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Abstract. We analyze a three-dimensional rapidly rotating convection model of tall columnar structure
in the limit of infinite Prandtl number, i.e., when the momentum diffusivity is much more dominant than
the thermal diffusivity. Consequently, the dynamics of the velocity field takes place at a much faster time
scale than the temperature fluctuation, and at the limit the velocity field formally adjusts instantaneously to
the thermal fluctuation. We prove the global well-posedness of weak solutions and strong solutions to this
model.

1. Introduction

In geophysics, thermal convection is often influenced by planetary rotation. Coher-
ence structures in convection under moderate rotation are exclusively cyclonic. How-
ever, for rapid rotation, experiments have revealed a transition to equal populations of
cyclonic and anticyclonic structures. For instance, the flow visualization experiments
of Vorobieff and Ecke [17] identified a striking topological change in the dynamics of
the vortices. In the strongly nonlinear and turbulent regimes, plume generation in the
thermal boundary layer results in a new population of anticyclonic plumes, in addition
to the cyclonic population. Also, the distribution of cyclonic and anticyclonic coherent
structures approaches a balance as the Rossby number approaches zero. In order to
study such interesting phenomenon numerically, Sprague et al. [14] derived a reduced
system of equations for rotationally constrained convection valid in the asymptotic
limit of thin columnar structures and rapid rotation. Performing a numerical simula-
tion of Rayleigh–Bénard convection in an infinite layer rotating uniformly about the
vertical axis, visualization indicates the existence of cyclonic and anticyclonic vortical
population in [14], which is consistent with the experimental results described in [17].
Also see [9,10].
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The reduced three-dimensional rapidly rotating convection model of tall columnar
structure introduced in [14] is given by the system:

∂w

∂t
+ u · ∇hw + ∂ψ

∂z
= Ra

Pr
θ ′ + �hw, (1.1)

∂ω

∂t
+ u · ∇hω − ∂w

∂z
= �hω, (1.2)

∂θ ′

∂t
+ u · ∇hθ

′ + w
∂θ

∂z
= 1

Pr
�hθ

′, (1.3)

∂(θ ′w)

∂z
= 1

Pr

∂2θ

∂z2
, (1.4)

∇h · u = 0. (1.5)

The above system is considered subject to periodic boundary conditions in R
3 with

fundamental periodic domain � = [0, 2πL]2 × [0, 2π ]. The unknowns are functions
of (x, y, z, t), where (x, y, z) ∈ � and t ≥ 0. In (1.1)–(1.5), ∇h = ( ∂

∂x , ∂
∂y ) denotes

the horizontal gradient and �h = ∂2

∂x2
+ ∂2

∂y2
denotes the horizontal Laplacian. In

the model, u = (u, v) is the horizontal component of the three-dimensional velocity
vector field (u, v, w), andω = ∇h ×u = ∂xv−∂yu denotes the vertical component of
the vorticity. Moreover, the stream function for the horizontal flow is denoted by ψ =
�−1

h ω such that its horizontal averageψ = 1
4π2L2

∫
[0,2πL]2 ψ(x, y, z, t)dx dy = 0. In

addition, θ ′ = θ − θ represents the horizontal fluctuation of the temperature θ , where
θ(z, t) = 1

4π2L2

∫
[0,2πL]2 θ(x, y, z, t)dx dy is the horizontal-mean temperature. In the

above system, Ra is the Rayleigh number and Pr is the Prandtl number. We comment
that the assumption ∇h · u = 0 means that the horizontal flow is divergence-free.

The global regularity for system (1.1)–(1.5) is unknown. The main difficulty of
analyzing (1.1)–(1.5) lies in the fact that the physical domain is three-dimensional,
whereas the regularizing viscosity acts only on the horizontal variables, and the equa-
tions contain troublesome terms ∂φ

∂z and ∂w
∂z involving the derivative in the vertical

direction. In our recent paper [4], system (1.1)–(1.5) was regularized by a weak dissi-
pation term and the global well-posedness of strong solutions was established for the
regularized system.

System (1.1)–(1.5) is a reduced model derived from the three-dimensional Boussi-
nesq equations by using the asymptotic theory. Generally speaking, the Boussinesq
approximation for buoyancy-driven flow is applied to problems where the fluid varies
in temperature from one place to another, driving a flow of fluid and heat transfer.
In particular, the Boussinesq approximation to the Rayleigh–Bénard convection is a
system of equations coupling the three-dimensional Navier–Stokes equations to a heat
advection-diffusion equation. For small Rossby number (i.e., rapid rotation) and large
ratio of the depth of the fluid layer to the horizontal scale (i.e., tall columnar struc-
tures), the 3D Boussinesq equations under the influence of a Coriolis force term can
be reduced to system (1.1)–(1.5) asymptotically. The derivation of model (1.1)–(1.5)
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was motivated by the Taylor–Proudman constraint [13,15] which suggests that rapidly
rotating convection takes place in tall columnar structures.
According to the derivation of model (1.1)–(1.5) in [14] from the 3D Boussinesq

equations, the state variables, i.e., the velocity, pressure and temperature, are expanded
in terms of the small parameter Ro, which stands for the Rossby number. For rapidly
rotating flow, i.e., Ro � 1, the leading-order flow is horizontally divergence-free (see
[14]). Roughly speaking, if the Rossby number is small in the Boussinesq equations,
then the Coriolis force and the pressure gradient force are relatively large, which
results in an equation in which the leading order terms are in geostrophic balance:
the pressure gradient force is balanced by the Coriolis effect. Then taking the curl of
the geostrophic balance equation implies that the horizontal flow is divergence-free,
namely ∇h · u = ux + vy = 0. In addition, the term ∂ψ

∂z in Eq. (1.1) also originates
from the geostrophic balance.
Since the original Boussinesq equations are considered in a tall column (x, y, z̃) ∈

[0, 2πL]2 × [0, 2π
], where the aspect ratio 
/L � 1, it is natural to introduce the
scaled vertical variable z = z̃/
 ∈ [0, 2π ] which appears in system (1.1)–(1.5). Set
u(x, y, z) = ũ(x, y, z̃), v(x, y, z) = ṽ(x, y, z̃) and w(x, y, z) = w̃(x, y, z̃), where
(ũ, ṽ, w̃) represents the velocity vector field for the original Boussinesq equations.
Note, the divergence-free condition of (ũ, ṽ, w̃) reads ∂ ũ

∂x + ∂ṽ
∂y + ∂w̃

∂ z̃ = 0, which

implies that ∂u
∂x + ∂v

∂y + 1



∂w
∂z = 0. Then, for 
 � 1, one can ignore the term 1



∂w
∂z and

obtain that ∂u
∂x + ∂v

∂y = 0. In sum, the fast rotation and the tall columnar structure both
imply that to leading order terms the horizontal flow is divergence-free. Moreover,
the absence of vertical diffusion in system (1.1)–(1.5) is also a consequence of the
large aspect ratio of the fluid region. Furthermore, it is remarked in [14] that in the
classical small-aspect-ratio (flat) regime, the strong stable stratification permits weak
vertical motions only, while in the present large-aspect-ratio (tall) case, the unstable
stratification permits substantial vertical motions.
There are two dimensionless numbers in system (1.1)–(1.5). They are the Prandtl

number Pr and the Rayleigh number Ra. The Prandtl number Pr represents the ratio
of molecular diffusion of momentum to molecular diffusion of heat. More precisely,
one defines

Pr = momentum diffusivity

thermal diffusivity
= ν

α
= μ/ρ

k/(cpρ)
= cpμ

k
. (1.6)

Here, ν represents momentum diffusivity, i.e., kinematic viscosity. Notice that ν =
μ/ρ, where μ is dynamics viscosity and ρ is the constant density. Also, α stands for
the thermal diffusivity, which is equal to k/(cpρ), where k is thermal conductivity and
cp represents the specific heat capacity of the fluid. Fluids with small Prandtl numbers
are free-flowing liquids with high thermal conductivity and are therefore a good choice
for heat transfer liquids. Liquid metals such as mercury have small Prandtl numbers.
On the other hand, with increasing viscosity, the Prandtl number also increases, leads
to the phenomenon that themomentum transport dominates over the heat transport and
acts on a faster time scale. For instance, concerning the engine oil, convection is very



2926 C. Cao et al. J. Evol. Equ.

effective in transferring energy in comparison with pure conduction, so momentum
diffusivity is dominant. Another example is Earth’s mantle, which has extremely large
Prandtl number.
TheRayleigh number Ra is another dimensionless number appeared inmodel (1.1)–

(1.5). It represents the strength of the buoyancy in the fluid driven by the heat gradient.
In this manuscript, we consider rapidly rotating convection in the limit of infinite

Prandtl number Pr. Under such scenario, the dynamics of the momentum acts on a
much faster time scale than the heat dynamics. For this problem, the appropriate time
scale is the horizontal thermal diffusion time. Using the substitution (cf. [14])

t → Pr t, u → 1

Pr
u, w → 1

Pr
w,

system (1.1)–(1.5) becomes

1

Pr

(
∂w

∂t
+ u · ∇hw

)

+ ∂ψ

∂z
= Ra θ ′ + �hw, (1.7)

1

Pr

(
∂ω

∂t
+ u · ∇hω

)

− ∂w

∂z
= �hω, (1.8)

∂θ ′

∂t
+ u · ∇hθ

′ + w
∂θ

∂z
= �hθ

′, (1.9)

∂(θ ′w)

∂z
= ∂2θ

∂z2
, (1.10)

∇h · u = 0. (1.11)

Then in the limit of infinite Prandtl number, i.e., letting Pr → ∞ in system (1.7)–
(1.11), one formally obtains the following system of equations

∂ψ

∂z
= Ra θ ′ + �hw, (1.12)

− ∂w

∂z
= �hω, (1.13)

∂θ ′

∂t
+ u · ∇hθ

′ + w
∂θ

∂z
= �hθ

′, (1.14)

∂(θ ′w)

∂z
= ∂2θ

∂z2
, (1.15)

∇h · u = 0. (1.16)

The system is considered subject to periodic boundary conditions in R
3 with fun-

damental periodic domain � = [0, 2πL]2 × [0, 2π ]. Here, ω = ∇h × u, ψ =
�−1

h ω such that its horizontal average ψ = 0. Recall that the horizontal thermal
fluctuation θ ′ of the temperature θ is defined as θ ′ = θ − θ , where θ(z, t) =

1
4π2L2

∫
[0,2πL]2 θ(x, y, z, t)dx dy is the horizontal-mean temperature. In system

(1.12)–(1.16), the velocity field acting on a very fast time scale adjusts instantaneously
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to the dynamics of the thermal fluctuations, demonstrated by the linear equations
(1.12) and (1.13). Therefore, the initial condition is imposed on θ ′ only: θ ′(0) = θ ′

0.
The purpose of this work is to prove the global well-posedness of weak and strong
solutions for system (1.12)–(1.16) defined on a fundamental periodic space domain
� = [0, 2πL]2 × [0, 2π ]. Also, in order to obtain the uniqueness of the temperature
θ , we assume that the average temperature is zero, i.e.,

∫
�

θ(x, y, z, t)dx dydz = 0,
for all t ≥ 0.

