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SYSTEMS OF NONLINEAR WAVE EQUATIONS

WITH DAMPING AND SUPERCRITICAL BOUNDARY

AND INTERIOR SOURCES

YANQIU GUO AND MOHAMMAD A. RAMMAHA

Abstract. We consider the local and global well-posedness of the coupled
nonlinear wave equations

utt −Δu+ g1(ut) = f1(u, v),

vtt −Δv + g2(vt) = f2(u, v)

in a bounded domain Ω ⊂ R
n with Robin and Dirichlét boundary conditions

on u and v respectively. The nonlinearities f1(u, v) and f2(u, v) have super-
critical exponents representing strong sources, while g1(ut) and g2(vt) act as
damping. In addition, the boundary condition also contains a nonlinear source
and a damping term. By employing nonlinear semigroups and the theory of
monotone operators, we obtain several results on the existence of local and
global weak solutions, and uniqueness of weak solutions. Moreover, we prove
that such unique solutions depend continuously on the initial data.

1. Introduction and main results

1.1. The model. In this article, we study a system of coupled nonlinear wave
equations which features two competing forces. One force is damping and the
other is a strong source. Of central interest is the relationship of the source and
damping terms to the behavior of solutions.

In order to simplify the exposition, we restrict our analysis to the physically more
relevant case when Ω ⊂ R

3. Our results extend very easily to bounded domains
in R

n, by accounting for the corresponding Sobolev imbeddings, and accordingly
adjusting the conditions imposed on the parameters. Therefore, throughout the
paper we assume that Ω is a bounded, open, and connected nonempty set in R

3

with a smooth boundary Γ = ∂Ω.
We study the local and global well-posedness of the following initial boundary

value problem:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

utt −Δu+ g1(ut) = f1(u, v) in Ω× (0, T ),
vtt −Δv + g2(vt) = f2(u, v) in Ω× (0, T ),
∂νu+ u+ g(ut) = h(u) on Γ× (0, T ),
v = 0 on Γ× (0, T ),
u(0) = u0 ∈ H1(Ω), ut(0) = u1 ∈ L2(Ω),
v(0) = v0 ∈ H1

0 (Ω), vt(0) = v1 ∈ L2(Ω),

(1.1)
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2266 Y. GUO AND M. A. RAMMAHA

where the nonlinearities f1(u, v), f2(u, v) and h(u) are supercritical interior and
boundary sources, and the damping functions g1, g2 and g are arbitrary continuous
monotone increasing graphs vanishing at the origin.

The source-damping interaction in (1.1) encompasses a broad class of problems in
quantum field theory and certain mechanical applications (Jörgens [18] and Segal
[38]). A related model to (1.1) is the Reissner-Mindlin plate equations (see for
instance Ch. 3 in [21]), which consist of three coupled PDE’s: a wave equation and
two wave-like equations, where each equation is influenced by nonlinear damping
and source terms. It is worth noting that nondissipative “energy-building” sources,
especially those on the boundary, arise when one considers a wave equation being
coupled with other types of dynamics, such as structure-acoustic or fluid-structure
interaction models (Lasiecka [25]). In light of these applications we are mainly
interested in higher-order nonlinearities, as described in the following assumption.

Assumption 1.1.

• Damping: g1, g2 and g are continuous and monotone increasing functions
with g1(0) = g2(0) = g(0) = 0. In addition, the following growth conditions
at infinity hold: there exist positive constants α and β such that, for |s| ≥ 1,

α|s|m+1 ≤ g1(s)s ≤ β|s|m+1, with m ≥ 1,

α|s|r+1 ≤ g2(s)s ≤ β|s|r+1, with r ≥ 1,

α|s|q+1 ≤ g(s)s ≤ β|s|q+1, with q ≥ 1.

• Interior sources: fj(u, v) ∈ C1(R2) such that

|∇fj(u, v)| ≤ C(|u|p−1 + |v|p−1 + 1), j = 1, 2, with 1 ≤ p < 6.

• Boundary source: h ∈ C1(R) such that

|h′(s)| ≤ C(|s|k−1 + 1), with 1 ≤ k < 4.

• Parameters: max{pm+1
m , p r+1

r } < 6, k q+1
q < 4.

Let us note here that in view of the Sobolev imbedding H1(Ω) ↪→ L6(Ω) (in
3D), each of the Nemytski operators fj(u, v) is locally Lipschitz continuous from
H1(Ω) × H1(Ω) into L2(Ω) for the values 1 ≤ p ≤ 3. Hence, when the exponent
of the sources p lies in 1 ≤ p < 3, we call the source subcritical, and critical if
p = 3. For the values 3 < p ≤ 5 the source is called supercritical, and in this
case the operator fj(u, v) is not locally Lipschitz continuous from H1(Ω)×H1(Ω)
into L2(Ω). However, for 3 < p ≤ 5, the potential energy induced by the source is
well defined in the finite energy space. When 5 < p < 6 the source is called super-
supercritical. In this case, the potential energy may not be defined in the finite
energy space and the problem itself is no longer within the framework of potential
well theory (see for instance [2, 27, 28, 43, 44]).

A benchmark system, which is a special case of (1.1), is the following well-known
polynomially damped system studied extensively in the literature (see for instance
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SYSTEMS OF NONLINEAR WAVE EQUATIONS 2267

[1, 2, 32, 33]): {
utt −Δu+ |ut|m−1ut = f1(u, v) in Ω× (0, T ),

vtt −Δv + |vt|r−1vt = f2(u, v) in Ω× (0, T ),
(1.2)

where the sources f1, f2 are very specific. Namely, f1(u, v) = ∂uF (u, v) and
f2(u, v) = ∂vF (u, v), where F : R2 −→ R is the C1-function given by

F (u, v) = a|u+ v|p+1 + 2b|uv|
p+1
2 ,

where p ≥ 3, a > 1 and b > 0. Systems of nonlinear wave equations such as (1.2)
go back to Reed [35], who proposed a similar system in three space dimensions
but without the presence of damping. Indeed, recently in [1] and later in [2] the
authors studied system (1.2) with Dirichlét boundary conditions on both u and
v where the exponent of the source was restricted to be critical (p = 3 in 3D).
We note here that the functions f1 and f2 in (1.2) satisfy Assumption 1.1, even
for the values 3 ≤ p < 6, and so our work extends and refines the results in [1],
on one hand by allowing a larger class of sources (other than those in (1.2)) and
having a larger range of exponents of sources, p > 3. On the other hand, system
(1.1) has a Robin boundary condition which also features nonlinear damping and
a source term. In particular, the Robin boundary condition, in combination with
the interior damping, creates serious technical difficulties in the analysis (for more
details, see Subsection 2.1).

In studying systems such as (1.2) or the more general system (1.1), several dif-
ficulties arise due to the coupling. On one hand, establishing blow up results for
systems of wave equations (not just global nonexistence results which don’t require
local solvability) is known to be more subtle than the scalar case. Additional chal-
lenges stem from the fact that in many physical systems, such as (1.2), the sources
are not necessarily C2-functions, even when 3 < p ≤ 5. In such a case, uniqueness
of solutions becomes problematic, and this particular issue will be addressed in this
paper.

In recent years, wave equations under the influence of nonlinear damping and
sources have generated considerable interest. If the sources are at most critical,
i.e., p ≤ 3 and k ≤ 2, many authors have successfully studied such equations by
using Galerkin approximations or standard fixed point theorems (see for example
[1–3, 14, 29, 32–34]). Also, for other related work on hyperbolic problems, we refer
the reader to [11,13,17,20,23,24,26,31,40,42] and the references therein. However,
only a few papers [6–9] have dealt with supercritical sources, i.e., when p > 3 and
k > 2.

