),A−1/2w,

1∫
0

U ′(u + τεv)vdτ

⎞
⎠
∣∣∣∣∣∣

≤ C|U(u + εv) − U(u)|L∞|w|
∣∣∣∣∣∣

1∫
0

U ′(u + τεv)vdτ

∣∣∣∣∣∣
H

≤ C|U(u + εv) − U(u)|L∞|w|
1∫

0

∣∣U ′(u + τεv)v
∣∣
H

dτ

≤ CL1|U(u + εv) − U(u)|H 2 |w||v| (3.50)

where we have applied (3.37). Also, by Lemma 3.4, the map U : H → H 2 is continuous, thus 
|U(u + εv) − U(u)|H 2 → 0 as ε → 0. It follows that the right-hand side of (3.50) converges to 
zero as ε → 0.

Next, we deal with the second term on the right-hand side of (3.48). Due to (3.49), we see that∣∣∣∣b
(

U(u),A−1/2w,
U(u + εv) − U(u)

ε
− U ′(u)v

)∣∣∣∣
≤
∣∣∣∣∣∣b
⎛
⎝U(u),A−1/2w,

1∫
(U ′(u + τεv) − U ′(u))vdτ

⎞
⎠
∣∣∣∣∣∣
0
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≤ C|U(u)|L∞|w|
∣∣∣∣∣∣

1∫
0

(U ′(u + τεv) − U ′(u))vdτ

∣∣∣∣∣∣
H

≤ C|U(u)|H 2 |w|
1∫

0

|(U ′(u + τεv) − U ′(u))v|H dτ. (3.51)

According to Lemma 3.4, the map u 
→ U ′(u)v is continuous from H to H . Therefore, 
supτ∈[0,1] |(U ′(u + τεv) −U ′(u))v|H → 0 as ε → 0. It follows that the right-hand side of (3.51)
converges to zero as ε → 0.

We have shown that both terms on the right-hand side of (3.48) converge to zero as ε → 0. 
Hence

lim
ε→0

b

(
U(u + εv),A−1/2w,

U(u + εv) − U(u)

ε

)
= b(U(u),A−1/2w,U ′(u)v). (3.52)

Analogously, we may show that

lim
ε→0

b

(
U(u + εv) − U(u)

ε
,A−1/2w,U(u)

)
= b(U ′(u)v,A−1/2w,U(u)). (3.53)

By (3.47), (3.52) and (3.53), we conclude that

lim
ε→0

(
F (u + εv) − F (u)

ε
,w

)
= −b(U(u),A−1/2w,U ′(u)v) − b(U ′(u)v,A−1/2w,U(u)),

for all u, v, w ∈ H . This implies (3.46).
Finally, we show that |F ′(u)|L(H,H) is uniformly bounded. By (3.46) we estimate

(F ′(u)v,w) ≤ |b(U(u),A−1/2w,U ′(u)v)| + |b(U ′(u)v,A−1/2w,U(u))|
≤ C|U(u)|L∞|w||U ′(u)v|
≤ C|U(u)|H 2 |w||U ′(u)v|
≤ CL1|w||v| for all w ∈ H,

where we have used (3.35) and (3.37) to obtain the last inequality. It follows that

|F ′(u)|L(H,H) ≤ CL1, for all u ∈ H.

This completes the proof. �
Next, we verify the spatial averaging condition (see Theorem 2.4) for the “prepared” equation 

(3.44) in T3.
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Proposition 3.6. Let F be the operator defined by (3.43). Given δ > 0. There exist arbitrarily 
large N ∈N and k ∈ [γ logλN, λN) for some constant γ ∈ (0, 1] independent of N , such that

|Rk,NF ′(u)Rk,Nv| ≤ δ|v|,

for any u, v ∈ H .

Proof. Let u = (u1, u2, u3), v = (v1, v2, v3), w = (w1, w2, w3) be vectors in H . Then, due to 
(3.46), we have

(Rk,NF ′(u)Rk,Nv,w) = (F ′(u)Rk,Nv,Rk,Nw)

= −b(U(u),A−1/2Rk,Nw,U ′(u)Rk,Nv) − b(U ′(u)Rk,Nv,A−1/2Rk,Nw,U(u)). (3.54)

We denote by U(u)n the n-th component of the vector U(u), and denote by [U ′(u)v]n the 
n-th component of the vector U(u)v, where n = 1, 2, 3. By applying (3.5) we write

b(U(u),A−1/2Rk,Nw,U ′(u)Rk,Nv)

=
3∑

m,n=1

∫
T3

(
U(u)mRk,N [U ′(u)v]n

)
(Rk,N∂mA−1/2wn)dx

=
3∑

m,n=1

∫
T3

Rk,N

(
U(u)mRk,N [U ′(u)v]n

)
∂mA−1/2wndx.