For the sake of simplicity and clarity, we adopt the periodic boundary conditions for
the model. In particular, under periodic boundary conditions, it is rather convenient to
express the explicit solutions of linear equations (1.12) and (1.13) in terms of Fourier
series, which enable us to find the precise relationship between the regularities of the
temperature and velocity field.

We remark that the original model derived in [14] involves multiple time scales t
and T . In fact, there was an additional term ∂T θ in Eq. (1.15), where T := A−1

T t ,
AT � 1, represents a slow time. Since we are mainly interested in the evolution of the
horizontal temperature fluctuation θ ′ with respect to time t , and since the horizontal-
mean temperature θ varies slowly in t , we drop the term ∂T θ from the original model.

In the literature, therewere someanalytical studies for the three-dimensionalBoussi-
nesq equations in the limit of infinite Prandtl number. Wang [18] rigorously justified
the infinite Prandtl number convection model as the limit of the Boussinesq equa-
tions when the Prandtl number approaches infinity (see also [19,20]). Also, for infi-
nite Prandtl number convection, there have been several rigorous derivation of upper
bounds of the upwards heat flux, as given by the Nusselt number Nu, in terms of the
forcing via the imposed temperature difference, as given by the Rayleigh number in
the turbulent regime Ra � 1. For example, the work [5] by Constantin and Doering
was one of the early papers in the literature for this topic. More recently, by combining
the background field method and the maximal regularity in L∞, Otto and Seis [12]
showed that Nu � Ra1/3(log logRa)1/3—an estimate that is only a double logarithm
away from the supposedly optimal scaling Nu ∼ Ra1/3. See also [6–8,11,21,22] and
references therein.

It is worthmentioning that in [2], Cao, Farhat and Titi established the global regular-
ity for an inviscid three-dimensional slow limiting ocean dynamics model, which was
derived as a strong rotation limit of the rotating and stratified Boussinesq equations.

The paper is organized as follows. In Sect. 2, we state main results of the paper, i.e.,
the globalwell-posedness ofweak solutions and strong solutions for the infinite Prandtl
number convection (1.12)–(1.16). In Sect. 3, we provide some auxiliary inequalities
and somewell-known identities, whichwill be used repeatedly in our energy estimates.
In Sect. 4, we give a detailed proof for the global well-posedness of weak solutions.
Finally, Sect. 5 is devoted to the proof for the globalwell-posedness of strong solutions.
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2. Main results

In this section, we give definitions of weak solutions as well as strong solutions
for system (1.12)–(1.16). Then, we state the main results of the manuscript, namely
the global well-posedness of weak solutions and strong solutions for system (1.12)–
(1.16), subject to periodic boundary conditions on a three-dimensional fundamental
periodic domain � = [0, 2πL]2 × [0, 2π ].
2.1. Weak solutions

For a periodic function f defined on the periodic domain� = [0, 2πL]2×[0, 2π ],
the horizontal mean of f is defined as

f (z) = 1

4π2L2

∫

[0,2πL]2
f (x, y, z)dxdy. (2.1)

We define the space H1
h (�) of periodic functions on�with horizontal average zero

by

H1
h (�) = { f ∈ L2(�) : ∇h f ∈ L2(�) and f = 0},

with the norm ‖ f ‖H1
h (�) = (∫

�
|∇h f |2dx dy dz

)1/2
. We denote by (H1

h (�))′ the dual
space of H1

h (�).
For s > 0, we denote the space of Hs periodic functions on [0, 2π ] with average

value zero by:

Ḣ s(0, 2π) = {φ ∈ Hs(0, 2π) :
∫ 2π

0
φ(z)dz = 0}. (2.2)

Also, we denote the dual space of Ḣ1(0, 2π) by H−1(0, 2π) = (Ḣ1(0, 2π))′.
Recall θ ′ = θ−θ represents thefluctuation of the temperature θ , about the horizontal

average. Also, (u, w) = (u, v, w) is the three-dimensional velocity vector field on the
periodic domain �.
Let us define a weak solution for system (1.12)–(1.16).

Definition 2.1. We call (θ ′, θ,u, w) a weak solution on [0, T ] for system (1.12)–
(1.16) if

θ ′ ∈ L2(0, T ; H1
h (�)) ∩ C([0, T ]; L2(�)); θ ′

t ∈ L2(0, T ; (H1
h (�))′);

θ ∈ L2(0, T ; Ḣ1(0, 2π));
�hu, �hw ∈ C([0, T ]; L2(�)); uz, wz,�hω,∇3

hw ∈ L2(� × (0, T )),

and the equations hold in the function spaces specified below:

∂ψ

∂z
= Ra θ ′ + �hw, in L2(0, T ; H1

h (�)) ∩ C([0, T ]; L2(�)), (2.3)
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− ∂w

∂z
= �hω, in L2(� × (0, T )), (2.4)

∂θ ′

∂t
+ u · ∇hθ

′ + w
∂θ

∂z
= �hθ

′, in L2(0, T ; (H1
h (�))′), (2.5)

∂(θ ′w)

∂z
= ∂2θ

∂z2
, in L2(0, T ; H−1(0, 2π)), (2.6)

with ∇h · u = 0, ω = ∇h × u, ψ = �−1
h ω, and θ ′ = w = ω = ψ = 0, u = 0, such

that the initial condition θ ′(0) = θ ′
0 ∈ L2(�) is satisfied.

According to the derivation of model (1.1)–(1.5) in [14], the quantities θ ′, u and w

are “fluctuating” quantities about the horizontal mean, i.e., the original quantities sub-
tracted by their horizontal means. Therefore, in the above definition of weak solutions,
all quantities are demanded to have horizontal average zero.
In Definition 2.1, the horizontal-mean temperature θ(z, t) = 1

4π2L2

∫
[0,2πL]2 θ(x,

y, z, t)dx dy belongs to the space Ḣ1(0, 2π), which demands that
∫ 2π
0 θ(z, t)dz = 0

due to (2.2). Therefore,
∫
�

θ(x, y, z, t)dx dy dz = 0, namely the average temperature
is zero for all t ∈ [0, T ].
In the next theorem, we state the existence and uniqueness of global weak solutions

to system (1.12)–(1.16) as well as the continuous dependence on initial data.

Theorem 2.2. (Global well-posedness of weak solutions) Assume θ ′
0 ∈ L2(�) with

θ ′
0 = 0. Then, system (1.12)–(1.16) has a unique weak solution (θ ′, θ,u, w) for all
t ≥ 0, in the sense of Definition 2.1. Moreover, the solution satisfies the following
energy equality:

1

2
‖θ ′(t)‖22 +

∫ t

0
‖∇hθ

′(s)‖22ds + 4π2L2
∫ t

0

∫ 2π

0
|∂zθ(z, s)|2dzds = 1

2
‖θ ′

0‖22,
(2.7)

for all t ≥ 0. Also, the following decay estimates are valid:

‖θ ′(t)‖22 + ‖�hu(t)‖22 + ‖�hw(t)‖22 ≤ Ce− 2
L2

t‖θ ′
0‖22, for all t ≥ 0;

∫ 2π

0
|θ z(z, t)|2dz ≤ Ce− 4

L2
t‖θ ′

0‖42, for all t ≥ 0.

In addition, if {θ ′
0,n} is a sequence of initial data in L2(�) such that θ ′

0,n → θ ′
0 in

L2(�), then the correspondingweak solutions {(θ ′
n, θn,un, wn)}and (θ ′, θ,u, w)with

θ ′
n(0) = θ ′

0,n and θ ′(0) = θ ′
0 satisfy θ ′

n → θ ′ in C([0, T ]; L2(�))∩ L2(0, T ; H1
h (�)),

θn → θ in L2(0, T ; Ḣ1(0, 2π)), and (un, wn) → (u, w) in L2(0, T ; H1(�)).

2.2. Strong solutions

We define a strong solution of system (1.12)–(1.16).
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Definition 2.3. We call (θ ′, θ,u, w) a strong solution on [0, T ] for system (1.12)–
(1.16) if

θ ′ ∈ L∞(0, T ; H1(�)) ∩ C([0, T ]; L2(�)) such that �hθ
′, ∇hθ

′
z ∈ L2(� × (0, T ));

(2.8)

θ ′
t ∈ L2(� × (0, T )); (2.9)

θ ∈ L∞(0, T ; Ḣ2(0, 2π)); (2.10)

�hu, �hw ∈ L∞(0, T ; H1(�)); uz, wz ∈ L∞(0, T ; L2(�)), (2.11)

and the equations hold in the function spaces specified below:

∂ψ

∂z
= Ra θ ′ + �hw, in L∞(0, T ; H1(�)), (2.12)

− ∂w

∂z
= �hω, in L∞(0, T ; L2(�)), (2.13)

∂θ ′

∂t
+ u · ∇hθ

′ + w
∂θ

∂z
= �hθ

′, in L2(� × (0, T )), (2.14)

∂(θ ′w)

∂z
= ∂2θ

∂z2
, in L∞(0, T ; L2(0, 2π)), (2.15)

with ∇h · u = 0, ω = ∇h × u, ψ = �−1
h ω, and θ ′ = w = ω = ψ = 0, u = 0, such

that the initial condition θ ′(0) = θ ′
0 ∈ H1

0 (�) is satisfied.

The following theorem states the existence and uniqueness of global strong solutions
to system (1.12)–(1.16).

Theorem 2.4. (Global well-posedness of strong solutions) Assume θ ′
0 ∈ H1(�)with

θ ′
0 = 0. Then, system (1.12)–(1.16) has a unique strong solution (θ ′, θ,u, w) for all
t ≥ 0, in the sense of Definition 2.3. Also, energy equality (2.7) is valid.

3. Preliminaries

Westate some inequalitieswhichwill be useful in our estimates. Let� = [0, 2πL]2×
[0, 2π ] be a three-dimensional fundamental periodic domain.
The following is an anisotropic Ladyzhenskaya-type inequality which has been

proved in [3].

Lemma 3.1. Let f ∈ H1(�), g ∈ L2(�) with ∇hg ∈ L2(�), and h ∈ L2(�). Then

∫

�

| f gh|dx dy dz

≤ C(‖ f ‖2 + ‖∇h f ‖2) 1
2 (‖ f ‖2 + ‖ fz‖2) 1

2 ‖g‖
1
2
2 (‖g‖2 + ‖∇hg‖2) 1

2 ‖h‖2. (3.1)
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Definition 3.2. Let s ≥ 0. We say ∂sz f ∈ L2(�) if f ∈ L2(�) satisfying

‖∂sz f ‖22 =
∑

k=(k1,k2,k3)∈Z3

|k3|2s | f̂ (k)|2 < ∞.