In this paper we use the powerful theory of monotone operators and nonlinear
semigroups (Kato’s Theorem [5,39]) to study system (1.1). Our strategy is similar
to the one used by Bociu [6], and our proofs draw substantially from important
ideas in [6, 8, 9] and in [12]. However, we were faced with the following technical
issue: in the operator theoretic formulation of (1.1), although the operators induced
by interior and boundary damping terms are individually maximal monotone from
H1(Ω) into (H1(Ω))′, it was crucial to verify that their sum is maximal monotone.
Since neither of these two operators has the whole space H1(Ω) as its domain,
as the exponents m, r, and q of damping are arbitrarily large, then checking the
domain condition (see Theorem 1.5 (p. 54) [5]) to assure maximal monotonicity
of their sum becomes infeasible. In order to overcome this difficulty, we define a
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2268 Y. GUO AND M. A. RAMMAHA

new operator S which can represent the sum of interior and boundary damping.
Indeed, the authors in [4] were able to generalize important results by Brézis [10]
and provide a complete proof of the fact that S is a subdifferential of a convex
functional, which immediately yields the fact that S is maximal monotone. Some
details can be found in Subsection 2.1.

1.2. Notation. The following notation will be used throughout the paper:

‖u‖s = ‖u‖Ls(Ω) , |u|s = ‖u‖Ls(Γ) , ‖u‖1,Ω = ‖u‖H1(Ω) ,

(u, v)Ω = (u, v)L2(Ω), (u, v)Γ = (u, v)L2(Γ), (u, v)1,Ω = (u, v)H1(Ω),

m̃ =
m+ 1

m
, r̃ =

r + 1

r
, q̃ =

q + 1

q
.

As usual, we denote the standard duality pairing between (H1(Ω))′ and H1(Ω) by
〈·, ·〉. We also use the notation γu to denote the trace of u on Γ and we write
d
dt (γu(t)) as γut. In addition, the following Sobolev imbeddings will be used fre-
quently, and sometimes without mention:⎧⎨

⎩
H1−ε(Ω) ↪→ L

6
1+2ε (Ω), for ε ∈ [0, 1],

H1−ε(Ω) ↪→ H
1
2−ε(Γ) ↪→ L

4
1+2ε (Γ), for ε ∈ [0, 1

2 ].
(1.3)

We also remind the reader of the following interpolation inequality:

(1.4) ‖u‖2Hθ(Ω) ≤ ε ‖u‖21,Ω + C(ε, θ) ‖u‖22 ,

for all 0 ≤ θ < 1 and ε > 0. We finally note that (‖∇u‖22+ |γu|22)1/2 is an equivalent
norm to the standard H1(Ω) norm. This fact follows from a Poincaré-Wirtinger
type of inequality:

‖u‖22 ≤ C(‖∇u‖22 + |γu|22) for all u ∈ H1(Ω).

Thus, throughout the paper we put

‖u‖21,Ω = ‖∇u‖22 + |γu|22 and (u, v)1,Ω = (∇u,∇v)Ω + (γu, γv)Γ,(1.5)

for u, v ∈ H1(Ω).

1.3. Main results. In order to state our main result we begin by giving the defi-
nition of a weak solution to (1.1).

Definition 1.2. A pair of functions (u, v) is said to be a weak solution of (1.1) on
[0, T ] if

• u ∈ C([0, T ];H1(Ω)), v ∈ C([0, T ];H1
0 (Ω)), ut ∈ C([0, T ];L2(Ω))∩Lm+1(Ω

×(0, T )), γut ∈ Lq+1(Γ× (0, T )), vt ∈ C([0, T ];L2(Ω)) ∩ Lr+1(Ω× (0, T ));
• (u(0), v(0)) = (u0, v0) ∈ H1(Ω)×H1

0 (Ω), (ut(0), vt(0)) = (u1, v1) ∈ L2(Ω)×
L2(Ω);
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SYSTEMS OF NONLINEAR WAVE EQUATIONS 2269

• for all t ∈ [0, T ], u and v verify the identities

(ut(t), φ(t))Ω − (ut(0), φ(0))Ω +

∫ t

0

[−(ut(τ ), φt(τ ))Ω + (u(τ ), φ(τ ))1,Ω]dτ

+

∫ t

0

∫
Ω

g1(ut(τ ))φ(τ )dxdτ +

∫ t

0

∫
Γ

g(γut(τ ))γφ(τ )dΓdτ

=

∫ t

0

∫
Ω

f1(u(τ ), v(τ ))φ(τ )dxdτ +

∫ t

0

∫
Γ

h(γu(τ ))γφ(τ )dΓdτ,(1.6)

(vt(t), ψ(t))Ω − (vt(0), ψ(0))Ω +

∫ t

0

[−(vt(τ ), ψt(τ ))Ω + (v(τ ), ψ(τ ))1,Ω]dτ

+

∫ t

0

∫
Ω

g2(vt(τ ))ψ(τ )dxdτ =

∫ t

0

∫
Ω

f2(u(τ ), v(τ ))ψ(τ )dxdτ,(1.7)

for all test functions satisfying:
φ ∈ C([0, T ];H1(Ω)) ∩ Lm+1(Ω × (0, T )) such that γφ ∈ Lq+1(Γ × (0, T )) with
φt ∈ L1([0, T ];L2(Ω)) and ψ ∈ C([0, T ];H1

0 (Ω)) ∩ Lr+1(Ω× (0, T )) such that ψt ∈
L1([0, T ];L2(Ω)).

Our first theorem establishes the existence of a local weak solution to (1.1).
Specifically, we have the following result.

Theorem 1.3 (Local weak solutions). Assume the validity of Assumption 1.1.
Then there exists a local weak solution (u, v) to (1.1) defined on [0, T0] for some
T0 > 0 depending on the initial energy E(0), where

E(t) =
1

2
(‖u(t)‖21,Ω + ‖v(t)‖21,Ω + ‖ut(t)‖22 + ‖vt(t)‖22).

In addition, the following energy identity holds for all t ∈ [0, T0]:

E(t) +

∫ t

0

∫
Ω

[g1(ut)ut + g2(vt)vt] dxdτ +

∫ t

0

∫
Γ

g(γut)γutdΓdτ

= E(0) +

∫ t

0

∫
Ω

[f1(u, v)ut + f2(u, v)vt] dxdτ +

∫ t

0

∫
Γ

h(γu)γutdΓdτ.(1.8)

In order to state the next theorem, we need additional assumptions on the sources
and the boundary damping.

Assumption 1.4.

(a) For p > 3, there exists a function F (u, v) ∈ C3(R2) such that f1(u, v) =
Fu(u, v), f2(u, v) = Fv(u, v) and |DαF (u, v)| ≤ C(|u|p−2 + |v|p−2 + 1), for
all multi-indices |α| = 3 and all u, v ∈ R.

(b) For k ≥ 2, h ∈ C2(R) such that |h′′(s)| ≤ C(|s|k−2 + 1), for all s ∈ R.
(c) For k < 2, there exists mg > 0 such that (g(s1)−g(s2))(s1−s2) ≥ mg|s1−s2|2,

for all s1, s2 ∈ R.

Theorem 1.5 (Uniqueness of weak solutions–Part 1). In addition to Assumptions

1.1 and 1.4, we further assume that u0, v0 ∈ L
3(p−1)

2 (Ω) and γu0 ∈ L2(k−1)(Γ).
Then weak solutions of (1.1) are unique.