It follows that

|b(U(u),A−1/2Rk,Nw,U ′(u)Rk,Nv)| ≤ |w|
3∑

m,n=1

∣∣Rk,N

(
U(u)mRk,N [U ′(u)v]n

)∣∣ .
The same estimate holds for the second term on the right-hand side of (3.54). Therefore,

(Rk,NF ′(u)Rk,Nv,w) ≤ 2|w|
3∑

m,n=1

∣∣Rk,N

(
U(u)mRk,N [U ′(u)v]n

)∣∣ . (3.55)

In order to estimate the right-hand side of (3.55), we let ϕ, ψ ∈ L2(T3) such that ϕ and ψ
have mean value zero. Let r > 0 and then denote

ϕ>r :=
∑
|j |>r

ϕ̂j e
ij ·x, and ϕ<r :=

∑
1≤|j |≤r

ϕ̂j e
ij ·x.

Thus, ϕ = ϕ>r + ϕ<r . Then

Rk,N(ϕRk,Nψ) = Rk,N(ϕ>rRk,Nψ) + Rk,N(ϕ<rRk,Nψ). (3.56)
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By Proposition 4.5 (see Appendix 4.1), there exist arbitrarily large λ > 0 and κ ∈ [γ logλ, λ)

for some γ > 0 independent of the choice of λ, satisfying: whenever |n|2, |l|2 ∈ [λ − κ,

λ + κ] with distinct n and l ∈ Z3 one has |n − l| > r . Without loss of generality, we assume 
γ ∈ (0, 1]. Therefore, due to Weyl’s law λN ∼ CN

2
3 , there exist arbitrarily large λN > 0 and 

k ∈ [γ logλN, λN) satisfying: whenever |n|2, |l|2 ∈ [λN − k, λN + k] with distinct n and l ∈ Z3

one has |n − l| > r . It follows that

Rk,N(ϕ<rRk,Nψ) =
∑

λN−k≤|n|2≤λN+k

⎛
⎜⎜⎜⎝

∑
λN−k≤|l|2≤λN+k

1≤|n−l|≤r

ϕ̂n−l ψ̂l

⎞
⎟⎟⎟⎠ ein·x = 0. (3.57)

Due to (3.56) and (3.57), for the chosen N and k, we have

Rk,N(ϕRk,Nψ) = Rk,N(ϕ>rRk,Nψ).

Consequently, by assuming ϕ ∈ H 2 with zero mean and using a basic interpolation inequality, 
we obtain

|Rk,N(ϕRk,Nψ)| ≤ |ϕ>rRk,Nψ | ≤ |ϕ>r |L∞|ψ | ≤ |ϕ>r | 1
4 |ϕ|

3
4
H 2 |ψ |. (3.58)

Notice that

|ϕ>r |2 =
∑
|j |>r

|ϕ̂j |2 =
∑
|j |>r

1

|j |4 |j |4|ϕ̂j |2 ≤ 1

r4 |ϕ|2
H 2 . (3.59)

By (3.58) and (3.59), it follows that

|Rk,N(ϕRk,Nψ)| ≤ 1√
r
|ϕ|H 2 |ψ |. (3.60)

By (3.55) and (3.60), one has

(Rk,NF ′(u)Rk,Nv,w) ≤ 2|w|√
r

3∑
m,n=1

|U(u)m|H 2 |[U ′(u)v]n|. (3.61)

By (3.35) and (3.37) in Lemma 3.4, we see that |U(u)|H 2 ≤ C for all u ∈ H and |U ′(u)v| ≤
L1|v|. Therefore, we derive from (3.61) that

(Rk,NF ′(u)Rk,Nv,w) ≤ CL1√
r

|v||w|, for all u,v,w ∈ H.

This implies that

|Rk,NF ′(u)Rk,Nv| ≤ CL1√ |v| ≤ δ|v|, for all u,v,w ∈ H,

r
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by choosing r sufficiently large. Notice that the value of r does not depend on N and k. This 
completes the proof. �
3.4. Existence of an inertial manifold

Finally, we state and prove the main result of the manuscript: the existence of inertial man-
ifolds for the hyperviscous Navier–Stokes equations (1.1) for the critical case β = 3/2. Recall 
that, if f ∈ H 1, all solutions of ut + A3/2u + B(u, u) = f enter an absorbing ball B in H 4 for 
large time, which coincide with solutions of the “prepared” equation (3.62) in B.

Theorem 3.7. Consider the “prepared” equation for the incompressible hyperviscous Navier–
Stokes equations on Td , d = 2 or 3, namely,

ut + A3/2u + B(U(u),U(u)) = f, (3.62)

for f ∈ H 1. Then equation (3.62) possesses an inertial manifold in H in the sense of Defini-
tion 2.1.