Lemma 3.3. Let s > 1/2. Assume f , ∂sz f ∈ L2(�), then

sup
z∈[0,2π ]

∫

[0,2πL]2
| f (x, y, z)|2dx dy ≤ C(‖ f ‖22 + ‖∂sz f ‖22). (3.2)

Proof. Thanks to the one-dimensional imbedding ‖φ‖L∞(0,2π) ≤ C‖φ‖Hs (0,2π),
when s > 1/2, then for a.e. z ∈ [0, 2π ],

∫

[0,2πL]2
| f (x, y, z)|2dx dy

≤ C
∫

[0,2πL]2

(∫ 2π

0
(| f |2 + |∂sz f |2)dz

)

dx dy = C(‖ f ‖22 + ‖∂sz f ‖22).

�

Recall the periodic domain � = [0, 2πL]2 × [0, 2π ]. For any periodic function
f ∈ H1

h (�), i.e., f ∈ L2(�) with ∇h f ∈ L2(�) and f = 0, the Poincaré inequality
is valid:

‖ f ‖22 ≤ L2‖∇h f ‖22. (3.3)

Next, we state some identities which will be employed in the energy estimate. For
sufficiently smooth periodic functions u, f and g on �, such that ∇h · u = 0, an
integration by parts shows

∫

�

(u · ∇h f )g dx dydz = −
∫

�

(u · ∇hg) f dx dydz. (3.4)

This implies
∫

�

(u · ∇h f ) f dx dydz = 0, (3.5)

if ∇h · u = 0.
Note that the horizontal velocity u, the vertical component ω of the vorticity and

the horizontal stream function ψ such that ψ = 0 have the following relations:

ω = ∇h × u = vx − uy, ω = �hψ, u = (u, v) = (−ψy, ψx ). (3.6)

4. Weak solutions

In this section, we prove the global well-posedness of weak solutions to system
(1.12)–(1.16) by using the Galerkin method.
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4.1. Existence of weak solutions

4.1.1. Galerkin approximation

Let Pm be an orthogonal projection onto lower Fourier modes, namely Pmφ =
∑

k∈Z3

|k|≤m
φ̂(k)ek. Here, ek = 1

(2π)3L2 exp[i
(
k1x+k2 y

L + k3z
)
], k ∈ Z

3, form an or-

thonormal basis for L2(�), where � = [0, 2πL]2 × [0, 2π ] is a three-dimensional
periodic domain.
We consider the Galerkin approximation for system (1.12)–(1.16):

∂ψm

∂z
= Ra θ ′

m + �hwm, (4.1)

− ∂wm

∂z
= �hωm, (4.2)

∂θ ′
m

∂t
+ Pm(um · ∇hθ

′
m) + Pm(wm

∂θm

∂z
) = �hθ

′
m, (4.3)

∂(θ ′
mwm)

∂z
= ∂2θm

∂z2
, (4.4)

such that ∇h · um = 0, with the initial condition θ ′
m(0) = Pmθ ′

0 where θ ′
0 = 0.

Also, um = (um, vm) = (−∂yψm, ∂xψm), and ωm = �hψm such that ψm = 0.
Moreover, the temperature θm = θ ′

m + θm , where the horizontal-mean temperature
θm(z, t) = 1

4π2L2

∫
[0,2πL]2 θm(x, y, z, t)dx dy.We assume the horizontal average zero

condition: θ ′
m = wm = ωm = ψm = 0 and um = 0. In addition, we demand the

average value of θm is zero:

∫

�

θm(x, y, z, t)dx dydz = 0, i.e.,
∫ 2π

0
θm(z, t)dz = 0, for all t ≥ 0. (4.5)

Thus, the unknown functions in the Galerkin system can be expressed as finite sums
of Fourier modes:

θ ′
m =

∑

k=(k1,k2,k3)∈Z3

k21+k22 �=0
|k|≤m

θ̂ ′
m(k, t)ek, θm =

∑

k=(k1,k2,k3)∈Z3

0<|k|≤m

θ̂m(k, t)ek, (4.6)

um =
∑

k=(k1,k2,k3)∈Z3

k21+k22 �=0
|k|≤m

ûm(k, t)ek, wm =
∑

k=(k1,k2,k3)∈Z3

k21+k22 �=0
|k|≤m

ŵm(k, t)ek. (4.7)

ψm =
∑

k=(k1,k2,k3)∈Z3

k21+k22 �=0
|k|≤m

ψ̂m(k, t)ek, ωm =
∑

k=(k1,k2,k3)∈Z3

k21+k22 �=0
|k|≤m

ω̂m(k, t)ek. (4.8)
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Since Eqs. (4.1) and (4.2) are linear, they can be solved explicitly if θ ′
m is given.

Indeed, since ωm = �hψm , we have

ik3ψ̂m(k) = Ra θ̂ ′
m(k) −

(
k21 + k22

L2

)

ŵm(k)

− ik3ŵm(k) =
(
k21 + k22

L2

)2

ψ̂m(k).

The above linear system can be written as
⎛

⎝
ik3

k21+k22
L2

−
(
k21+k22
L2

)2 −ik3

⎞

⎠
(

ψ̂m(k)

ŵm(k)

)

= Ra

(
θ̂ ′
m(k)

0

)

. (4.9)

For the 2×2 matrix in (4.9), its determinant k23 +
(
k21+k22
L2

)3
> 0 because k21 + k22 �= 0.

Thus we can take the inverse of this matrix. It follows that

(
ψ̂m(k)

ŵm(k)

)

= Ra

⎛

⎝
ik3

k21+k22
L2

−
(
k21+k22
L2

)2 −ik3

⎞

⎠

−1 (
θ̂ ′
m(k)

0

)

= Ra

k23 +
(
k21+k22
L2

)3

⎛

⎝
−ik3 − k21+k22

L2(
k21+k22
L2

)2
ik3

⎞

⎠
(

θ̂ ′
m(k)

0

)

= Ra

k23 +
(
k21+k22
L2

)3

( −ik3(
k21+k22
L2

)2

)

θ̂ ′
m(k).

Consequently,

ψ̂m(k, t) = Ra

⎛

⎜
⎝

−ik3

k23 +
(
k21+k22
L2

)3

⎞

⎟
⎠ θ̂ ′

m(k, t), (4.10)

ŵm(k, t) = Ra

⎛

⎜
⎝

(
k21+k22
L2

)2

k23 +
(
k21+k22
L2

)3

⎞

⎟
⎠ θ̂ ′

m(k, t). (4.11)

Furthermore, since um = (um, vm) = (−∂yψm, ∂xψm), we obtain from (4.10) that

ûm(k, t) = Ra

⎛

⎜
⎝

− k2
L k3

k23 +
(
k21+k22
L2

)3

⎞

⎟
⎠ θ̂ ′

m(k, t),

v̂m(k, t) = Ra

⎛

⎜
⎝

k1
L k3

k23 +
(
k21+k22
L2

)3

⎞

⎟
⎠ θ̂ ′

m(k, t). (4.12)
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Due to (4.4), we have ∂θm
∂z = θ ′

mwm + c(t), for some constant c(t) depending

only on t . Then, since θm is periodic on [0, 2π ], we obtain 0 = θm(2π) − θm(0) =∫ 2π
0 θ ′

mwmdz + c(t)2π , which implies that c(t) = − 1
2π

∫ 2π
0 θ ′

mwmdz. Therefore,

∂θm

∂z
= θ ′

mwm − 1

2π

∫ 2π

0
θ ′
mwmdz. (4.13)

By substituting (4.11) and (4.12) and (4.13) into Eq. (4.3), we obtain a system of
first order nonlinear ordinary differential equations with unknowns {θ̂ ′

m(k, t) : k ∈
Z
3, k21 + k22 �= 0, |k| ≤ m}. By the classical theory of ordinary differential equations,

for each m ∈ N, there exists a solution {θ̂ ′
m(k, t) : |k| ≤ m} defined on [0, Tmax

m )

for the system of ODEs. Then, thanks to (4.10)–(4.12), we obtain ψ̂m(k, t), ûm(k, t),
v̂m(k, t) and ŵm(k, t), for |k| ≤ m. Next, we substitute θ ′

m and wm into (4.13) to get
∂θm
∂z , and along with the assumption

∫ 2π
0 θm(z, t)dz = 0 from (4.5), we obtain θm .

Finally, θm = θ ′
m + θm which satisfies

∫
�

θmdx dydz = 0.
Assume the ODE system has finite time of existence, i.e., Tmax

m < ∞. By estimate
(4.16) below, we know that ‖θ ′

m(t)‖22 ≤ ‖θ ′
m(0)‖22 ≤ ‖θ ′

0‖22 for all t ∈ [0, Tmax
m ).

Therefore, θ ′
m(t) can be extended beyond the finite time Tmax

m , which is a contradiction.
It follows that Tmax

m = ∞. As a result, for every m ∈ N, the Galerkin system (4.1)–
(4.4) has a global solution on [0,∞).

4.1.2. Energy estimate

Taking the inner product of (4.3) with θ ′
m and using (3.5), one has

1

2

d

dt
‖θ ′

m‖22 + ‖∇hθ
′
m‖22 +

∫

�

[Pm(wm
∂θm

∂z
)]θ ′

mdx dydz = 0, for all t ≥ 0. (4.14)

Recall that the horizontal mean of a function f is defined as f (z) = 1
4π2L2

∫
[0,2πL]2 f (x, y, z)dxdy. Using ∂(θ ′

mwm )

∂z = ∂2θm
∂z2

from Eq. (4.4), we find that

∫

�

[Pm(wm
∂θm

∂z
)]θ ′

mdx dydz =
∫

�

wm
∂θm

∂z
θ ′
mdx dydz = 4π2L2

∫ 2π

0
(wmθ ′

m)
∂θm

∂z
dz

= −4π2L2
∫ 2π

0

∂(wmθ ′
m)

∂z
θmdz = −4π2L2

∫ 2π

0

(
∂2θm

∂z2

)

θmdz

= 4π2L2
∫ 2π

0

∣
∣
∣
∣
∣
∂θm

∂z

∣
∣
∣
∣
∣

2

dz,

for all t ≥ 0. Therefore,

1

2

d

dt
‖θ ′

m‖22 + ‖∇hθ
′
m‖22 + 4π2L2

∫ 2π

0

∣
∣
∣
∣
∣
∂θm

∂z

∣
∣
∣
∣
∣

2

dz = 0, for all t ≥ 0. (4.15)
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Integrating over [0, t] yields

1

2
‖θ ′

m(t)‖22 +
∫ t

0
‖∇hθ

′
m(s)‖22ds + 4π2L2

∫ t

0

∫ 2π

0

∣
∣
∣
∣
∣
∂θm(z, s)

∂z

∣
∣
∣
∣
∣

2

dzds

= 1

2
‖θ ′

m(0)‖22 ≤ 1

2
‖θ ′

0‖22, for all t ≥ 0. (4.16)

Next, we estimate um and wm . By (4.12), we calculate

‖�hum‖22 = Ra2
∑

k∈Z3

k21+k22 �=0

∣
∣
∣
∣
k21+k22
L2

∣
∣
∣
∣

3

k23
∣
∣
∣
∣k

2
3 +

(
k21+k22
L2

)3
∣
∣
∣
∣

2 |θ̂ ′
m(k)|2 ≤ Ra2‖θ ′

m‖22. (4.17)

Furthermore,

‖∂zum‖22 = Ra2
∑

k∈Z3

k21+k22 �=0

∣
∣
∣
∣
∣
k21 + k22

L2

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣

k23

k23 +
(
k21+k22
L2

)3

∣
∣
∣
∣
∣
∣
∣

2

|θ̂ ′
m(k)|2 ≤ Ra2‖∇hθ

′
m‖22.