Remark 1.6. The additional assumptions on the initial data in Theorem 1.5 are
redundant if p ≤ 5 and k ≤ 3, due to the imbeddings (1.3). Also, it is often the

Licensed to Weizmann Institute of Science. Prepared on Tue Aug 18 14:49:08 EDT 2015 for download from IP 132.76.61.22.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



2270 Y. GUO AND M. A. RAMMAHA

case that the interior sources f1 and f2 fail to satisfy Assumption 1.4(a), as in
system (1.2) for the values 3 < p ≤ 5. To ensure uniqueness of weak solutions
in such a case, we require the exponents m and r of the interior damping to be
sufficiently large. More precisely, the following result resolves this issue.

Theorem 1.7 (Uniqueness of weak solutions–Part 2). Under Assumption 1.1 and
Assumption 1.4(b)(c), we additionally assume that u0, v0 ∈ L3(p−1)(Ω), γu0 ∈
L2(k−1)(Γ), and m, r ≥ 3p− 4 if p > 3. Then weak solutions of (1.1) are unique.

Our next theorem states that weak solutions furnished by Theorem 1.3 are global
solutions provided the exponents of damping are more dominant than the exponents
of the corresponding sources.

Theorem 1.8 (Global weak solutions). In addition to Assumption 1.1, further
assume u0, v0 ∈ Lp+1(Ω) and γu0 ∈ Lk+1(Γ). If p ≤ min{m, r} and k ≤ q, then
the said solution (u, v) in Theorem 1.3 is a global weak solution and T0 can be taken
arbitrarily large.

Remark 1.9. Recently, the authors [15, 16] obtained several blow up results for
solutions with negative and nonnegative initial energy (the latter is for potential
well solutions). Indeed, the results of [15,16] are for some cases when the conditions
p ≤ min{m, r} and k ≤ q are not fulfilled. More precisely, the results of [15, 16]
show that every weak solution to (1.1) blows up in finite time provided either:
(i) the interior and boundary sources are more dominant than their corresponding
damping terms (p > max{m, r} and k > q) or (ii) the interior sources dominate
both interior and boundary damping (p > max{m, r, 2q − 1}).

Our final result states that the weak solution of (1.1) depends continuously on
the initial data.

Theorem 1.10 (Continuous dependence on initial data). Assume the validity of
Assumptions 1.1 and 1.4 and an initial data U0 = (u0, v0, u1, v1) ∈ X, where X is

given by X := (H1(Ω)∩L
3(p−1)

2 (Ω))× (H1
0 (Ω)∩L

3(p−1)
2 (Ω))×L2(Ω)×L2(Ω), such

that γu0 ∈ L2(k−1)(Γ). If Un
0 = (un

0 , u
n
1 , v

n
0 , v

n
1 ) is a sequence of initial data such

that, as n −→ ∞,

Un
0 −→ U0 in X and γun

0 −→ γu0 in L2(k−1)(Γ),

then the corresponding weak solutions (un, vn) and (u, v) of (1.1) satisfy

(un, vn, un
t , v

n
t ) −→ (u, v, ut, vt) in C([0, T ];H), as n −→ ∞,

where H := H1(Ω)×H1
0 (Ω)× L2(Ω)× L2(Ω).

Remark 1.11. If p ≤ 5, then the spaces X and H in Theorem 1.10 are identical
since H1(Ω) ↪→ L6(Ω). In addition, if k ≤ 3, then the assumption γun

0 −→ γu0 in
L2(k−1)(Γ) is redundant since un

0 −→ u0 in H1(Ω) implies γun
0 −→ γu0 in L4(Γ).

The paper is organized as follows. In Section 2, we provide a detailed proof of
the local existence statement in Theorem 1.3. Section 3 is devoted to the derivation
of the energy identity (1.8). In Section 4 we provide the proofs of the uniqueness
statements of Theorems 1.5 and 1.7. Section 5 contains the proof of Theorem 1.8
and in Section 6 we provide the proof of Theorem 1.10.
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2. Local solutions

This section is devoted to proving the existence statement in Theorem 1.3, which
will be carried out in the following five subsections.

2.1. Operator theoretic formulation. Our first goal is to put problem (1.1) in
an operator theoretic form. In order to do so, we introduce the Robin Laplacian
ΔR: D(ΔR) ⊂ L2(Ω) −→ L2(Ω), where ΔR = −Δu with its domain D(ΔR) =
{u ∈ H2(Ω) : ∂νu + u = 0 on Γ}. We note here that the Robin Laplacian can be
extended to a continuous operator ΔR : H1(Ω) −→ (H1(Ω))′ by

(2.1) 〈ΔRu, v〉 = (∇u,∇v)Ω + (γu, γv)Γ = (u, v)1,Ω

for all u, v ∈ H1(Ω).

We also define the Robin map R : Hs(Γ) −→ Hs+ 3
2 (Ω) as follows:

q = Rp ⇐⇒ q is a weak solution for

{
Δq = 0 in Ω,
∂νq + q = p on Γ.

(2.2)

Hence, for p ∈ L2(Γ), we know from (2.2) that

(2.3) (Rp, φ)1,Ω = (p, γφ)Γ for all φ ∈ H1(Ω).

Combining (2.1) and (2.3) gives the following useful identity:

(2.4) 〈ΔRRp, φ〉 = (Rp, φ)1,Ω = (p, γφ)Γ,

for all p ∈ L2(Γ) and φ ∈ H1(Ω).
By using the operators introduced above, we can put (1.1) in the following form:

(2.5)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

utt +ΔR(u−Rh(γu) +Rg(γut)) + g1(ut) = f1(u, v),

vtt −Δv + g2(vt) = f2(u, v),

u(0) = u0 ∈ H1(Ω), ut(0) = u1 ∈ L2(Ω),

v(0) = v0 ∈ H1
0 (Ω), vt(0) = v1 ∈ L2(Ω).

It is important to point out here that in (2.5), we can show S1 := ΔRRg(γut)
and S2 := g(ut) are both maximal monotone from H1(Ω) into (H1(Ω))′. However,
in order to show that S1 + S2 is also maximal monotone, one needs to check the
validity of domain condition: (int D(S1))∩D(S2) �= ∅. The fact that the exponents
of the interior and boundary damping, m and q, are allowed to be arbitrarily large
makes it infeasible to verify the above domain condition.

In order to overcome this difficulty, we shall introduce a maximal monotone
operator S representing the sum of interior and boundary damping. To do so, we
first define the functional J : H1(Ω) −→ [0,+∞] by

(2.6) J(u) =

∫
Ω

j1(u)dx+

∫
Γ

j(γu)dΓ,

where j1 and j : R −→ [0,+∞) are convex functions defined by

j1(s) =

∫ s

0

g1(τ )dτ and j(s) =

∫ s

0

g(τ )dτ.(2.7)

Clearly, J is convex and lower semicontinuous. The subdifferential of J , ∂J :
H1(Ω) −→ (H1(Ω))′ is defined by

∂J(u) = {u∗ ∈ (H1(Ω))′ : J(u) + 〈u∗, v − u〉 ≤ J(v) for all v ∈ H1(Ω)}.(2.8)
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The domain D(∂J) represents the set of all functions u ∈ H1(Ω) for which ∂J(u)
is nonempty.