Proof. First, we write (3.62) in the form

ut + A3/2u + A1/2F (u) = f,

where F (u) = A−1/2B(U(u), U(u)). By Proposition 3.5 (whose statement is valid in both two 
and three dimensions), F is Gateaux differentiable from H to H such that |F ′(u)|L(H,H) ≤ L

for all u ∈ H . Also |F (u)|H 2 ≤ C for all u ∈ H , for some constant C > 0. Let {λn = |j |2 :
j ∈ Zd\{0}}, d = 2 or 3, such that 0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · , correspond to the eigenvectors 
{eij ·x : j ∈ Zd\{0}} of A in H .

Case 1: If there exists a sufficiently large spectral gap, namely, there exists N ∈ N such that 
λN+1 − λN ≥ 2L, then by Theorem 2.2, there exists an N -dimensional inertial manifold for 
(3.62). In particular, on the two-dimensional periodic domain T2, an arbitrarily large gap for 
eigenvalues of A = −� is guaranteed by Theorem 4.2 (see the Appendix), due to Richards [29].

Case 2: In three dimensions, there does not necessarily exist a sufficiently large spectral gap. 
But, by Proposition 3.6, there exist N ∈ N and k ∈ [γ logλN, λN) for some γ ∈ (0, 1] such that 
λN ≥ e40L2/γ and 1 ≤ λN+1 − λN ≤ 2L, and

|Rk,NF ′(u)Rk,Nv| ≤ δ|v|, for all u,v ∈ H,

for some δ ≤ 1
50 . Consequently, the spatial averaging condition (2.6) is fulfilled, so we conclude 

from Corollary 2.8 that equation (3.62) possesses an N -dimensional inertial manifold in H . �
4. Appendix

In this appendix, we include a series of well-known theoretical results (see Appendix 4.1) and 
then provide the complete proof of Theorem 2.7 (see Appendix 4.2). We also provide a proof of 
the strong cone property when the optimal spectral gap condition is satisfied (see Appendix 4.3), 
and a proof of the global well-posedness of weak solutions and the existence of global attractors 
for the hyperviscous Navier–Stokes equations (1.1) when β ≥ 5/4 in three-dimensional domains 
(see Appendix 4.4).
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4.1. Supporting results

First let us recall the uniform Gronwall inequality.

Lemma 4.1 (Temam [33]). Let g, h and y be nonnegative locally integrable functions defined 
for t ≥ t0. Suppose

dy

dt
≤ gy + h, for t ≥ t0.

Then, it holds

y(t + 1) ≤ e
∫ t+1
t g(τ )dτ

⎛
⎝ t+1∫

t

y(τ )dτ +
t+1∫
t

h(τ )dτ

⎞
⎠ , for t ≥ t0.

Next we state a few number theoretic results which are related to the construction of an inertial 
manifold.

Theorem 4.2 (Richards [29]). The sequence {sn = k2
1 + k2

2 : k1, k2 ∈ Z and sn+1 ≥ sn} satisfies

lim sup
n→∞

sn+1 − sn

log sn
≥ δ,

for some δ > 0.

Theorem 4.3 (Mallet-Paret and Sell [26]). Let D ⊂ Z be a finite nonempty set of integers with 
the property that 

∏
d∈A d is not a perfect square whenever A ⊂ D has odd cardinality. There exist 

arbitrarily large m ∈ N and h ≥ C logm for some constant C > 0 independent of m, satisfying: 
if T is any quadratic form

T (k1, k2) = ak2
1 + bk1k2 + ck2

2, a, b, c ∈ Z,

with discriminant d = b2 − 4ac ∈ D, then

T (k1, k2) /∈ [m,m + h] for each k1, k2 ∈ Z.

Proof. Theorem 4.3 has been proved by Mallet-Paret and Sell in [26]. The estimate of the size 
of the gap h, i.e., h ≥ C logm has been claimed in [26] without a detailed argument. For the sake 
of completion, we present the proof for the estimate h ≥ C logm as follows. The idea is from 
the proof of Theorem 4.2 by Richards in [29]. Indeed, since we consider the discriminant d =
b2 − 4ac ∈ D, without loss of generality, one may assume that every element d in D satisfying 
d ≡ 0 or 1 (mod 4). It has been proved in [26] that there exists r �= 0 such that

gcd (d, r) = 1 and

(
d
)

= −1, for each d ∈ D, (4.1)

r



4364 C.G. Gal, Y. Guo / J. Differential Equations 265 (2018) 4335–4374
where 
(

d
r

)
is the Jacobi symbol. Define δ := lcm {|d| : d ∈ D}. By (4.1), one has gcd (δ, r) = 1. 