(4.18)

In addition, by using Young’s inequality, one has

‖∂
2
3
z um‖22 = Ra2

∑

k∈Z3

k21+k22 �=0

∣
∣
∣
∣
∣
∣
∣

(
k21+k22
L2

)1/2
k5/33

k23 +
(
k21+k22
L2

)3

∣
∣
∣
∣
∣
∣
∣

2

|θ̂ ′
m(k)|2 ≤ Ra2‖θ ′

m‖22. (4.19)

By (4.11), we see that

‖�hwm‖22 = Ra2
∑

k∈Z3

k21+k22 �=0

∣
∣
∣
∣
∣
∣
∣

(
k21+k22
L2

)3

k23 +
(
k21+k22
L2

)3

∣
∣
∣
∣
∣
∣
∣

2

|θ̂ ′
m(k)|2 ≤ Ra2‖θ ′

m‖22. (4.20)

Also, using (4.11), one has

‖∂zwm‖22 = Ra2
∑

k∈Z3

k21+k22 �=0

∣
∣
∣
∣
∣
∣
∣

(
k21+k22
L2

)2
k3

k23 +
(
k21+k22
L2

)3

∣
∣
∣
∣
∣
∣
∣

2

|θ̂ ′
m(k)|2

= Ra2
∑

k∈Z3

k21+k22 �=0

∣
∣
∣
∣
∣
∣
∣
∣

(
k21+k22
L2

) 3
2
k3

k23 +
(
k21+k22
L2

)3

∣
∣
∣
∣
∣
∣
∣
∣

2
∣
∣
∣
∣
∣
k21 + k22

L2

∣
∣
∣
∣
∣
|θ̂ ′
m(k)|2
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≤ Ra2
∑

k∈Z3

k21+k22 �=0

∣
∣
∣
∣
∣
k21 + k22

L2

∣
∣
∣
∣
∣
|θ̂ ′
m(k)|2 = Ra2‖∇hθ

′
m‖22. (4.21)

Moreover, applying Young’s inequality, we obtain

‖∂
2
3
z wm‖22 = Ra2

∑

k∈Z3

k21+k22 �=0

∣
∣
∣
∣
∣
∣
∣

|k3|2/3
(
k21+k22
L2

)2

k23 + (
k21+k22
L2 )3

∣
∣
∣
∣
∣
∣
∣

2

|θ̂ ′
m(k)|2 ≤ Ra2‖θ ′

m‖22. (4.22)

Let us fix an arbitrary time T > 0.
Owing to estimates (4.16)–(4.18), (4.20) and (4.21) and using (4.10)–(4.12), we

conclude

θ ′
m is uniformly bounded in L∞(0, T ; L2(�)) ∩ L2(0, T ; H1

h (�)); (4.23)

∂zθm is uniformly bounded in L2((0, 2π) × (0, T )); (4.24)

um, wm are uniformly bounded in L2(0, T ; H1(�)); (4.25)

�hωm is uniformly bounded in L2(� × (0, T )); (4.26)

�hum, �hwm, ∂zψm are uniformly bounded in

L∞(0, T ; L2(�)) ∩ L2(0, T ; H1
h (�)). (4.27)

Therefore, on a subsequence,we have the followingweak convergences asm → ∞:

θ ′
m → θ ′, �hum → �hu, �hwm → �hw, ∂zψm → ψz

weakly∗ in L∞(0, T ; L2(�)); (4.28)

θ ′
m → θ ′, �hum→�hu, �hwm→�hw, ∂zψm→ψz weakly in L2(0, T ; H1

h (�));
(4.29)

um → u, wm → w weakly in L2(0, T ; H1(�)); (4.30)

�hωm → �hω weakly in L2(� × (0, T )); (4.31)

∂zθm → θ z weakly in L2((0, 2π) × (0, T )). (4.32)

Using these weak convergences and inequality (4.16), we obtain the energy inequal-
ity:

1

2
‖θ ′(t)‖22 +

∫ t

0
‖∇hθ

′(s)‖22ds + 4π2L2
∫ t

0

∫ 2π

0

∣
∣
∣
∣
∣
∂θ(z, s)

∂z

∣
∣
∣
∣
∣

2

dzds ≤ 1

2
‖θ ′

0‖22,
(4.33)

for all t ∈ [0, T ].



Vol. 21 (2021) Global well-posedness for a rapidly rotating convection model 2937

Also, using theseweak convergences,we can pass to the limit for the linear equations
(4.1) and (4.2) in the Galerkin approximation system to obtain

∂ψ

∂z
= Ra θ ′ + �hw, in L2(0, T ; H1

h (�)) ∩ L∞(0, T ; L2(�)), (4.34)

− ∂w

∂z
= �hω, in L2(� × (0, T )). (4.35)

Then, we can use the same calculations as (4.17)–(4.22), to derive that

‖�hu‖22 + ‖�hw‖22 ≤ 2Ra2‖θ ′‖22 and ‖uz‖22 + ‖wz‖22 ≤ 2Ra2‖∇hθ
′‖22, (4.36)

‖∂
2
3
z u‖22 + ‖∂

2
3
z w‖22 ≤ 2Ra2‖θ ′‖22, (4.37)

for all t ∈ [0, T ].
4.1.3. Passage to the limit

In order to pass to the limit for the nonlinear equation (4.3) in the Galerkin approxi-
mation system, we shall derive certain strong convergence, besides the already known
weak convergences (4.28) and (4.32). To this purpose, one has to find a uniform bound
for the time derivative ∂tθ

′
m , in a certain function space. From Eq. (4.3), we know

∂θ ′
m

∂t
= −Pm(um · ∇hθ

′
m) − Pm(wm

∂θm

∂z
) + �hθ

′
m . (4.38)

We aim to find a uniform bound for each term on the right-hand side of (4.38).
For any ϕ ∈ L2(0, T ; H1

h (�)), applying identity (3.4) and Lemma 3.1, we estimate

∫ T

0

∫

�

[Pm(um · ∇hθ
′
m)]ϕdx dydzdt = −

∫ T

0

∫

�

(um · ∇h Pmϕ)θ ′
mdx dydzdt

≤ C
∫ T

0
‖∇hum‖1/2 (‖um‖2 + ‖∂zum‖2)1/2 ‖θ ′

m‖1/22 ‖∇hθ
′
m‖1/22 ‖∇h Pmϕ‖2dt

≤ C
∫ T

0
‖θ ′

m‖2‖∇hθ
′
m‖2‖∇hϕ‖2dt

≤ C‖θ ′
0‖2

(∫ T

0
‖∇hθ

′
m(t)‖22dt

)1/2 (∫ T

0
‖∇hϕ(t)‖22dt

)1/2

≤ C‖θ ′
0‖22‖ϕ‖L2(0,T ;H1

h (�)), (4.39)

where we have used estimates (4.16), (4.17) and (4.18).
Hence

‖Pm(um · ∇hθ
′
m)‖L2(0,T ;(H1

h (�))′) ≤ C‖θ ′
0‖22. (4.40)

Furthermore, for any function φ ∈ L2(� × (0, T )),
∫ T

0

∫

�

[Pm(wm
∂θm

∂z
)]φdx dydzdt=

∫ T

0

∫ 2π

0

( ∫

[0,2πL]2
wm(Pmφ)dx dy

)∂θm

∂z
dzdt
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≤
∫ T

0

∫ 2π

0

( ∫

[0,2πL]2
|wm |2dx dy

)1/2( ∫

[0,2πL]2
|Pmφ|2dx dy

)1/2∣∣
∣
∂θm

∂z

∣
∣
∣dzdt

≤ C
∫ T

0

[
sup

z∈[0,2π ]

( ∫

[0,2πL]2
|wm |2dx dy

)1/2]‖Pmφ‖2
( ∫ 2π

0
|∂zθm |2dz

)1/2
dt

≤ C
∫ T

0
(‖wm‖2 + ‖∂

2
3
z wm‖2)‖φ‖2

(∫ 2π

0
|∂zθm |2dz

)1/2

dt

≤ C
∫ T

0
‖θ ′

m‖2‖φ‖2
(∫ 2π

0
|∂zθm |2dz

)1/2

dt

≤ C‖θ ′
0‖2

(∫ T

0
‖φ‖22dt

)1/2 (∫ T

0

∫ 2π

0
|∂zθm |2dzdt

)1/2

≤ C‖θ ′
0‖22‖φ‖L2(�×(0,T )), (4.41)

where we have used Lemma 3.3 and estimates (4.16), (4.20) and (4.22).
Thus,

∥
∥
∥
∥
∥
Pm

(

wm
∂θm

∂z

)∥
∥
∥
∥
∥
L2(�×(0,T ))

≤ C‖θ0‖22. (4.42)

Also, it is easy to verify that ‖�hθ
′
m‖L2(0,T ;(H1

h (�))′) ≤ ‖θ ′
0‖2. Therefore, owing to

(4.38), (4.40) and (4.42), we obtain

‖∂tθ ′
m‖L2(0,T ;(H1

h (�))′) ≤ C‖θ ′
0‖22 + ‖θ ′

0‖2. (4.43)

By the uniform bound (4.43), it follows that there exists a subsequence satisfying

∂tθ
′
m → ∂tθ

′ weakly in L2(0, T ; (H1
h (�))′). (4.44)

Using (4.11), one has

‖∂twm‖22 =
∑

k=(k1,k2,k3)∈Z3

k21+k22 �=0
|k|≤m

|∂t ŵm(k, t)|2

= Ra2
∑

k=(k1,k2,k3)∈Z3

k21+k22 �=0
|k|≤m

∣
∣
∣
∣
∣
∣
∣

(
k21+k22
L2

)2

k23 +
(
k21+k22
L2

)3

∣
∣
∣
∣
∣
∣
∣

2

|∂t θ̂ ′
m(k, t)|2

≤ Ra2
∑

k=(k1,k2,k3)∈Z3

k21+k22 �=0
|k|≤m

∣
∣
∣
∣
∣

L2

k21 + k22

∣
∣
∣
∣
∣

2

|∂t θ̂ ′
m(k, t)|2
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≤ Ra2L2
∑

k=(k1,k2,k3)∈Z3

k21+k22 �=0
|k|≤m

L2

k21 + k22
|∂t θ̂ ′

m(k, t)|2

≤ C‖∂tθ ′
m‖2

(H1
h (�))′ . (4.45)

Due to (4.43) and (4.45), we obtain

∂twm is uniformly bounded in L2(� × (0, T )). (4.46)

In a similar manner, one can show

∂tum is uniformly bounded in L2(� × (0, T )). (4.47)

By virtue of (4.25), (4.46) and (4.47) and using Aubin Compactness Theorem (see,
e.g., [16]), one can extract a subsequence such that

um → u, wm → w strongly in L2(� × (0, T )). (4.48)

Nowwe can pass to the limit for the nonlinear terms of equation (4.3) in theGalerkin
system. Indeed, let η = ∑

|k|≤N η̂(k, t)ek be a trigonometric polynomial with contin-

uous coefficients, where ek = 1
(2π)3L2 exp[i

(
k1x+k2 y

L + k3z
)
], k = (k1, k2, k3) ∈ Z

3.