By Theorem 2.2 in [4], we know that, for any u ∈ D(∂J), ∂J(u) is a singleton,
and thus we may define the operator S : D(S) = D(∂J) ⊂ H1(Ω) −→ (H1(Ω))′

such that

∂J(u) = {S(u)}.(2.9)

It is well known that any subdifferential is maximal monotone, thus S : D(S) ⊂
H1(Ω) −→ (H1(Ω))′ is a maximal monotone operator. Moreover, by Theorem 2.2
of [4], we also know that, for all u ∈ D(S), we have g1(u) ∈ L1(Ω), g1(u)u ∈ L1(Ω),
g(γu) ∈ L1(Γ) and g(γu)γu ∈ L1(Γ). In addition,

〈S(u), u〉 =
∫
Ω

g1(u)udx+

∫
Γ

g(γu)γudΓ(2.10)

and

〈S(u), v〉 =
∫
Ω

g1(u)vdx+

∫
Γ

g(γu)γvdΓ for all v ∈ C(Ω).(2.11)

It follows that for all u ∈ D(S),

〈S(u), v〉 =
∫
Ω

g1(u)vdx+

∫
Γ

g(γu)γvdΓ for all v ∈ H1(Ω) ∩ L∞(Ω).(2.12)

In fact, if v ∈ H1(Ω) ∩ L∞(Ω), then there exists vn ∈ C(Ω) such that vn → v in
H1(Ω) and a.e. in Ω with |vn| ≤ M in Ω for some M > 0. By (2.11) and the
Lebesgue Dominated Convergence Theorem, we obtain (2.12).

By using the operator S we may rewrite (2.5) as

(2.13)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

utt +ΔR(u−Rh(γu)) + S(ut) = f1(u, v),

vtt −Δv + g2(vt) = f2(u, v),

u(0) = u0 ∈ H1(Ω), ut(0) = u1 ∈ L2(Ω),

v(0) = v0 ∈ H1
0 (Ω), vt(0) = v1 ∈ L2(Ω).

It is important to note here that S(ut) represents the sum of the interior damping
g(ut) and the boundary damping ΔRRg(γut). However, D(S) is not necessarily
the same as the domain of the operator ΔRRg(γ·) + g(·) : H1(Ω) −→ (H1(Ω))′.
Therefore, systems (2.5) and (2.13) are not exactly equivalent. Nonetheless, we
shall see that if (u, v) is a strong solution for (2.13), then (u, v) must be a weak
solution for (1.1) in the sense of Definition 1.2. So, instead of studying (1.1) directly,
we first show that system (2.13) has a unique strong solution.

Let H = H1(Ω)×H1
0 (Ω)× L2(Ω)× L2(Ω) and define the nonlinear operator

A : D(A ) ⊂ H −→ H

by

(2.14) A

⎡
⎢⎢⎣

u
v
y
z

⎤
⎥⎥⎦
tr

=

⎡
⎢⎢⎣

−y
−z
ΔR(u− Rh(γu)) + S(y)− f1(u, v)
−Δv + g2(z)− f2(u, v)

⎤
⎥⎥⎦
tr

,
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where

D(A ) =
{
(u, v, y, z) ∈

(
H1(Ω)×H1

0 (Ω)
)2

:

ΔR(u−Rh(γu)) + S(y)− f1(u, v) ∈ L2(Ω), y ∈ D(S),

−Δv + g2(z)− f2(u, v) ∈ L2(Ω), g2(z) ∈ H−1(Ω) ∩ L1(Ω)
}
.

Put U = (u, v, ut, vt). Then the system (2.13) is equivalent to

(2.15) Ut + A U = 0 with U(0) = (u0, v0, u1, v1) ∈ H.

2.2. Globally Lipschitz sources. First, we deal with the case where the bound-
ary damping is assumed strongly monotone and the sources are globally Lipschitz.
In this case, we have the following lemma.

Lemma 2.1. Assume that,

• g1, g2 and g are continuous and monotone increasing functions with g1(0)
= g2(0) = g(0) = 0. Moreover, the following strong monotonicity condition
is imposed on g:
there exists mg > 0 such that (g(s1)− g(s2))(s1 − s2) ≥ mg|s1 − s2|2.

• f1, f2 : H1(Ω)×H1
0 (Ω) −→ L2(Ω) are globally Lipschitz.

• h ◦ γ : H1(Ω) −→ L2(Γ) is globally Lipschitz.

Then, system (2.13) has a unique global strong solution U ∈ W 1,∞(0, T ;H) for
arbitrary T > 0, provided the datum U0 ∈ D(A ).

Proof. In order to prove Lemma 2.1 it suffices to show that the operator A + ωI
is m-accretive for some positive ω. We say an operator A : D(A ) ⊂ H −→ H is
accretive if (A x1−A x2, x1−x2)H ≥ 0, for all x1, x2 ∈ D(A ), and it is m-accretive
if, in addition, A + I maps D(A ) onto H. In fact, by Kato’s Theorem (see [39] for
instance), if A + ωI is m-accretive for some positive ω, then for each U0 ∈ D(A )
there is a unique strong solution U of (2.15), i.e., U ∈ W 1,∞(0, T ;H) such that
U(0) = U0, U(t) ∈ D(A ) for all t ∈ [0, T ], and equation (2.15) is satisfied a.e.
[0, T ], where T > 0 is arbitrary.

Step 1: Proof for A + ωI is accretive for some positive ω. Let U = [u, v, y, z],

Û = [û, v̂, ŷ, ẑ] ∈ D(A ). We aim to find ω > 0 such that

((A + ωI)U − (A + ωI)Û , U − Û)H ≥ 0.

By straightforward calculations, we obtain

((A + ωI)U − (A + ωI)Û , U − Û)H = (A (U)− A (Û), U − Û)H + ω|U − Û |2H
= −(y − ŷ, u− û)1,Ω − (z − ẑ, v − v̂)1,Ω + 〈ΔR(u− û), y − ŷ〉
− 〈ΔRR(h(γu)− h(γû)), y − ŷ〉+ 〈S(y)− S(ŷ), y − ŷ〉
− (f1(u, v)− f1(û, v̂), y − ŷ)Ω − 〈Δ(v − v̂), z − ẑ〉
+ 〈g2(z)− g2(ẑ), z − ẑ〉 − (f2(u, v)− f2(û, v̂), z − ẑ)Ω

+ ω(‖u− û‖21,Ω + ‖v − v̂‖21,Ω + ‖y − ŷ‖22 + ‖z − ẑ‖22).

(2.16)

Notice

−〈Δ(v − v̂), z − ẑ〉 = (∇(v − v̂),∇(z − ẑ))Ω = (v − v̂, z − ẑ)1,Ω.(2.17)
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Moreover, since g2(y) − g2(ŷ) ∈ H−1(Ω) ∩ L1(Ω) and z − ẑ ∈ H1
0 (Ω) satisfying

(g2(z(x))− g2(ẑ(x)))(z(x)− ẑ(x)) ≥ 0, for all x ∈ Ω, then by Lemma 2.2 (p. 89) in
[5], we have (g2(z)− g2(ẑ))(z − ẑ) ∈ L1(Ω) and

〈g2(z)− g2(ẑ), z − ẑ〉 =
∫
Ω

(g2(z)− g2(ẑ))(z − ẑ)dx ≥ 0.(2.18)

Now we show

〈S(y)− S(ŷ), y − ŷ〉

≥
∫
Ω

(g1(y)− g1(y))(y − ŷ)dx+

∫
Γ

(g(γy)− g(γŷ))(γy − γŷ)dΓ.(2.19)

Since y − ŷ ∈ H1(Ω), if we set

wn =

⎧⎨
⎩

n if y − ŷ ≥ n,
y − ŷ if |y − ŷ| ≤ n,
−n if y − ŷ ≤ −n,

(2.20)

then wn ∈ H1(Ω) ∩ L∞(Ω). So by (2.12) one has

〈S(y)− S(ŷ), wn〉 =
∫
Ω

(g1(y)− g1(ŷ))wndx+

∫
Γ

(g(γy)− g(γŷ))γwndΓ.(2.21)

Moreover, by (2.20) we know wn and y − ŷ have the same sign; then since g1 is
monotone increasing, one has (g1(y)−g1(ŷ))wn ≥ 0 a.e. in Ω. Therefore, by Fatou’s
Lemma, we obtain

lim inf
n→∞

∫
Ω

(g1(y)− g1(ŷ))wndx ≥
∫
Ω

(g1(y)− g1(ŷ))(y − ŷ)dx.(2.22)

Likewise, we have

lim inf
n→∞

∫
Γ

(g(γy)− g(γŷ))γwndΓ ≥
∫
Γ

(g(γy)− g(γŷ))(γy − γŷ)dΓ.(2.23)

Since wn → y − ŷ in H1(Ω), by taking the lower limit on both sides of (2.21) and
using (2.22)-(2.23), we conclude that the inequality (2.19) holds.