Let h > 0 and set

A := sup
0≤j≤h

|r + δj |. (4.2)

Define P be the product

P :=
∏

p1+α (4.3)

where the product is taken over all primes p with

p � δ and pα ≤ A < p1+α for some integer α > 0. (4.4)

Recall gcd(δ, r) = 1. Set the integer m ∈ [1, P ] satisfying

δm ≡ r (mod P). (4.5)

It has been shown in [26] that T (k1, k2) /∈ [m, m + h] for any k1, k2 ∈ Z. We argue that h ≥
C logm. Indeed, the number of primes p ≤ A is asymptotic to A

log A
. By (4.3), we obtain that

P ≤ A
2(1+ε)A

log A = e2(1+ε)A, for some ε > 0.

This implies that

A ≥ logP

2(1 + ε)
≥ logm

2(1 + ε)
(4.6)

since P ≥ m. Moreover, since r and δ are fixed integers, then h and A can be chosen arbitrarily 
large such that (4.2) is valid and

h ≥ A

2δ
. (4.7)

In view of (4.6) and (4.7), we conclude that

h ≥ logm

4δ(1 + ε)
.

This demonstrates the size of the gap stated in Theorem 4.3. �
The following result is a corollary of Theorem 4.3.

Corollary 4.4 (Mallet-Paret and Sell [26]). Let T be a finite collection of functions T of the 
form

T (k1, k2) = ak2 + bk1k2 + ck2 + sk1 + tk2 + u,
1 2
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with rational coefficients and negative discriminant, i.e.,

a, b, c, s, t, u ∈ Q, b2 − 4ac < 0.

Then, there exist arbitrarily large m ∈N and h ≥ C logm for some constant C > 0 independent 
of m, such that

T (k1, k2) /∈ [m,m + h] for each T ∈ T and k1, k2 ∈ Z. (4.8)

Corollary 4.4 implies the following proposition.

Proposition 4.5 (Mallet-Paret and Sell [26]). Let r > 0. There exist arbitrarily large λ > 0 and 
κ > C logλ for some constant C > 0 independent of λ, satisfying: whenever |n|2, |l|2 ∈ [λ − κ,

λ + κ] with distinct n and l ∈ Z3 one has |n − l| > r .

4.2. Proof of Theorem 2.7

It is standard that the cone invariance property and the decay property together imply the 
existence of an inertial manifold in H for the model problem (2.5). We present the proof of 
Theorem 2.7 for the sake of completion.

Proof of Theorem 2.7. We adopt the proof by Zelik [35] (see also Kostianko and Zelik [25]). 
The argument can be split into four steps.

Step 1: We aim to prove that the boundary-value problem

{
ut + A3/2u + A1/2F(u) = f

PNu(0) = u0, QNu(−T ) = 0
(4.9)

has a unique solution for any T > 0 and u0 ∈ PNH .
In fact, let us denote by S(t) the semigroup induced by (2.5) and consider the map GT :

PNH → PNH given by

GT (ϕ) = PNS(T )ϕ, for ϕ ∈ PNH.

First notice that GT is Lipschitz continuous. To see it, we let ϕ1 and ϕ2 ∈ PNH . Set u1(t) =
S(t)ϕ1 and u2(t) = S(t)ϕ2. Due to (2.40), one has

d

dt
|u1(t) − u2(t)|2 ≤ L2|u1(t) − u2(t)|2, for all t ≥ 0.

Therefore,

|u1(t) − u2(t)|2 ≤ etL2 |ϕ1 − ϕ2|2, for all t ≥ 0.

It follows that
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|GT (ϕ1) − GT (ϕ2)|2 ≤ eT L2 |ϕ1 − ϕ2|2, for any ϕ1, ϕ2 ∈ PNH.

This shows that GT : PNH → PNH is Lipschitz continuous.
Next we shall justify that the map GT is injective. Put v(t) = u1(t) − u2(t). Also set p(t) =

PNv(t) and q(t) = QNv(t). Taking the inner product of vt +A3/2v +A1/2(F (u1) −F(u2)) = 0
with p yields 1

2
d
dt

|p|2 + |A3/4p|2 + (F (u1) − F(u2), A1/2p) = 0, which implies

1

2

d

dt
|p|2 + λ

3/2
N |p|2 + Lλ

1/2
N |p||v| ≥ 0, (4.10)

where we have used the Lipschitz continuity |F(u1) − F(u2)| ≤ L|u1 − u2| = L|v|.
Since v(0) = ϕ1 − ϕ2 ∈ PNH , by the cone invariance property, |q(t)| ≤ |p(t)|, for all t ≥ 0. 

Thus |v(t)| ≤ 2|p(t)|, for all t ≥ 0. Then, due to (4.10), one has

d

dt
|p|2 + 2

(
λ

3/2
N + 2Lλ

1/2
N

)
|p|2 ≥ 0, for all t ≥ 0.