Then,

lim
m→∞

∫ T

0

∫

�

(Pm(um · ∇hθ
′
m))ηdx dydzdt = lim

m→∞

∫ T

0

∫

�

(um · ∇hθ
′
m)ηdx dydzdt

= lim
m→∞

∫ T

0

∫

�

((um − u) · ∇hθ
′
m)ηdx dydzdt

+ lim
m→∞

∫ T

0

∫

�

(u · ∇hθ
′
m)ηdx dydzdt

=
∫ T

0

∫

�

(u · ∇hθ
′)ηdxdydzdt, (4.49)

by virtue of the fact that um → u in L2(� × (0, T )), and the fact that ∇hθ
′
m is

uniformly bounded in L2(� × (0, T )), as well as the fact that ∇hθ
′
m → ∇hθ

′ weakly
in L2(� × (0, T )).
For the other nonlinear term in (4.3), we have

lim
m→∞

∫ T

0

∫

�

Pm
(
wm

∂θm

∂z

)
ηdx dydzdt = lim

m→∞

∫ T

0

∫

�

(
wm

∂θm

∂z

)
ηdx dydzdt

= lim
m→∞

∫ T

0

∫

�

(wm − w)
∂θm

∂z
ηdx dydzdt + lim

m→∞

∫ T

0

∫

�

w
∂θm

∂z
ηdx dydzdt

=
∫ T

0

∫

�

w
∂θ

∂z
ηdx dydzdt, (4.50)
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due to the fact that wm → w strongly in L2(� × (0, T )), and the fact that ∂θm
∂z

is uniformly bounded in L2((0, 2π) × (0, T )), along with the fact that ∂θm
∂z → ∂θ

∂z
weakly in L2((0, 2π) × (0, T )).

Therefore, we have
∫ T

0

∫

�

(
∂θ ′

∂t
+ u · ∇hθ

′ + w
∂θ

∂z
− �hθ

′
)

ηdx dydzdt = 0, (4.51)

for any trigonometric polynomial η with continuous coefficients.
Using similar estimates as (4.39) and (4.41), we can derive u · ∇hθ

′ ∈ L2(0, T ;
(H1

h (�))′) and w ∂θ
∂z ∈ L2(� × (0, T )), thus ∂θ ′

∂t + u · ∇hθ
′ + w ∂θ

∂z − �hθ
′ ∈

L2(0, T ; (H1
h (�))′). Then, we conclude from (4.51) that

∂θ ′

∂t
+ u · ∇hθ

′ + w
∂θ

∂z
− �hθ

′ = 0, in L2(0, T ; (H1
h (�))′). (4.52)

Next, we aim to pass to the limit for the nonlinear term ∂(θ ′
mwm )

∂z in equation (4.4).

To this end, we shall first show ∂(θ ′w)
∂z ∈ L2(0, T ; H−1(0, 2π)). Indeed, for any

ϕ ∈ L2(0, T ; Ḣ1(0, 2π)), we use Lemma 3.3 as well as estimates (4.33) and (4.36),
to derive

∫ T

0

∫ 2π

0
(θ ′w)ϕzdzdt = 1

4π2L2

∫ T

0

∫ 2π

0

( ∫

[0,2πL]2
θ ′wdx dy

)
ϕzdzdt

≤ C
∫ T

0

∫ 2π

0

( ∫

[0,2πL]2
|θ ′|2dx dy

)1/2( ∫

[0,2πL]2
|w|2dx dy

)1/2|ϕz |dzdt

≤ C
∫ T

0
sup

z∈[0,2π ]

( ∫

[0,2πL]2
|w|2dx dy

)1/2‖θ ′‖2
( ∫ 2π

0
|ϕz |2dz

)1/2
dt

≤ C‖θ ′
0‖2

∫ T

0
(‖w‖2 + ‖wz‖2)

( ∫ 2π

0
|ϕz |2dz

)1/2
dt

≤ C‖θ ′
0‖2

∫ T

0
‖∇hθ

′‖2
( ∫ 2π

0
|ϕz |2dz

)1/2
dt

≤ C‖θ ′
0‖2

( ∫ T

0
‖∇hθ

′‖22dt
)1/2( ∫ T

0

∫ 2π

0
|ϕz |2dzdt

)1/2

≤ C‖θ ′
0‖22‖ϕ‖L2(0,T ;Ḣ1(0,2π)).

It follows that ∂(θ ′w)
∂z ∈ L2(0, T ; H−1(0, 2π)) and ‖ ∂(θ ′w)

∂z ‖L2(0,T ;H−1(0,2π)) ≤
C‖θ ′

0‖22.
Now we take a test function ξ = ∑

0<| j |≤N ξ̂ ( j, t)ei j z where Fourier coefficients

ξ̂ (t, j) are continuous in t . By using the fact thatwm → w strongly in L2(�× (0, T ))

and that θ ′
m → θ ′ weakly in L2(� × (0, T )), we derive

lim
m→∞

∫ T

0

∫ 2π

0

∂(θ ′
mwm)

∂z
ξdzdt = − lim

m→∞

∫ T

0

∫ 2π

0
(θ ′

mwm)ξzdzdt
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= − lim
m→∞

1

4π2L2

∫ T

0

∫

�

θ ′
m(wm − w)ξzdx dydzdt

− lim
m→∞

1

4π2L2

∫ T

0

∫

�

θ ′
mwξzdx dydzdt

= − 1

4π2L2

∫ T

0

∫

�

θ ′wξzdx dydzdt = −
∫ T

0

∫ 2π

0
(θ ′w)ξzdzdt

=
∫ T

0

〈
∂(θ ′w)

∂z
, ξ

〉

H−1(0,2π)×Ḣ1(0,2π)

dt. (4.53)

Also, since ∂zθm → θ z weakly in L2((0, 2π) × (0, T )), we obtain

lim
m→∞

∫ T

0

∫ 2π

0

∂2θm

∂z2
ξdzdt = − lim

m→∞

∫ T

0

∫ 2π

0

∂θm

∂z
ξzdzdt

= −
∫ T

0

∫ 2π

0

∂θ

∂z
ξzdzdt =

∫ T

0

〈
∂2θ

∂z2
, ξ

〉

H−1(0,2π)×Ḣ1(0,2π)

dt. (4.54)

Because ∂(θ ′
mwm )

∂z = ∂2θm
∂z2

and due to (4.53) and (4.54), we obtain

∫ T

0

〈
∂(θ ′w)

∂z
− ∂2θ

∂z2
, ξ

〉

H−1(0,2π)×Ḣ1(0,2π)

dt = 0. (4.55)

Then, since ∂(θ ′w)
∂z and ∂2θ

∂z2
both belong to L2(0, T ; H−1(0, 2π)), we conclude that

∂(θ ′w)

∂z
= ∂2θ

∂z2
, in L2(0, T ; H−1(0, 2π)) (4.56)

In sum, because of (4.34) and (4.35), (4.52) and (4.56), we have obtained a weak
solution for system (1.12)–(1.16) on [0, T ], in the sense of Definition 2.1. Then, thanks
to the energy inequality (4.33), the solution can be extended to a global weak solution
on [0,∞). This completes the proof for the global existence of weak solutions for
system (1.12)–(1.16).

4.1.4. Energy identity

Let T > 0. Since

∂θ ′

∂t
∈ L2(0, T ; (H1

h (�))′) and θ ′ ∈ L2(0, T ; H1
h (�)),

then according to Lemma 2.1 on page 176 of Temam’s book [16], we obtain θ ′ ∈
C([0, T ]; L2(�)) and

d

dt
‖θ ′‖22 = 2

〈
∂θ ′

∂t
, θ ′

〉

(H1
h (�))′×H1

h (�)

. (4.57)
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Therefore, we can take scalar product of (4.52) with θ ′ to obtain

1

2

d

dt
‖θ ′(t)‖22 + ‖∇hθ

′(t)‖22 + 4π2L2
∫ 2π

0
|∂zθ(z, t)|2dz = 0, for all t ∈ [0, T ].

(4.58)

Integrating (4.58) over [0, t] yields the energy identity (2.7).

4.1.5. Decay of the solution

Since θ ′ = 0, then thePoincaré inequality (3.3) shows that 1
L2 ‖θ ′(t)‖22 ≤ ‖∇hθ

′(t)‖22.
Therefore, it follows from (4.58) that

1

2

d

dt
‖θ ′(t)‖22 + 1

L2 ‖θ ′(t)‖22 ≤ 0, for all t ≥ 0.

Consequently,

‖θ ′(t)‖22 ≤ e− 2
L2

t‖θ ′
0‖22, for all t ≥ 0. (4.59)

Then, due to (4.36) and (4.59), we obtain

‖�hu(t)‖22 + ‖�hw(t)‖22 ≤ Ce− 2
L2

t‖θ ′
0‖22, for all t ≥ 0. (4.60)

Due to the Poincaré inequality (3.3), we have also ‖u(t)‖22+‖w(t)‖22 ≤ Ce− 2
L2

t‖θ ′
0‖22.