By using (2.1), (2.4), (2.17), (2.18) and (2.19), we obtain from (2.16) that

((A + ωI)U − (A + ωI)Û , U − Û)H

≥ (g(γy)− g(γŷ), γy − γŷ)Γ − (h(γu)− h(γû), γy − γŷ)Γ

− (f1(u, v)− f1(û, v̂), y − ŷ)Ω − (f2(u, v)− f2(û, v̂), z − ẑ)Ω

+ ω(‖u− û‖21,Ω + ‖v − v̂‖21,Ω + ‖y − ŷ‖22 + ‖z − ẑ‖22).(2.24)

Let V = H1(Ω)×H1
0 (Ω) and recall the assumption that f1, f2 and h are globally

Lipschitz continuous with Lipschitz constant Lf1 , Lf2 , and Lh, respectively. Let
L = max{Lf1 , Lf2 , Lh}. Therefore, by employing the strong monotonicity condition
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on g and Young’s inequality, we have

(g(γy)− g(γŷ), γy − γŷ)Γ − (h(γu)− h(γû), γy − γŷ)Γ

− (f1(u, v)− f1(û, v̂), y − ŷ)Ω − (f2(u, v)− f2(û, v̂), z − ẑ)Ω

≥ mg|γy − γŷ|22 − L ‖u− û‖1,Ω |γy − γŷ|2 − L ‖(u− û, v − v̂)‖V ‖y − ŷ‖2
− L ‖(u− û, v − v̂)‖V ‖z − ẑ‖2

≥ mg|γy − γŷ|22 −
L2

4ε
‖u− û‖21,Ω − ε|γy − γŷ|22 −

L

2
(‖u− û‖21,Ω + ‖v − v̂‖21,Ω)

− L

2
‖y − ŷ‖22 −

L

2
(‖u− û‖21,Ω + ‖v − v̂‖21,Ω)−

L

2
‖z − ẑ‖22.

(2.25)

Combining (2.24) and (2.25) leads to

((A + ωI)U − (A + ωI)Û , U − Û)H

≥ (mg − ε)|γy − γŷ|22 + (ω − L2

4ε
− L)‖u− û‖21,Ω

+ (ω − L)‖v − v̂‖21,Ω + (ω − L

2
)‖y − ŷ‖22 + (ω − L

2
)‖z − ẑ‖22.

Therefore, by choosing ε < mg and ω > L2

4ε + L, then A + ωI is accretive.

Step 2: Proof for A +λI is m-accretive, for some λ > 0. To this end, it suffices to
show that the range of A + λI is all of H, for some λ > 0.

Let (a, b, c, d) ∈ H. We have to show that there exists (u, v, y, z) ∈ D(A ) such
that (A + λI)(u, v, y, z) = (a, b, c, d), for some λ > 0, i.e.,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−y + λu = a,

−z + λv = b,

ΔR(u− Rh(γu)) + S(y)− f1(u, v) + λy = c,

−Δv + g2(z)− f2(u, v) + λz = d.

(2.26)

Note that (2.26) is equivalent to

{
1
λΔR(y)−ΔRRh

(
γ a+y

λ

)
+ S(y)− f1

(
a+y
λ , b+z

λ

)
+ λy = c− 1

λΔR(a),

− 1
λΔz + g2(z)− f2

(
a+y
λ , b+z

λ

)
+ λz = d+ 1

λΔb.
(2.27)

Recall that V = H1(Ω) × H1
0 (Ω) and notice that the right hand side of (2.27)

belongs to V ′. Thus, we define the operator B : D(B) ⊂ V −→ V ′ by

B

[
y
z

]tr
=

[
1
λΔR(y)−ΔRRh

(
γ a+y

λ

)
+ S(y)− f1

(
a+y
λ , b+z

λ

)
+ λy

− 1
λΔz + g2(z)− f2

(
a+y
λ , b+z

λ

)
+ λz

]tr
,

where D(B) = {(y, z) ∈ V : y ∈ D(S), g2(z) ∈ H−1(Ω) ∩ L1(Ω)}. Therefore, the
issue reduces to proving that B : D(B) ⊂ V −→ V ′ is surjective. By Corollary 1.2
(p. 45) in [5], it is enough to show that B is maximal monotone and coercive.
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We split B as two operators:

B1

[
y
z

]tr
=

[
1
λΔR(y)−ΔRRh

(
γ a+y

λ

)
− f1

(
a+y
λ , b+z

λ

)
+ λy

− 1
λΔz − f2

(
a+y
λ , b+z

λ

)
+ λz

]tr

and

B2

[
y
z

]tr
=

[
S(y)
g2(z)

]tr
.

B1 is maximal monotone and coercive. First we note D(B1) = V . To see

that B1 : V −→ V ′ is monotone, we let Y = (y, z) ∈ V and Ŷ = (ŷ, ẑ) ∈ V . By
straightforward calculations, we obtain

〈B1Y − B1Ŷ , Y − Ŷ 〉

=
1

λ
〈ΔR(y − ŷ), y − ŷ〉 −

〈
ΔRR

(
h

(
γ
a+ y

λ

)
− h

(
γ
a+ ŷ

λ

))
, y − ŷ

〉

−
(
f1

(
a+ y

λ
,
b+ z

λ

)
− f1

(
a+ ŷ

λ
,
b+ ẑ

λ

)
, y − ŷ

)
Ω

+ λ‖y − ŷ‖22 −
1

λ
〈Δ(z − ẑ), z − ẑ〉

−
(
f2

(
a+ y

λ
,
b+ z

λ

)
− f2

(
a+ ŷ

λ
,
b+ ẑ

λ

)
, z − ẑ

)
Ω

+ λ‖z − ẑ‖22.

By (2.1) and (2.4) we have

〈B1Y − B1Ŷ , Y − Ŷ 〉

=
1

λ
(y − ŷ, y − ŷ)1,Ω −

(
h

(
γ
a+ y

λ

)
− h

(
γ
a+ ŷ

λ

)
, γy − γŷ

)
Γ

−
(
f1

(
a+ y

λ
,
b+ z

λ

)
− f1

(
a+ ŷ

λ
,
b+ ẑ

λ

)
, y − ŷ

)
Ω

+ λ‖y − ŷ‖22 +
1

λ
(z − ẑ, z − ẑ)1,Ω

−
(
f2

(
a+ y

λ
,
b+ z

λ

)
− f2

(
a+ ŷ

λ
,
b+ ẑ

λ

)
, z − ẑ

)
Ω

+ λ‖z − ẑ‖22.