As a result, |p(0)| ≤ e

(
λ

3/2
N +2Lλ

1/2
N

)
t |p(t)| for all t ≥ 0. Consequently, we have

|ϕ1 − ϕ2| ≤ e

(
λ

3/2
N +2Lλ

1/2
N

)
T |GT (ϕ1) − GT (ϕ2)|. (4.11)

This implies that GT : PNH → PNH is injective, and G−1
T is Lipschitz continuous on its domain.

Since PNH is finite dimensional and GT is continuous and injective, by using the theorem 
of invariance of domain [5], we conclude that GT is a homeomorphism from PNH to an open 
set GT (PNH). Due to (4.11), we see that the open set GT (PNH) has no boundary. For, if ψ0
is a point on the boundary of the open set GT (PNH), then there exists a sequence {ψn} ⊂
GT (PNH) such that ψn → ψ0, and by (4.11), G−1

T ψn is a Cauchy sequence and has a limit 
point φ0 in PNH , then GT (φ0) = ψ0 by the continuity of GT , which contracts the assumption 
that ψ0 /∈ GT (PNH). As a result, GT (PNH) = PNH , i.e., GT is a homeomorphism from PNH

to PNH . Therefore, GT (ϕ) = u0 is uniquely solvable for all u0 ∈ PNH . It follows that u(t) =
S(t + T )G−1

T (u0) is the unique solution of the boundary-value problem (4.9).
Step 2: Given u0 ∈ PNH . Let uT (t) be the solution of the boundary-value problem (4.9). We 

aim to prove that the limit

ũ(t) = lim
T →∞uT (t) (4.12)

exists for all t ≤ 0 and is a backward solution of the problem ut + A3/2u + A1/2F(u) = f with 
PNu(0) = u0.

Indeed, let T2 > T1 > 0, and set v(t) = uT1(t) − uT2(t), for t ∈ [−T1, 0]. Put p(t) = PNv(t)

and q(t) = QNv(t). Notice that p(0) = PNuT1(0) − PNuT2(0) = u0 − u0 = 0. Then by the cone 
invariance property, we have |q(t)| ≥ |p(t)| for all t ∈ [−T1, 0], and thus 2|q(t)| ≥ |v(t)| for all 
t ∈ [−T1, 0]. Then by the decay property, we obtain that

|v(t)| ≤ Ce−α(t+T1)|v(−T1)| ≤ 2Ce−α(t+T1)|q(−T1)| = 2Ce−α(t+T1)|QNuT (−T1)|, (4.13)
2
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for all t ∈ [−T1, 0], where the last equality is due to the fact that QNuT1(−T1) = 0. In order to 
find a uniform bound for |QNuT2(−T1)| for any T2 > T1 > 0, we consider an arbitrary solution 
uT of problem (4.9). One has

1

2

d

dt
|QNuT |2 + |A3/4QNuT |2 ≤ |(F (uT ),A1/2QNuT )| + |(f,QNuT )|

≤ |A−1/4F(uT )|2 + 1

4
|A3/4QNuT |2 + |A−3/4f |2 + 1

4
|A3/4QNuT |2,

for t ∈ [−T , 0]. It follows that

d

dt
|QNuT |2 + |A3/4QNuT |2 ≤ 2|A−1/4F(uT )|2 + 2|A−3/4f |2 ≤ C,

for t ∈ [−T , 0], due to the assumption that |A−1/4F(u)| is uniformly bounded for all u ∈ H .
As a result, we have

d

dt
|QNuT |2 + λ

3/2
N+1|QNuT |2 ≤ C, for t ∈ [−T ,0]. (4.14)

Since uT is a solution of (4.9), we know that QNuT (−T ) = 0, then by (4.14), one has

|QNuT (t)|2 ≤ C, (4.15)

for some constant C > 0 and all t ∈ [−T , 0] and for any T > 0. It follows that

|QNuT2(T1)|2 ≤ C.

Therefore, by (4.13), we obtain that

|uT1(t) − uT2(t)| = |v(t)| ≤ Ce−α(t+T1), for all t ∈ [−T1,0],

for any T2 > T1 > 0. Consequently, for any t∗ > 0, as T1, T2 → ∞, one has

|uT1(t) − uT2(t)| → 0, uniformly on [−t∗,0].

This implies that uT is a Cauchy sequence in C([−t∗, 0]; H) for any t∗ > 0. Hence, ũ =
limT →∞ uT exists in C([−t∗, 0]; H) for any t∗ > 0, where uT is the solution of (4.9). This 
shows that ũ(t) is a backward solution of ut + A3/2u + A1/2F(u) = f with PNu(0) = u0 and 
it has a unique extension ũ which solves ut + A3/2u + A1/2F(u) = f for all t ∈ R. Also, we 
remark that, due to (4.15), |QNũ(t)| is uniformly bounded for all t ∈ R.