Next, taking the scalar product ofEq. (4.56) and θ in the duality betweenH−1(0, 2π)

and Ḣ1(0, 2π) yields

∫ 2π

0
|θ z |2dz =

∫ 2π

0
(θ ′w)θ zdz ≤ 1

2

∫ 2π

0
|θ z |2dz + 1

2

∫ 2π

0

∣
∣
∣θ ′w

∣
∣
∣
2
dz, (4.61)

where we use the Cauchy–Schwarz inequality and the Young’s inequality.
By (4.61), we have

∫ 2π

0
|θ z |2dz ≤

∫ 2π

0

∣
∣
∣θ ′w

∣
∣
∣
2
dz ≤ C

∫ 2π

0

( ∫

[0,2πL]2
|θ ′|2dx dy

)

×
( ∫

[0,2πL]2
|w|2dx dy

)
dz

≤ C sup
z∈[0,2π ]

( ∫

[0,2πL]2
|w|2dxdy

)
‖θ ′‖22 ≤ C(‖w‖22 + ‖∂

2
3
z w‖22)‖θ ′‖22

≤ C‖θ ′‖42 ≤ Ce− 4
L2

t‖θ ′
0‖42,

where we have used Lemma 3.3 and (4.37) as well as the decay estimate (4.59). Since∫ 2π
0 θdz = 0, then we can use the Poincaré inequality to conclude

∫ 2π

0
|θ |2dz ≤ C

∫ 2π

0
|θ z |2dz ≤ Ce− 4

L2
t‖θ ′

0‖42.
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4.2. Uniqueness of weak solutions and continuous dependence on initial data

This section is devoted to proving the uniqueness of weak solutions. Assume there
are two weak solutions (θ ′

1, θ1,u1, w1) and (θ ′
2, θ2,u2, w2) on [0, T ], in the sense of

Definition 2.1. Set θ ′ = θ ′
1−θ ′

2, θ = θ1−θ2, θ = θ1−θ2, u = u1−u2,w = w1−w2,
ψ = ψ1 − ψ2 and ω = ω1 − ω2. Therefore,

∂ψ

∂z
= Ra θ ′ + �hw, in L2(0, T ; H1

h (�)) ∩ C([0, T ]; L2(�)), (4.62)

− ∂w

∂z
= �hω, in L2(� × (0, T )), (4.63)

∂θ ′

∂t
+ u · ∇hθ

′
1 + u2 · ∇hθ

′ + w
∂θ1

∂z
+ w2

∂θ

∂z
= �hθ

′, in L2(0, T ; (H1
h (�))′),

(4.64)

∂(θ ′w2)

∂z
+ ∂(θ ′

1w)

∂z
= ∂2θ

∂z2
, in L2(0, T ; H−1(0, 2π)), (4.65)

and ω = ∇h × u, ψ = �−1
h ω.

Due to the linear equations (4.62) and (4.63) and using the same calculations as
(4.17)–(4.22), we have

‖�hu‖22 + ‖�hw‖22 ≤ 2Ra2‖θ ′‖22 and ‖uz‖22 + ‖wz‖22 ≤ 2Ra2‖∇hθ
′‖22, (4.66)

‖∂
2
3
z u‖22 + ‖∂

2
3
z w‖22 ≤ 2Ra2‖θ ′‖22. (4.67)

Thanks to (4.57), we can take the scalar product of Eq. (4.64) and θ ′ in the duality
between (H1

h (�))′ and H1
h (�) to obtain

1

2

d

dt
‖θ ′(t)‖22 + ‖∇hθ

′(t)‖22

= −
∫

�

(u · ∇hθ
′
1)θ

′dxdydz −
∫

�

w
∂θ1

∂z
θ ′dx dydz −

∫

�

w2
∂θ

∂z
θ ′dx dydz,

(4.68)

where we have used the fact that
∫
�

(
u2 · ∇hθ

′) θ ′dx dydz = 0 since ∇h · u2 = 0.
Next, we estimate each term on the right-hand side of (4.68). By employing identity

(3.4) and Lemma 3.1 as well as estimate (4.66), we deduce

−
∫

�

(u · ∇hθ
′
1)θ

′dx dydz =
∫

�

(u · ∇hθ
′)θ ′

1dx dydz

≤ C‖∇hu‖1/22 (‖u‖2 + ‖uz‖2)1/2 ‖∇hθ
′‖2‖θ ′

1‖1/22 ‖∇hθ
′
1‖1/22

≤ C‖θ ′‖1/22 ‖∇hθ
′‖3/22 ‖θ ′

1‖1/22 ‖∇hθ
′
1‖1/22

≤ 1

2
‖∇hθ

′‖22 + C‖θ ′‖22‖θ ′
1‖22‖∇hθ

′
1‖22, (4.69)
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where we use Hölder’s inequality.

To treat the second integral on the right-hand of (4.68), we apply the Cauchy–
Schwarz inequality to deduce

∫

�

∣
∣w

∂θ1

∂z
θ ′∣∣dx dydz =

∫ 2π

0

( ∫

[0,2πL]2
|wθ ′|dx dy

)
|∂zθ1|dz

≤
∫ 2π

0

( ∫

[0,2πL]2
|w(x, y, z)|2dxdy

)1/2( ∫

[0,2πL]2

× |θ ′(x, y, z)|2dxdy
)1/2|∂zθ1(z)|dz

≤
[

sup
z∈[0,2π ]

( ∫

[0,2πL]2
|w(x, y, z)|2dx dy

)1/2]‖θ ′‖2
( ∫ 2π

0
|∂zθ1(z)|2dz

)1/2

≤ C(‖w‖2 + ‖∂
2
3
z w‖2)‖θ ′‖2

( ∫ 2π

0
|∂zθ1|2dz

)1/2

≤ C‖θ ′‖22
( ∫ 2π

0
|∂zθ1|2dz

)1/2
, (4.70)

where we have used Lemma 3.3 and estimates (4.66) and (4.67).

Next, we deal with the third integral on the right-hand side of (4.68). Indeed, from

(4.65), we have ∂(θ ′w2)
∂z = ∂2θ

∂z2
− ∂(θ ′

1w)

∂z in L2(0, T ; H−1(0, 2π)), and thus

− 1

4π2L2

∫

�

w2
∂θ

∂z
θ ′dx dydz = −

∫ 2π

0
(w2θ ′)∂θ

∂z
dz

=
〈

∂(w2θ ′)
∂z

, θ

〉

H−1(0,2π)×Ḣ1(0,2π)

=
〈

∂2θ

∂z2
− ∂(θ ′

1w)

∂z
, θ

〉

H−1(0,2π)×Ḣ1(0,2π)

= −
∫ 2π

0

∣
∣θ z

∣
∣2 dz +

∫ 2π

0
(θ ′

1w)θ zdz

≤ −
∫ 2π

0

∣
∣θ z

∣
∣2 dz + 1

2

∫ 2π

0

∣
∣
∣θ ′

1w

∣
∣
∣
2
dz + 1

2

∫ 2π

0

∣
∣θ z

∣
∣2 dz

≤ −1

2

∫ 2π

0
|θ z |2dz + 1

2

∫ 2π

0

∣
∣
∣θ ′

1w

∣
∣
∣
2
dz. (4.71)

Using the Cauchy–Schwarz inequality and Lemma 3.3 as well as estimate (4.67),
we have

∫ 2π

0

∣
∣
∣θ ′

1w

∣
∣
∣
2
dz ≤ C

∫ 2π

0

( ∫

[0,2πL]2
|θ ′
1|2dxdy

)( ∫

[0,2πL]2
|w|2dx dy

)
dz

≤ C
[

sup
z∈[0,2π ]

( ∫

[0,2πL]2
|w|2dx dy

)]
‖θ ′

1‖22 ≤ C
(
‖w‖22 + ‖∂

2
3
z w‖22

)
‖θ ′

1‖22
≤ C‖θ ′‖22‖θ ′

1‖22. (4.72)
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Then, combining (4.71) and (4.72) gives

−
∫

�

w2
∂θ

∂z
θ ′dx dydz ≤ −2π2L2

∫ 2π

0

∣
∣θ z

∣
∣2 dz + C‖θ ′‖22‖θ ′

1‖22. (4.73)

Using (4.69), (4.70) and (4.73), we infer from (4.68) that

d

dt
‖θ ′‖22 + ‖∇hθ

′‖22 + 4π2L2
∫ 2π

0
|θ z |2dz

≤ C‖θ ′‖22
(
‖θ ′

1‖22‖∇hθ
′
1‖22 +

∫ 2π

0
|∂zθ1|2dz + ‖θ ′

1‖22 + 1
)
, (4.74)

for all t ∈ [0, T ].
By virtue of the energy identity (2.7), we know that

1

2
‖θ ′

1(t)‖22 +
∫ t

0
‖∇hθ

′
1(s)‖22ds + 4π2L2

∫ t

0

∫ 2π

0
|∂zθ1(z, s)|2dzds = 1

2
‖θ ′

1(0)‖22,
(4.75)

for all t ∈ [0, T ]. Thanks to Grönwall’s inequality and estimate (4.75), we derive from
(4.74) that

‖θ ′(t)‖22 ≤ ‖θ ′(0)‖22
× exp

[
C
∫ t

0

(
‖θ ′

1(s)‖22‖∇hθ
′
1(s)‖22+

∫ 2π

0
|∂zθ1(z, s)|2dz+‖θ ′

1(s)‖22+1
)
ds
]

≤ ‖θ ′(0)‖22 exp
[
C(‖θ ′

1(0)‖42 + ‖θ ′
1(0)‖22 + t)

]
, (4.76)

for all t ∈ [0, T ]. As a result, if θ ′
1(0) = θ ′

2(0), i.e., θ ′(0) = θ ′
1(0) − θ ′

2(0) = 0,
then (4.76) implies that ‖θ ′(t)‖22 = 0 for all t ∈ [0, T ], namely θ ′

1(t) = θ ′
2(t) for all

t ∈ [0, T ].
In addition, taking advantage of estimate (4.66) and the Poincaré inequality (3.3), we

know that ‖u(t)‖22 + ‖w(t)‖22 ≤ C‖θ ′(t)‖22 = 0 for all t ∈ [0, T ], thus u1(t) = u2(t)
and w1(t) = w2(t) for all t ∈ [0, T ].
Furthermore, we take the scalar product of Eq. (4.65) and−θ in the duality between

H−1(0, 2π) and Ḣ1(0, 2π), then
∫ 2π

0
|θ z |2dz =

∫ 2π

0

[
(θ ′w2) + (θ ′

1w)
]
θ zdz = 0, for all t ∈ [0, T ],

since θ ′(t) = w(t) = 0 for all t ∈ [0, T ]. Thus, θ z(t) = 0 for all t ∈ [0, T ]. That is,
∂zθ1(t) = ∂zθ2(t), for all t ∈ [0, T ]. (4.77)

From (4.77), we know that θ1(z, t) = θ2(z, t) + C(t) for all z ∈ [0, 2π ], and for all
t ∈ [0, T ]. Then, since θ1 and θ2 both have average zero over [0, 2π ], i.e., ∫ 2π

0 θ1dz =
∫ 2π
0 θ2dz = 0, it follows that C(t) = 0 for all t ∈ [0, T ]. Consequently, θ1(z, t) =

θ2(z, t) for all z ∈ [0, 2π ], and for all t ∈ [0, T ].
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Since both θ ′
1 = θ ′

2 and θ1 = θ2 are valid, then θ1 = θ ′
1 + θ1 = θ ′

2 + θ2 = θ2 for all
t ∈ [0, T ].
This completes the proof for the uniqueness of weak solutions.
Furthermore, by using (4.76), it is easy to obtain the continuous dependence on

initial data stated in Theorem 2.2.

