CALCULUS I EXAM 2

(1) Find the derivative $\frac{dy}{dx}$. Do not simplify your answer. (a) $y = \left(\frac{1}{x} + \tan^{-1}x\right) \sin^3 x$

(b)
$$y = \sqrt{\ln|x| + e^{3x}}$$

(c)
$$y = \cos^3(\sec x)$$

(d)
$$y = \frac{2^x \sin^{-1}(x^2)}{\csc(x^3)}$$

(e)
$$y = 5^{\tan x} \log_5(2 - x^2)$$

(2) Let $y = x \sin(4x) + \cos^2 x$. Find the second derivative $\frac{d^2 y}{dx^2}$.

(3) Let $x^2y^3 + \cot x = \sin(y^2)$. Find $\frac{dy}{dx}$ by implicit differentiation.

(4) Let $x^3y^3 + 5 = 0$. Find the second derivative $\frac{d^2y}{dx^2}$ by implicit differentiation.

(5) (a) Find the local linear approximation of f(x) = √x at x₀ = 9.
(b) Use the local linear approximation obtained in (a) to approximate √8.8.

(6) Determine whether the function $f(x) = x^3 - 2x^2 + 7$ is one-to-one by examining the sign of f'(x).

(7) Let $f(x) = x^2 + e^{5x}$. Find the derivative of the inverse function f^{-1} .

(8) Let

$$y = \frac{x^4\sqrt{1-x^3}\sin^2 x}{\tan^3 x}$$

Find the derivative $\frac{dy}{dx}$ using logarithmic differentiation. No credits for taking the derivative directly.

(9) A rocket, rising vertically, is tracked by a radar station that is on the ground 3 miles from the launchpad. How fast is the rocket rising when it 4 miles high and its distance from the radar station is increasing at a rate of 2000 miles/hour?

(10) A conical water tank with vertex down has a radius of 5 ft at the top and is 10 ft high. If water flows into the tank at a rate of 9 ft³/min, how fast is the depth of the water increasing when the water is 3 ft deep?