Step 3: Define the set A as the set of all solutions ũ(t), t ∈ R, of (2.5) constructed in Step 2 
using the limiting process (4.12). By the construction, the set A is invariant in time, i.e.,

T (τ)A =A, where (T (τ )ũ)(t) = ũ(t + τ), τ ∈R.

Also, for two trajectories ũ1 and ũ2 ∈A, we claim that
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|QN(ũ1(t) − ũ2(t))| ≤ |PN(ũ1(t) − ũ2(t))|, for all t ∈R. (4.16)

Indeed, by the limiting process (4.12), there exist u1
0 and u2

0 ∈ PNH such that limT →∞ uT,u1
0
=

ũ1 and limT →∞ uT,u2
0

= ũ2, where u
T,u

j
0
, j = 1, 2, are solutions of (2.5) with the boundary 

condition PNu(0) = u
j
0, QNu(−T ) = 0. Since QNuT,u1

0
(−T ) = QNuT,u2

0
(−T ) = 0, then by 

the cone invariance property, we obtain that

|QN(uT,u1
0
(t) − uT,u2

0
(t))| ≤ |PN(uT,u1

0
(t) − uT,u2

0
(t))|, for all t ≥ −T . (4.17)

By passing to the limit on (4.17) as T → ∞, we obtain (4.16).
We define the map 	 : PNH → QNH by

	(u0) = QNũ(0) where ũ ∈ A with PNũ(0) = u0.

Due to (4.16), we have

|QN(ũ1(0) − ũ2(0))| ≤ |PN(ũ1(0) − ũ2(0))|.
That is,

|	(u1
0) − 	(u2

0)| ≤ |u1
0 − u2

0|, for any u1
0, u

2
0 ∈ H.

This shows that 	 : PNH → QNH is Lipschitz continuous with Lipschitz constant 1.
Now we construct the Lipschitz manifold of dimension N as

M := {u0 + 	(u0) : u0 ∈ PNH }.
The invariance of A implies the invariance of M with respect to the semigroup S(t).

Step 4: We aim to show that any trajectory of the solution of (2.5) approaches the finite-
dimensional Lipschitz manifold M exponentially fast. Indeed, let u(t), t ≥ 0, be a solution of 
(2.5) such that its trajectory does not belong to M. For each T > 0, there exists ũT ∈A such that

PNu(T ) = PNũT (T ).

Then by the cone invariance property, we have

|PN(u(t) − ũT (t))| < |QN(u(t) − ũT (t))|, for t ∈ [0, T ], (4.18)

and by the decay property, we have

|u(t) − ũT (t)| ≤ Ce−αt |u(0) − ũT (0)|, for t ∈ [0, T ]. (4.19)

Recall in Step 2, we have shown that, for any ũ ∈A, |QNũ(t)| is uniformly bounded in R. Hence, 
we have that |QNũT (0)| is uniformly bounded for all T > 0. Also, due to (4.18), |PN(u(0) −
ũT (0))| < |QN(u(0) − ũT (0))|. As a result, |ũT (0)| is uniformly bounded for all T > 0. Since the 
Lipschitz manifold M is finite dimensional and ũT (0) ∈ M, there exists a sequence ũT (0) →
j
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ũ(0) ∈ M as Tj → ∞ and the corresponding trajectory ũ(t) ∈ A. Since ũTj
and ũ are both 

solutions of (2.5), due to (2.40), we obtain that

|ũTj
(t) − ũ(t)|2 ≤ eL2t |ũTj

(0) − ũ(0)|2, for all t ≥ 0.

This implies that |ũTj
(t) − ũ(t)| → 0 as Tj → ∞ for each t ≥ 0. Therefore, by virtue of (4.19), 

we conclude that

|u(t) − ũ(t)| ≤ Ce−αt |u(0) − ũ(0)|, for t ≥ 0.

This shows that any trajectory u(t) outside the inertial manifold M exponentially approaches a 
trajectory ũ(t) in M. �
4.3. Derivation of the cone property under the optimal spectral gap condition

For the self-containedness of the paper, we derive a strong cone property for model (2.1) with 
the assumption of the sharp spectral gap condition (2.4).

Proposition 4.6. Let u1 and u2 be two solutions of (2.1). Set v = u1 − u2. Denote p = PNv

and q = QNv. Define V(t) = |q|2
H−1/2 − |p|2

H−1/2 . Assume F : H → H is globally Lipschitz 
continuous with Lipschitz constant L. Suppose the spectral gap condition (2.4) is satisfied. Then, 
the following strong cone property holds:

1

2

d

dt
V(t) + αV(t) ≤ −μ|v(t)|2, for all t ≥ 0, (4.20)

where α = λ
β
Nλ

1/2
N+1+λ

β
N+1λ

1/2
N

λ
1/2
N+1+λ

1/2
N

and μ = λ
β
N+1−λ

β
N

λ
1/2
N+1+λ

1/2
N

− L > 0.