Since f1, f2, h are Lipschitz continuous with Lipschitz constant L,

〈B1Y − B1Ŷ , Y − Ŷ 〉 ≥ 1

λ
‖y − ŷ‖21,Ω − L

λ
‖y − ŷ‖1,Ω|γy − γŷ|2

− L

λ
‖(y − ŷ, z − ẑ)‖V ‖y − ŷ‖2 + λ‖y − ŷ‖22 +

1

λ
‖z − ẑ‖21,Ω

− L

λ
‖(y − ŷ, z − ẑ)‖V ‖z − ẑ‖2 + λ‖z − ẑ‖22.
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Applying Young’s inequality yields

〈B1Y − B1Ŷ , Y − Ŷ 〉 ≥ 1

λ
‖y − ŷ‖21,Ω − L2

4ηλ
‖y − ŷ‖21,Ω − η

λ
|γy − γŷ|22

− L2

4ηλ
(‖y − ŷ‖21,Ω + ‖z − ẑ‖21,Ω)−

η

λ
‖y − ŷ‖22 + λ‖y − ŷ‖22 +

1

λ
‖z − ẑ‖21,Ω

− L2

4ηλ
(‖y − ŷ‖21,Ω + ‖z − ẑ‖21,Ω)−

η

λ
‖z − ẑ‖22 + λ‖z − ẑ‖22

≥
(
1

λ
− 3L2

4ηλ

)
‖y − ŷ‖21,Ω − η

λ
|γy − γŷ|22

+

(
1

λ
− 2L2

4ηλ

)
‖z − ẑ‖21,Ω +

(
λ− η

λ

)
(‖y − ŷ‖22 + ‖z − ẑ‖22).

By using the imbedding H
1
2 (Ω) ↪→ L2(Γ) and the interpolation inequality (1.4), we

obtain
|γu|22 ≤ C‖u‖2

H
1
2 (Ω)

≤ δ‖u‖21,Ω + Cδ‖u‖22,

for all u ∈ H1(Ω), where δ > 0. It follows that

|γy − γŷ|22 ≤ δ‖y − ŷ‖21,Ω + Cδ‖y − ŷ‖22.
Thus,

〈B1Y − B1Ŷ , Y − Ŷ 〉 ≥
(

1

2λ
− 3L2

4ηλ
− ηδ

λ

)
‖y − ŷ‖21,Ω

+ (λ− η + ηCδ

λ
)‖y − ŷ‖22 + (λ− η

λ
)‖z − ẑ‖22 +

(
1

2λ
− 2L2

4ηλ

)
‖z − ẑ‖21,Ω

+
1

2λ
(‖y − ŷ‖21,Ω + ‖z − ẑ‖21,Ω).

Note that the sign of

1

2λ
− 3L2

4ηλ
− ηδ

λ
=

2− 3L2/η − 4ηδ

4λ

does not depend on the value of λ. So, we let η > 3L2 and choose δ > 0 sufficiently
small so that 4ηδ < 1. In addition, we select λ sufficiently large such that λ2 >
η + ηCδ. Therefore,

〈B1Y − B1Ŷ , Y − Ŷ 〉 ≥ 1

2λ
(‖y − ŷ‖21,Ω + ‖z − ẑ‖21,Ω) =

1

2λ
‖Y − Ŷ ‖2V ,

proving that B1 is strongly monotone. It is easy to see that strong monotonicity
implies coercivity of B1.

Next, we show that B1 is continuous. Clearly, ΔR : H1(Ω) −→ (H1(Ω))′ and
Δ : H1

0 (Ω) −→ H−1(Ω) are continuous. Moreover, if we set

f̃j(y, z) := fj

(
a+ y

λ
,
b+ z

λ

)
, j = 1, 2,

then, since f1, f2 : V −→ L2(Ω) are globally Lipschitz, it is clear that the mappings

f̃1 : V −→ (H1(Ω))′ and f̃2 : V −→ H−1(Ω) are also Lipschitz continuous.
To see that the mapping

h̃(y) := ΔRRh

(
γ
a+ y

λ

)
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is Lipschitz continuous from H1(Ω) into (H1(Ω))′, we use (2.4) and the assumption
that h ◦ γ : H1(Ω) −→ L2(Γ) is globally Lipschitz continuous. Indeed,∥∥∥h̃(y)− h̃(ŷ)

∥∥∥
(H1(Ω))′

= sup
‖ϕ‖1,Ω=1

(
h

(
γ
a+ y

λ

)
− h

(
γ
a+ ŷ

λ

)
, γϕ

)
Γ

≤ C

∣∣∣∣h
(
γ
a+ y

λ

)
− h

(
γ
a+ ŷ

λ

)∣∣∣∣
2

≤ CL

λ
‖y − ŷ‖1,Ω .

It follows that B1 : V −→ V ′ is continuous, and along with the monotonicity of
B1, we conclude that B1 is maximal monotone.

B2 is maximal monotone. First we note that D(B2) = D(B) = {(y, z) ∈ V :
y ∈ D(S), g2(z) ∈ H−1(Ω)∩L1(Ω)}. Remember in Subsection 2.1 we have already
shown that S : D(S) ⊂ H1(Ω) −→ (H1(Ω))′ is maximal monotone. In order to
study the operator g2(z), we define the functional J2 : H1

0 (Ω) −→ [0,∞] by

J2(z) =

∫
Ω

j2(z(x))dx,

where j2 : R −→ [0,+∞) is a convex function defined by

j2(s) =

∫ s

0

g2(τ )dτ.

Clearly J2 is proper, convex and lower semicontinuous. Moreover, by Corollary 2.3
in [4] we know that ∂J2 : H1

0 (Ω) −→ H−1(Ω) satisfies

(2.28) ∂J2(z) = {μ ∈ H−1(Ω) ∩ L1(Ω) : μ = g2(z) a.e. in Ω}.
That is to say, D(∂J2) = {z ∈ H1

0 (Ω) : g2(z) ∈ H−1(Ω) ∩ L1(Ω)}, and for all z ∈
D(∂J2), ∂J2(z) is a singleton such that ∂J2(z) = {g2(z)}. Since any subdifferential
is maximal monotone, we obtain the maximal monotonicity of the operator g2(·) :
D(∂J2) ⊂ H1

0 (Ω) −→ H−1(Ω). Hence, by Proposition 7.1 in the Appendix, it
follows that B2 : D(B2) ⊂ V −→ V ′ is maximal monotone. Now, since B1 and
B2 are both maximal monotone and D(B1) = V , we conclude that B = B1 + B2

is maximal monotone.
Finally, since B2 is monotone and B20 = 0, it follows that 〈B2Y, Y 〉 ≥ 0 for all

Y ∈ D(S), and along with the fact B1 is coercive, we obtain that B = B1 +B2 is
coercive as well. Then, the surjectivity of B follows immediately by Corollary 1.2
(p. 45) in [5]. Thus, we have proved the existence of (y, z) in D(B) ⊂ V = H1(Ω)×
H1

0 (Ω) such that (y, z) satisfies (2.27). So by (2.26), (u, v) = ( y+a
λ , z+b

λ ) ∈ H1(Ω)×
H1

0 (Ω). In addition, one can easily see that (u, v, y, z) ∈ D(A ). Indeed, we have
ΔR(u−Rh(γu))+S(y)−f1(u, v) = −λy+ c ∈ L2(Ω) and −Δv+g2(z)−f2(u, v) =
−λz + d ∈ L2(Ω). Thus, the proof of maximal accretivity is completed, and so is
the proof of Lemma 2.1. �
2.3. Locally Lipschitz sources. In this subsection, we loosen the restrictions on
sources and allow f1, f2 and h to be locally Lipschitz continuous.