5. Strong solutions

In this section, we prove the global well-posedness of strong solutions for system
(1.12)–(1.16). The uniqueness of strong solutions follows from the uniqueness ofweak
solutions. It remains to show the existence of global strong solutions, when the initial
value θ ′

0 ∈ H1(�).

5.1. Existence of strong solutions

We use the method of Galerkin approximation. Let us consider the Galerkin system
(4.1)–(4.4) and perform energy estimate as follows.

5.1.1. Estimate from linear equations (4.1) and (4.2)

Recall the following estimate from Sect. 4.1.2.

‖�hum‖22 ≤ Ra2‖θ ′
m‖22, ‖�hwm‖22 ≤ Ra2‖θ ′

m‖22; (5.1)

‖∂zum‖22 ≤ Ra2‖∇hθ
′
m‖22, ‖∂zwm‖22 ≤ Ra2‖∇hθ

′
m‖22; (5.2)

‖∂
2
3
z um‖22 ≤ Ra2‖θ ′

m‖22, ‖∂
2
3
z wm‖22 ≤ Ra2‖θ ′

m‖22. (5.3)

Corresponding to (5.2), we can also derive

‖∇h∂zum‖22 ≤ Ra2‖�hθ
′
m‖22, ‖∇h∂zwm‖22 ≤ Ra2‖�hθ

′
m‖22; (5.4)

‖∂zzum‖22 ≤ Ra2‖∇h∂zθ
′
m‖22, ‖∂zzwm‖22 ≤ Ra2‖∇h∂zθ

′
m‖22. (5.5)

5.1.2. Estimate for ‖θ ′
m‖22

This is exactly the same as the energy estimate performed in Sect. 4.1.2. Therefore,
by (4.16), we have

1

2
‖θ ′

m(t)‖22 +
∫ t

0
‖∇hθ

′
m‖22ds + 4π2L2

∫ t

0

∫ 2π

0
|∂zθm |2dzds

= 1

2
‖θ ′

m(0)‖22 ≤ 1

2
‖θ ′

0‖22, (5.6)

for all t ≥ 0.
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5.1.3. Estimate for ‖∇hθ
′
m‖22

Taking the L2 inner product of (4.3) with −�hθ
′
m yields

1

2

d

dt
‖∇hθ

′
m‖22 + ‖�hθ

′
m‖22

=
∫

�

[Pm(um · ∇hθ
′
m)]�hθ

′
mdx dydz +

∫

�

[
Pm

(
wm

∂θm

∂z

)]
�hθ

′
mdx dydz.

(5.7)

Thanks to Lemma 3.1, we have
∫

�

[Pm(um · ∇hθ
′
m)]�hθ

′
mdx dydz =

∫

�

(um · ∇hθ
′
m)�hθ

′
mdx dydz

≤ C‖∇hum‖1/22 (‖um‖2 + ‖∂zum‖2)1/2 ‖∇hθ
′
m‖1/22 ‖�hθ

′
m‖3/22

≤ 1

4
‖�hθ

′
m‖22 + C‖∇hum‖22

(
‖um‖22 + ‖∂zum‖22

)
‖∇hθ

′
m‖22

≤ 1

4
‖�hθ

′
m‖22 + C‖θ ′

m‖22‖∇hθ
′
m‖42, (5.8)

where we have used estimates (5.1) and (5.2).
Next, using the Cauchy–Schwarz inequality, we estimate
∫

�

[
Pm

(
wm

∂θm

∂z

)]
�hθ

′
mdx dydz =

∫ 2π

0

( ∫

[0,2πL]2
wm�hθ

′
mdx dy

)∂θm

∂z
dz

≤
∫ 2π

0

( ∫

[0,2πL]2
|wm |2dxdy

)1/2( ∫

[0,2πL]2
|�hθ

′
m |2dx dy

)1/2∣∣
∣
∂θm

∂z

∣
∣
∣dz

≤
[

sup
z∈[0,2π ]

( ∫

[0,2πL]2
|wm |2dx dy

)1/2]‖�hθ
′
m‖2

( ∫ 2π

0

∣
∣
∣
∂θm

∂z

∣
∣
∣
2
dz
)1/2

,

≤ C
(
‖wm‖2 + ‖∂

2
3
z wm‖2

)
‖�hθ

′
m‖2

( ∫ 2π

0
|∂zθm |2dz

)1/2

≤ 1

4
‖�hθ

′
m‖22 + C

(
‖wm‖22 + ‖∂

2
3
z wm‖22

)( ∫ 2π

0
|∂zθm |2dz

)

≤ 1

4
‖�hθ

′
m‖22 + C‖θ ′

m‖22
( ∫ 2π

0
|∂zθm |2dz

)
, (5.9)

where we have used Lemma 3.3 and estimates (5.1) and (5.3).
By applying estimates (5.8) and (5.9) into (5.7), we infer

d

dt
‖∇hθ

′
m‖22 + ‖�hθ

′
m‖22 ≤ C‖θ ′

m‖22‖∇hθ
′
m‖42 + C‖θ ′

m‖22
( ∫ 2π

0
|∂zθm |2dz

)
. (5.10)

Applying Grönwall’s inequality to (5.10) and using estimate (5.6), we obtain

‖∇hθ
′
m(t)‖22 ≤ eC‖θ ′

0‖22
∫ t
0 ‖∇hθ

′
m‖22ds

(
‖∇hθ

′
0‖22 + C‖θ ′

0‖22
∫ t

0

∫ 2π

0
|∂zθm |2dzds

)
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≤ eC‖θ ′
0‖42(‖∇hθ

′
0‖22 + C‖θ ′

0‖42), for all t ≥ 0. (5.11)

Also, by integrating (5.10) over [0, t], and using (5.6) and (5.11), one has

∫ t

0
‖�hθ

′
m(s)‖22ds ≤ C(‖∇hθ

′
0‖22), for all t ≥ 0, (5.12)

where C(‖∇hθ
′
0‖22) is a constant depending on ‖∇hθ

′
0‖22 but independent of time.

5.1.4. Estimate for ‖∂zθ ′
m‖22

Differentiating (4.3) with respect to z gives

∂t∂zθ
′
m + Pm(∂zum · ∇hθ

′
m) + Pm(um · ∇h∂zθ

′
m)

+ Pm(∂zwm∂zθm) + Pm(wm∂zzθm) = �h∂zθ
′
m . (5.13)

Taking the L2 inner product of (5.13) with ∂zθ
′
m , we obtain

1

2

d

dt
‖∂zθ ′

m‖22 + ‖∇h∂zθ
′
m‖22 = −

∫

�

(
∂zum · ∇hθ

′
m

)
∂zθ

′
mdx dydz

−
∫

�

∂zwm(∂zθm)∂zθ
′
mdx dydz −

∫

�

wm(∂zzθm)∂zθ
′
mdx dydz, (5.14)

where we have used
∫
�

(
um · ∇h∂zθ

′
m

)
∂zθ

′
mdx dydz = 0 since ∇h · um = 0.

We evaluate every integral on the right-hand side of (5.14). First, by using Lemma
3.1 as well as estimate (5.4) and (5.5), we have

∫

�

| (∂zum · ∇hθ
′
m

)
∂zθ

′
m |dx dydz

≤ C‖∇h∂zum‖1/22 ‖∂zzum‖1/22 ‖∇hθ
′
m‖1/22 ‖�hθ

′
m‖1/22 ‖∂zθ ′

m‖2
≤ C‖�hθ

′
m‖2‖∇h∂zθ

′
m‖1/22 ‖∇hθ

′
m‖1/22 ‖∂zθ ′

m‖2
≤ 1

4
‖∇h∂zθ

′
m‖22 + ‖∇hθ

′
m‖22 + C‖�hθ

′
m‖22‖∂zθ ′

m‖22. (5.15)

Applying the Cauchy–Schwarz inequality yields
∫

�

|∂zwm(∂zθm)∂zθ
′
m |dx dydz

≤
∫ 2π

0

( ∫

[0,2πL]2
|∂zwm |2dxdy

)1/2( ∫

[0,2πL]2
|∂zθ ′

m |2dxdy
)1/2|∂zθm |dz

≤
[

sup
z∈[0,2π ]

( ∫

[0,2πL]2
|∂zwm |2dx dy

)1/2]‖∂zθ ′
m‖2

( ∫ 2π

0
|∂zθm |2dz

)1/2
,

≤ C‖∂zzwm‖2‖∂zθ ′
m‖2

( ∫ 2π

0
|∂zθm |2dz

)1/2
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≤ C‖∇h∂zθ
′
m‖2‖∂zθ ′

m‖2
( ∫ 2π

0
|∂zθm |2dz

)1/2

≤ 1

4
‖∇h∂zθ

′
m‖22 + C‖∂zθ ′

m‖22
( ∫ 2π

0
|∂zθm |2dz

)
, (5.16)

where we have used Lemma 3.3 and estimate (5.5).
Nowweestimate the third integral on the right-hand sideof (5.14). Since ∂z(θ ′

mwm) =
∂zzθm due to (4.4), we have

− 1

4π2L2

∫

�

wm(∂zzθm)∂zθ
′
mdxdydz = − 1

4π2L2

∫

�

wm[∂z(θ ′
mwm)]∂zθ ′

mdxdydz

= −
∫ 2π

0
(wm∂zθ ′

m)[∂z(θ ′
mwm)]dz

= −
∫ 2π

0
(wm∂zθ ′

m)
[
(∂zθ ′

m)wm + θ ′
m(∂zwm)

]
dz

= −
∫ 2π

0
(wm∂zθ ′

m)2dz −
∫ 2π

0
(wm∂zθ ′

m)(θ ′
m∂zwm)dz

≤ −1

2

∫ 2π

0
(wm∂zθ ′

m)2dz + 1

2

∫ 2π

0
(θ ′

m∂zwm)2dz, (5.17)

where the last inequality is due to the Cauchy–Schwarz inequality and the Young’s
inequality.
By using the Cauchy–Schwarz inequality, and Lemma 3.3 as well as estimate (5.2),

then

∫ 2π

0
(θ ′

m∂zwm)2dz ≤ C
∫ 2π

0

( ∫

[0,2πL]2
|θ ′
m |2dxdy

)( ∫

[0,2πL]2
|∂zwm |2dxdy

)
dz

≤ C
[

sup
z∈[0,2π ]

( ∫

[0,2πL]2
|θ ′
m |2dxdy

)]
‖∂zwm‖22≤C

(
‖θ ′

m‖22+‖∂zθ ′
m‖22

)
‖∇hθ

′
m‖22.
(5.18)

Substituting (5.18) into (5.17) gives

− 1

4π2L2

∫

�

wm(∂zzθm)∂zθ
′
mdxdydz

≤ −1

2

∫ 2π

0
(wm∂zθ ′

m)2dz + C
(
‖θ ′

m‖22 + ‖∂zθ ′
m‖22

)
‖∇hθ

′
m‖22. (5.19)