Proof. Let u1 and u2 be two solutions of (2.1) and set v = u1 − u2, then one has

vt + Aβv + A1/2[F(u1) − F(u2)] = 0, (4.21)

where β ≥ 3/2. Set p = PNv and q = QNv. Take the scalar product of (4.21) with A−1/2p and 
A−1/2q respectively:

{
1
2

d
dt

|p|2
H−1/2 + |Aβ/2p|2

H−1/2 + (F (u1) − F(u2),p) = 0,

1
2

d
dt

|q|2
H−1/2 + |Aβ/2q|2

H−1/2 + (F (u1) − F(u2), q) = 0.
(4.22)

Define V(t) = |q|2
H−1/2 − |p|2

H−1/2 . Subtracting the two equations in (4.22) yields

1

2

d

dt
V(t) +

(
|Aβ/2q|2

H−1/2 − |Aβ/2p|2
H−1/2

)
= (F (u1) − F(u2),p − q) ≤ L|v|2,

due to the assumption that F : H → H is globally Lipschitz with Lipschitz constant L. It follows 
that
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1

2

d

dt
V(t) + αV(t) ≤ −

(
|Aβ/2q|2

H−1/2 − α|q|2
H−1/2

)
−
(
α|p|2

H−1/2 − |Aβ/2p|2
H−1/2

)
+ L|v|2.

(4.23)

Since α = λ
β
Nλ

1/2
N+1+λ

β
N+1λ

1/2
N

λ
1/2
N+1+λ

1/2
N

, we calculate

α|p|2
H−1/2 − |Aβ/2p|2

H−1/2 =
N∑

j=1

α − λ
β
j

λ
1/2
j

|vj |2 ≥ α − λ
β
N

λ
1/2
N

|p|2 = λ
β
N+1 − λ

β
N

λ
1/2
N+1 + λ

1/2
N

|p|2. (4.24)

Also,

|Aβ/2q|2
H−1/2 − α|q|2

H−1/2 =
∞∑

j=N+1

λ
β
j − α

λ
1/2
j

|vj |2 ≥ λ
β
N+1 − α

λ
1/2
N+1

|q|2 = λ
β
N+1 − λ

β
N

λ
1/2
N+1 + λ

1/2
N

|q|2.

(4.25)

Substituting (4.24) and (4.25) into (4.23), we obtain

1

2

d

dt
V(t) + αV(t) ≥ −

(
λ

β
N+1 − λ

β
N

λ
1/2
N+1 + λ

1/2
N

− L

)
|v|2,

where μ = λ
β
N+1−λ

β
N

λ
1/2
N+1+λ

1/2
N

− L > 0 owing to the spectral gap condition (2.4). �

By adopting the proof of Proposition 2.5 and using the estimates d
dt

|v(t)|2 ≤ L2|v(t)|2 as well 
as d

dt
|v(t)|2

H−1/2 ≤ L|v(t)|2, it can be readily shown that the strong cone property (4.20) implies

• Cone invariance property: If V(0) ≤ 0, then V(t) ≤ 0 for all t ≥ 0;
• Decay property: If V(T ) > 0 for some T > 0, then

|v(t)|2 ≤ Ce−αt |v(0)|2 and |v(t)|2
H−1/2 ≤ Ce−αt |v(0)|2

H−1/2 for all t ∈ [0, T ]. (4.26)

It is standard that the above cone invariance and the decay properties lead to the existence of 
an inertial manifold in H−1/2, and thanks to the parabolic smoothing property, it immediately 
becomes an inertial manifold in the phase space H .

4.4. Global well-posedness and global attractors of equation (1.1)

For the reader’s convenience, we provide a brief analysis of the hyperviscous Navier–Stokes 
equations (1.1) in three dimensions when β ≥ 5/4. For the sake of clarity, we consider the bor-
derline case that β = 5/4. Our analysis can readily be adapted to treat the general case β ≥ 5/4. 
(The reader may also refer to [8,22] for well-posedness and the existence of global attractors for 
some general families of problems including (1.1).) Without loss of generality, we assume ν = 1. 
So in the following analysis, we consider
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ut + A5/4u + B(u,u) = f in T3, u|t=0 = u0. (4.27)

Theorem 4.7. Let f ∈ H−5/4. Then for every u0 ∈ H , problem (4.27) possesses a unique weak 
solution such that u ∈ C ([0, T ] ;H) ∩ L2(0, T ; H 5/4) with ut ∈ L2(0, T ; H−5/4) for an arbi-
trary time T > 0. The weak solution depends continuously on the initial data.