Lemma 2.2. For m, r, q ≥ 1, we assume that:
• g1, g2 and g are continuous and monotone increasing functions with g1(0)
= g2(0) = g(0) = 0. In addition, the following growth conditions hold:
there exist α > 0 such that g1(s)s ≥ α|s|m+1, g2(s)s ≥ α|s|r+1 and g(s)s ≥
α|s|q+1 for |s| ≥ 1. Moreover, there exists mg > 0 such that (g(s1) −
g(s2))(s1 − s2) ≥ mg|s1 − s2|2.
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• f1, f2 : H1(Ω)×H1
0 (Ω) −→ L2(Ω) are locally Lipschitz continuous.

• h ◦ γ : H1(Ω) −→ L2(Γ) is locally Lipschitz continuous.

Then, system (2.13) has a unique local strong solution U ∈ W 1,∞(0, T0;H) for
some T0 > 0, provided the initial datum U0 ∈ D(A ).

Proof. As in [9,12], we use standard truncation of the sources. Recall V = H1(Ω)×
H1

0 (Ω) and define

fK
1 (u, v) =

⎧⎨
⎩

f1(u, v) if ‖(u, v)‖V ≤ K,

f1

(
Ku

‖(u,v)‖V
, Kv
‖(u,v)‖V

)
if ‖(u, v)‖V > K,

fK
2 (u, v) =

⎧⎨
⎩

f2(u, v) if ‖(u, v)‖V ≤ K,

f2

(
Ku

‖(u,v)‖V
, Kv
‖(u,v)‖V

)
if ‖(u, v)‖V > K,

hK(u) =

⎧⎨
⎩

h(γu) if ‖u‖1,Ω ≤ K,

h
(
γ Ku
‖u‖1,Ω

)
if ‖u‖1,Ω > K,

where K is a positive constant such that K2 ≥ 4E(0) + 1, where the energy E(t)

is given by E(t) = 1
2

(
‖u(t)‖21,Ω + ‖v(t)‖21,Ω + ‖ut(t)‖22 + ‖vt(t)‖22

)
.

With the truncated sources above, we consider the following K problem:

(K)

⎧⎪⎪⎨
⎪⎪⎩

utt +ΔR(u−RhK(u)) + S(ut) = fK
1 (u, v) in Ω× (0,∞),

vtt −Δv + g2(vt) = fK
2 (u, v) in Ω× (0,∞),

u(x, 0) = u0(x) ∈ H1(Ω), ut(x, 0) = u1(x) ∈ H1(Ω),
v(x, 0) = v0(x) ∈ H1

0 (Ω), vt(x, 0) = v1(x) ∈ H1
0 (Ω).

We note here that for each such K, the operators fK
1 , fK

2 : H1(Ω)×H1
0 (Ω) −→

L2(Ω) and hK : H1(Ω) −→ L2(Γ) are globally Lipschitz continuous (see [12]).
Therefore, by Lemma 2.1, the (K) problem has a unique global strong solution
UK ∈ W 1,∞(0, T ;H) for any T > 0, provided the initial datum U0 ∈ D(A ).

In what follows, we shall express (uK(t), vK(t)) as (u(t), v(t)). Since ut ∈ D(S) ⊂
H1(Ω) and vt ∈ H1

0 (Ω) such that g(vt) ∈ H−1(Ω) ∩ L1(Ω), then by (2.10) and
Lemma 2.2 (p. 89) in [5], we may use the multipliers ut and vt on the K problem
and obtain the following energy identity:

E(t) +

∫ t

0

∫
Ω

(
g1(ut)ut + g2(vt)vt

)
dxdτ +

∫ t

0

∫
Γ

g(γut)γutdΓdτ

= E(0) +

∫ t

0

∫
Ω

(fK
1 (u, v)ut + fK

2 (u, v)vt)dxdτ +

∫ t

0

∫
Γ

hK(u)γutdΓdτ.(2.29)

In addition, since m, r, q ≥ 1, we know m̃ = m+1
m , r̃ = r+1

r , q̃ = q+1
q ≤ 2. Hence,

by our assumptions on the sources, it follows that f1: H
1(Ω)×H1

0 (Ω) −→ Lm̃(Ω),
f2: H

1(Ω)×H1
0 (Ω) −→ Lr̃(Ω), and h◦γ: H1(Ω) −→ Lq̃(Γ) are all locally Lipschitz

with Lipschitz constant Lf1(K), Lf2(K), Lh(K), respectively, on the ball {(u, v) ∈
V : ‖(u, v)‖V ≤ K. Put

LK = max{Lf1(K), Lf2(K), Lh(K)}.

By using similar calculations as in [12], we deduce fK
1 : H1(Ω)×H1

0 (Ω) −→ Lm̃(Ω),
fK
2 : H1(Ω)×H1

0 (Ω) −→ Lr̃(Ω) and hK : H1(Ω) −→ Lq̃(Γ) are globally Lipschitz
with Lipschitz constant LK .
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We now estimate the terms due to the sources in the energy identity (2.29). By
using Hölder’s and Young’s inequalities, we have

∫ t

0

∫
Ω

fK
1 (u, v)utdxdτ ≤

∫ t

0

∥∥fK
1 (u, v)

∥∥
m̃
‖ut‖m+1 dτ

≤ ε

∫ t

0

‖ut‖m+1
m+1 dτ + Cε

∫ t

0

∥∥fK
1 (u, v)

∥∥m̃
m̃
dτ

≤ ε

∫ t

0

‖ut‖m+1
m+1 dτ + Cε

∫ t

0

(∥∥fK
1 (u, v)− fK

1 (0, 0)
∥∥m̃
m̃
d+

∥∥fK
1 (0, 0)

∥∥m̃
m̃

)
dτ

≤ ε

∫ t

0

‖ut‖m+1
m+1 dτ + CεL

m̃
K

∫ t

0

(‖u‖m̃1,Ω + ‖v‖m̃1,Ω)dτ + Cεt|f1(0, 0)|m̃|Ω|.

(2.30)

Likewise, we deduce∫ t

0

∫
Ω

fK
2 (u, v)vtdxdτ

≤ ε

∫ t

0

‖vt‖r+1
r+1 dτ + CεL

r̃
K

∫ t

0

(‖u‖r̃1,Ω + ‖v‖r̃1,Ω)dτ + Cεt|f2(0, 0)|r̃|Ω|(2.31)

and

∫ t

0

∫
Γ

hK(u)γutdΓdτ ≤ ε

∫ t

0

|γut|q+1
q+1dτ + CεL

q̃
K

∫ t

0

‖u‖q̃1,Ω dτ + Cεt|h(0)|q̃|Γ|.

(2.32)

By the assumptions on damping, it follows that

g1(s)s ≥ α(|s|m+1 − 1), g2(s)s ≥ α(|s|r+1 − 1), g(s)s ≥ α(|s|q+1 − 1)(2.33)

for all s ∈ R. Therefore,⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ t

0

∫
Ω
g1(ut)utdxdτ ≥ α

∫ t

0
‖ut‖m+1

m+1 dτ − αt|Ω|,∫ t

0

∫
Ω
g2(vt)vtdxdτ ≥ α

∫ t

0
‖vt‖r+1

r+1 dτ − αt|Ω|,∫ t

0

∫
Γ
g(γut)γutdΓdτ ≥ α

∫ t

0
|γut|q+1

q+1dτ − αt|Γ|.