Using (5.15), (5.16) and (5.19), we infer from (5.14) that

d

dt
‖∂zθ ′

m‖22 + ‖∇h∂zθ
′
m‖22

≤ C‖∂zθ ′
m‖22

[

‖�hθ
′
m‖22 +

∫ 2π

0
|∂zθm |2dz

]

+ C(‖θ ′
m‖22 + 1)‖∇hθ

′
m‖22. (5.20)
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Due to (5.6) and (5.11) and (5.12), we can use Grönwall’s inequality on (5.20) to
obtain

‖∂zθ ′
m(t)‖22 ≤ e

∫ t
0 (‖�hθ

′
m‖22+

∫ 2π
0 |∂zθm |2dz)ds(‖∂zθ ′

0‖22 + C(‖θ ′
0‖22 + 1)

∫ t

0
‖∇hθ

′
m‖22ds

)

≤ C(‖θ ′
0‖H1(�)), for all t ≥ 0, (5.21)

where C(‖θ ′
0‖H1(�)) is a constant depending on ‖θ ′

0‖H1(�) but independent of t . In
addition, integrating (5.20) over [0, t] gives

∫ t

0
‖∇h∂zθ

′
m‖22ds ≤ C(‖θ ′

0‖H1(�)), for all t ≥ 0. (5.22)

On account of (5.6), (5.11) and (5.21), we conclude that

‖θ ′
m(t)‖2H1(�)

≤ C(‖θ ′
0‖H1(�)), for all t ≥ 0, (5.23)

where C(‖θ ′
0‖H1(�)) is a constant depending on ‖θ ′

0‖H1(�) but independent of t .

5.1.5. Estimate for
∫ 2π
0

∣
∣∂zzθm

∣
∣2 dz

Since ∂2θm
∂z2

= ∂(θ ′
mwm )

∂z , we have

∫ 2π

0

∣
∣
∣
∂2θm

∂z2

∣
∣
∣
2
dz =

∫ 2π

0

∣
∣
∣
∂(θ ′

mwm)

∂z

∣
∣
∣
2
dz =

∫ 2π

0

∣
∣
∣
∂θ ′

m

∂z
wm + θ ′

m
∂wm

∂z

∣
∣
∣
2
dz

≤ C
∫ 2π

0

∣
∣
∣

∫

[0,2πL]2
∂θ ′

m

∂z
wmdxdy

∣
∣
∣
2
dz + C

∫ 2π

0

∣
∣
∣

∫

[0,2πL]2
θ ′
m

∂wm

∂z
dxdy

∣
∣
∣
2
dz

≤ C
∫ 2π

0

( ∫

[0,2πL]2

∣
∣
∣
∂θ ′

m

∂z

∣
∣
∣
2
dxdy

)( ∫

[0,2πL]2
|wm |2dxdy

)
dz

+ C
∫ 2π

0

( ∫

[0,2πL]2
|θ ′
m |2dxdy

)( ∫

[0,2πL]2

∣
∣
∣
∂wm

∂z

∣
∣
∣
2
dxdy

)
dz

≤ C
(

sup
z∈[0,2π ]

∫

[0,2πL]2
|wm |2dxdy

)
‖∂zθ ′

m‖22

+ C
(

sup
z∈[0,2π ]

∫

[0,2πL]2
|θ ′
m |2dxdy

)
‖∂zwm‖22

≤ C(‖wm‖22 + ‖∂zwm‖22)‖∂zθ ′
m‖22 + C(‖θ ′

m‖22 + ‖∂zθ ′
m‖22)‖∂zwm‖22

≤ C‖∇hθ
′
m‖22‖∂zθ ′

m‖22 + C(‖θ ′
m‖22 + ‖∂zθ ′

m‖22)‖∇hθ
′
m‖22, (5.24)

for all t ≥ 0, where we have used Lemma 3.3 and estimates (5.1) and (5.2).
Applying uniform bound (5.23) to estimate (5.24) yield

∫ 2π

0

∣
∣
∣
∂2θm

∂z2
(z, t)

∣
∣
∣
2
dz ≤ C(‖θ ′

0‖H1), for all t ≥ 0, (5.25)

where C(‖θ ′
0‖H1(�)) is a constant depending on ‖θ ′

0‖H1(�) but independent of t .
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5.1.6. Passage to the limit

Let T > 0. In order to pass to the limit for nonlinear terms in the Galerkin system
as m → ∞, we shall show that ∂tθ ′

m is uniformly bounded in L2(� × (0, T )).
In fact, for any function ϕ ∈ L4/3(0, T ; L2(�)), using Lemma 3.1, one has

∫ T

0

∫

�

[Pm(um · ∇hθ
′
m)]ϕdxdydzdt

≤ C
∫ T

0
‖∇hum‖1/2 (‖um‖2 + ‖∂zum‖2)1/2 ‖∇hθ

′
m‖1/22 ‖�hθ

′
m‖1/22 ‖ϕ‖2dt

≤ C
∫ T

0
‖θ ′

m‖1/2‖∇hθ
′
m‖2‖�hθ

′
m‖1/22 ‖ϕ‖2dt

≤ C(‖∇hθ
′
0‖2)

∫ T

0
‖�hθ

′
m‖1/22 ‖ϕ‖2dt

≤ C(‖∇hθ
′
0‖2)

(∫ T

0
‖�hθ

′
m‖22dt

)1/4 (∫ T

0
‖ϕ‖4/32 dt

)3/4

≤ C(‖∇hθ
′
0‖2)‖ϕ‖L4/3(0,T ;L2(�)), (5.26)

where we have used estimate (5.1) and (5.2) and (5.11) and (5.12). Here, C(‖∇hθ
′
0‖2)

is a constant depending on ‖∇hθ
′
0‖2 but independent of t .

We infer from (5.26) that

‖Pm(um · ∇hθ
′
m)‖L4(0,T ;L2(�)) ≤ C(‖∇hθ

′
0‖2). (5.27)

Then, using (4.3), (4.42), (5.12) and (5.27), we obtain

‖∂tθ ′
m‖L2(�×(0,T )) ≤ C(‖∇hθ

′
0‖2). (5.28)

Therefore, on a subsequence, we have

∂tθ
′
m → ∂tθ

′ weakly in L2(� × (0, T )), as m → ∞. (5.29)

In addition, due to uniform bounds (5.23) and (5.28), and thanks to the Aubin’s
compactness theorem (see, e.g., [16]), the following strong convergence holds for a
subsequence of {θ ′

m}:
θ ′
m → θ ′ in L2(� × (0, T )), as m → ∞. (5.30)

Also, using (4.12), we see that

‖um − un‖22 ≤ C‖θ ′
m − θ ′

n‖22, for any n,m ∈ N. (5.31)

We infer from (5.30) and (5.31) that {um} is a Cauchy sequence in L2(� × (0, T )),
then

um → u in L2(� × (0, T )), as m → ∞. (5.32)
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Analogously, we deduce

wm → w in L2(� × (0, T )), as m → ∞. (5.33)

Hence, we can use the same argument as in Sect. 4.1.3 to pass to the limit m → ∞
for the Galerkin system (4.1)–(4.4) to derive

∂θ ′

∂t
+ u · ∇hθ

′ + w
∂θ

∂z
− �hθ

′ = 0 in L2(� × (0, T )). (5.34)

Next, we shall pass to the limit for Eq. (4.4) in the Galerkin system as m → ∞.

By virtue of (5.25),
∫ 2π
0

∣
∣
∣ ∂

2θm
∂z2

(z, t)
∣
∣
∣
2
dz ≤ C(‖θ ′

0‖H1), for all t ≥ 0, namely the

sequence { ∂2θm
∂z2

} is uniformly bounded in L∞(0, T ; L2(0, 2π)), which implies, on a
subsequence,

∂2θm

∂z2
→ ∂2θ

∂z2
weakly∗ in L∞(0, T ; L2(0, 2π)), as m → ∞. (5.35)

In order to pass to the limit for the nonlinear term ∂(θ ′
mwm )

∂z in equation (4.4), we take

a test function ξ = ∑
| j |<N ξ̂ (t, j)ei j z where Fourier coefficients ξ̂ (t, j), | j | ≤ N ,

are continuous in t . Consider
∣
∣
∣
∣
∣

∫ T

0

∫ 2π

0

(
∂(θ ′

mwm)

∂z
− ∂(θ ′w)

∂z

)

ξdzdt

∣
∣
∣
∣
∣
=
∣
∣
∣
∣

∫ T

0

∫ 2π

0
(θ ′

mwm − θ ′w)ξzdzdt

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ T

0

∫ 2π

0
((θ ′

m − θ ′)wm)ξzdzdt

∣
∣
∣
∣ +

∣
∣
∣
∣

∫ T

0

∫ 2π

0
(θ ′(wm − w))ξzdzdt

∣
∣
∣
∣

≤ C‖ξz‖L∞((0,2π)×(0,T ))

∫ T

0

∫

�

(∣∣(θ ′
m − θ ′)wm

∣
∣ + ∣

∣θ ′(wm − w)
∣
∣) dxdydzdt

≤ C‖ξz‖L∞((0,2π)×(0,T ))

(‖θ ′
m − θ ′‖L2(�×(0,T ))‖wm‖L2(�×(0,T ))

+ ‖wm − w‖L2(�×(0,T ))‖θ ′‖L2(�×(0,T ))

)
, (5.36)

where we have used the Cauchy–Schwarz inequality.
Then, since ‖wm‖2 ≤ C‖θ ′

0‖ for all m on [0, T ] and since θ ′
m → θ ′, wm → w in

L2(� × (0, T )), we can let m → ∞ in (5.36) to obtain

lim
m→∞

∫ T

0

∫ 2π

0

∂(θ ′
mwm)

∂z
ξdzdt =

∫ T

0

∫ 2π

0

∂(θ ′w)

∂z
ξdzdt. (5.37)

On account of (5.35) and (5.37), we pass to the limit for Eq. (4.4) in the Galerkin
approximate system, and arrive at

∫ T

0

∫ 2π

0

(
∂(θ ′w)

∂z
− ∂2θ

∂z2

)

ξdzdt = 0, (5.38)
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for any test function ξ = ∑
| j |<N ξ̂ (t, j)ei j z with continuous Fourier coefficients.

Similarly to (5.24), we derive that ∂(θ ′w)
∂z ∈ L∞(0, T ; L2(0, 2π)). Also ∂2θ

∂z2
∈

L∞(0, T ; L2(0, 2π)) from (5.35). Hence, ∂(θ ′w)
∂z − ∂2θ

∂z2
∈ L∞(0, T ; L2(0, 2π)). Then,

we infer from (5.38) that

∂(θ ′w)

∂z
= ∂2θ

∂z2
in L∞(0, T ; L2(0, 2π)).

This completes the proof for the existence of a global strong solution in the sense of
Definition 2.3.
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