Proof. We provide the following a priori estimates. By taking the inner product of (4.27) with u, 
it is easy to deduce that

d

dt
|u|2 + |u|2

H 5/4 ≤ |f |2
H−5/4 . (4.28)

From (4.28), we see that

|u(t)|2 ≤ e−t |u0|2 + |f |2
H−5/4(1 − e−t ), for t ≥ 0, (4.29)

and

t∫
0

|u|2
H 5/4dτ ≤ |u0|2 + t |f |2

H−5/4, for t ≥ 0. (4.30)

Using the Sobolev imbedding Hs ↪→ L
6

3−2s in three dimensions for s ∈ (0, 3/2), we deduce

(B(u,u),φ) = b(u,u,φ) ≤ C|φ|L12 |∇u|L12/5 |u| ≤ C|φ|H 5/4 |u|H 5/4 |u|.

It follows that |B(u, u)|H−5/4 ≤ C|u|H 5/4 |u|. Then due to (4.29) and (4.30), we have B(u, u) is 
bounded in L2(0, T ; H−5/4), and thus

ut is bounded in L2(0, T ;H−5/4). (4.31)

On one hand, the existence of global weak solutions can be easily obtained by standard Galerkin 
method, using the a priori estimates (4.29)–(4.31) and a compactness argument. On the other 
hand, it is crucial to verify the uniqueness of weak solutions, which explains why β = 5/4 is the 
borderline case for the well-posedness of 3D hyperviscous Navier–Stokes equations. To show 
the uniqueness, we take two solutions u1 and u2 of (4.27) and set v = u1 − u2. Then, we have

vt + A5/4v + B(u1, v) + B(v,u2) = 0. (4.32)

Take the L2 inner product of (4.32) with v, then

1

2

d

dt
|v|2 + |v|2

H 5/4 ≤ |b(v,u2, v)| = |b(v, v,u2)|

≤ C|u2|L12 |∇v|L12/5 |v| ≤ C|u2|H 5/4 |v|H 5/4 |v| ≤ 1

2
|v|2

H 5/4 + C|u2|2H 5/4 |v|2.

It follows that
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d

dt
|v|2 + |v|2

H 5/4 ≤ C|u2|2H 5/4 |v|2. (4.33)

Thanks to the Gronwall inequality, we obtain from (4.33) and (4.30) that

|v(t)|2 ≤ exp

⎛
⎝C

t∫
0

|u2|2H 5/4dτ

⎞
⎠|v(0)|2 ≤ C exp

(
|u2(0)|2 + t |f |2

H−5/4

)
|v(0)|2, (4.34)

for t ≥ 0. If v(0) = u1(0) − u2(0) = 0, then (4.34) shows that v(t) = u1(t) − u2(t) = 0 for all 
t ≥ 0, so weak solutions are unique. Inequality (4.34) also implies the continuous dependence on 
initial data. �
Theorem 4.8. Let f ∈ H−1/4. Then the dynamics induced by (4.27) possesses a compact global 
attractor in the phase space H .

Proof. Estimate (4.29) implies that all trajectories of the dynamics induced by (4.27) enter an 
absorbing ball of radius 2|f |H−5/4 in H . Namely,

|u(t)| ≤ 2|f |H−5/4 , for t ≥ t0. (4.35)

To construct an absorbing ball in H 1, we take the inner product of (4.27) with Au,

1

2

d

dt
|u|2

H 1 + |u|2
H 9/4 ≤ |b(u,u,Au)| + |(f,Au)|

≤ C|u|L12 |Au|L12/5 |u|H 1 + |u|H 9/4 |f |H−1/4

≤ C|u|H 5/4 |u|H 9/4 |u|H 1 + 1

4
|u|2

H 9/4 + |f |2
H−1/4 ≤ C|u|2

H 5/4 |u|2
H 1 + 1

2
|u|2

H 9/4 + |f |2
H−1/4 .

Hence,

d

dt
|u|2

H 1 + |u|2
H 9/4 ≤ C|u|2

H 5/4 |u|2
H 1 + 2|f |2

H−1/4 . (4.36)

Notice that 
∫ t+1
t

|u|2
H 5/4dτ ≤ |u(t)|2 + |f |2

H−5/4 ≤ 5|f |2
H−5/4 for t ≥ t0 owing to (4.28) and 

(4.35). Therefore, by using the uniform Gronwall inequality on (4.36), we obtain

|u(t)|2
H 1 ≤ ρ2 := exp

(
C|f |2

H−5/4

)
(5|f |2

H−5/4 + 2|f |2
H−1/4), for t ≥ t0 + 1. (4.37)

Estimate (4.37) shows that all trajectories of the dynamics enter an absorbing ball of the radius ρ
in H 1 for large time. Therefore, due to the standard theory of attractors (see [33]), the dynamics 
possesses a compact global attractor in the phase space H . �
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