(2.34)

By combining (2.30)-(2.34) in the energy identity (2.29), one has

E(t) + α

∫ t

0

(‖ut‖m+1
m+1 + ‖vt‖r+1

r+1 + |γut|q+1
q+1)dτ − αt(2|Ω|+ |Γ|)

≤ E(0) + ε

∫ t

0

(‖ut‖m+1
m+1 + ‖vt‖r+1

r+1 + |γut|q+1
q+1)dτ

+ CεL
m̃
K

∫ t

0

(‖u‖m̃1,Ω + ‖v‖m̃1,Ω)dτ + CεL
r̃
K

∫ t

0

(‖u‖r̃1,Ω + ‖v‖r̃1,Ω)dτ

+ CεL
q̃
K

∫ t

0

‖u‖q̃1,Ω dτ + Cεt(|f1(0, 0)|m̃|Ω|+ |f2(0, 0)|r̃|Ω|+ |h(0)|q̃|Γ|).(2.35)
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If ε ≤ α, then (2.35) implies

E(t) ≤E(0) + CεL
m̃
K

∫ t

0

(‖u‖m̃1,Ω + ‖v‖m̃1,Ω)dτ

+ CεL
r̃
K

∫ t

0

(‖u‖r̃1,Ω + ‖v‖r̃1,Ω)dτ + CεL
q̃
K

∫ t

0

‖u‖q̃1,Ω dτ

+ Cεt(|f1(0, 0)|m̃|Ω|+ |f2(0, 0)|r̃|Ω|+ |h(0)|q̃|Γ|) + αt(2|Ω|+ |Γ|).(2.36)

Since m̃, r̃, q̃ ≤ 2, then by Young’s inequality,∫ t

0

(‖u‖m̃1,Ω + ‖v‖m̃1,Ω)dτ ≤
∫ t

0

(‖u‖21,Ω + ‖v‖21,Ω + C̃)dτ ≤ 2

∫ t

0

E(τ )dτ + C̃t,

∫ t

0

(‖u‖r̃1,Ω + ‖v‖r̃1,Ω)dτ ≤ 2

∫ t

0

E(τ )dτ + C̃t,

∫ t

0

‖u‖q̃1,Ω dτ ≤ 2

∫ t

0

E(τ )dτ + C̃t,

where C̃ is a positive constant that depends on m, r and q. Therefore, if we
set C(LK) = 2Cε(L

m̃
K + Lr̃

K + Lq̃
K) and C0 = Cε(|f1(0, 0)|m̃|Ω| + |f2(0, 0)|r̃|Ω| +

|h(0)|q̃|Γ|) + α(2|Ω|+ |Γ|) + 3C̃, then it follows from (2.36) that

E(t) ≤ (E(0) + C0T0) + C(LK)

∫ t

0

E(τ )dτ, for all t ∈ [0, T0],

where T0 will be chosen below. By Gronwall’s inequality, one has

E(t) ≤ (E(0) + C0T0)e
C(LK)t for all t ∈ [0, T0].(2.37)

We select

T0 = min

{
1

4C0
,

1

C(LK)
log 2

}
,(2.38)

and recall our assumption that K2 ≥ 4E(0) + 1. Then, it follows from (2.37) that

E(t) ≤ 2(E(0) + 1/4) ≤ K2/2,(2.39)

for all t ∈ [0, T0]. This implies that ‖(u(t), v(t))‖V ≤ K, for all t ∈ [0, T0], and
therefore, fK

1 (u, v) = f1(u, v), f
K
2 (u, v) = f2(u, v) and hK(u) = h(γu) on the time

interval [0, T0]. Because of the uniqueness of solutions for the (K) problem, the
solution to the truncated problem (K) coincides with the solution to the system
(2.13) for t ∈ [0, T0], completing the proof of Lemma 2.2. �

Remark 2.3. In Lemma 2.2, the local existence time T0 depends on LK , which is

the local Lipschitz constant of: f1 : H1(Ω) × H1
0 (Ω) −→ L

m+1
m (Ω), f2 : H1(Ω) ×

H1
0 (Ω) −→ L

r+1
r (Ω) and h(γu) : H1(Ω) −→ L

q+1
q (Γ). The advantage of this result

is that T0 does not depend on the locally Lipschitz constants for the mapping
f1, f2 : H1(Ω) × H1

0 (Ω) −→ L2(Ω) and h(γu) : H1(Ω) −→ L2(Γ). This fact is
critical for the remaining parts of the proof of the local existence statement in
Theorem 1.3.
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2.4. Lipschitz approximations of the sources. This subsection is devoted to
constructing Lipschitz approximations of the sources. The following propositions
are needed.

Proposition 2.4. Assume 1 ≤ p < 6, m, r ≥ 1, pm+1
m ≤ 6

1+2ε , and p r+1
r ≤ 6

1+2ε ,

for some ε > 0. Further assume that f1, f2 ∈ C1(R2) such that

|∇fj(u, v)| ≤ C(|u|p−1 + |v|p−1 + 1),(2.40)

for j = 1, 2 and all u, v ∈ R. Then, fj : H1−ε(Ω) ×H1−ε
0 (Ω) −→ Lσ(Ω) is locally

Lipschitz continuous, j = 1, 2, where σ = m+1
m or σ = r+1

r .

Remark 2.5. Since H1(Ω) ↪→ H1−ε(Ω), then it follows from Proposition 2.4 that

each fj is locally Lipschitz from H1(Ω) × H1
0 (Ω) into L

m+1
m (Ω) or L

r+1
r (Ω). In

particular, if 1 ≤ p ≤ 3, then it is easy to verify that each fj is locally Lipschitz
from H1(Ω)×H1

0 (Ω) −→ L2(Ω).

Proof. It is enough to prove that f1 : H1−ε(Ω) × H1−ε
0 (Ω) −→ Lm̃(Ω) is locally

Lipschitz continuous, where m̃ = m+1
m . Let (u, v), (û, v̂) ∈ Ṽ := H1−ε(Ω)×H1−ε

0 (Ω)
such that ‖(u, v)‖Ṽ , ‖(û, v̂)‖Ṽ ≤ R, where R > 0. By (2.40) and the mean value
theorem, we have

|f1(u, v)− f1(û, v̂)|

≤ C
(
|u− û|+ |v − v̂|

)(
|u|p−1 + |û|p−1 + |v|p−1 + |v̂|p−1 + 1

)
.(2.41)

Therefore,

‖f1(u, v)− f1(û, v̂)‖m̃m̃ =

∫
Ω

|f1(u, v)− f1(û, v̂)|m̃dx

≤ C

∫
Ω

(
|u− û|m̃ + |v − v̂|m̃

)
(
|u|(p−1)m̃ + |v|(p−1)m̃ + |û|(p−1)m̃ + |v̂|(p−1)m̃ + 1

)
dx.(2.42)

All terms in (2.42) are estimated in the same manner. In particular, for a typical
term in (2.42), we estimate it by Hölder’s inequality and the Sobolev imbedding

H1−ε(Ω) ↪→ L
6

1+2ε (Ω), together with the assumption pm̃ ≤ 6
1+2ε and ‖u‖H1−ε(Ω) ≤

R. For instance,∫
Ω

|u− û|m̃|u|(p−1)m̃dx ≤
(∫

Ω

|u− û|pm̃dx

) 1
p
(∫

Ω

|u|pm̃dx

) p−1
p

≤ C ‖u− û‖m̃H1−ε(Ω) ‖u‖
(p−1)m̃
H1−ε(Ω) ≤ CR(p−1)m̃ ‖u− û‖m̃H1−ε(Ω) .

Hence, we obtain

‖f1(u, v)− f1(û, v̂)‖m̃ ≤ C(R) ‖(u− û, v − v̂)‖H1−ε(Ω)×H1−ε
0 (Ω) ,

completing the proof. �

Recall that for the values 3 < p < 6, the sources f1(u, v) and f2(u, v) are not
locally Lipschitz continuous from H1(Ω)×H1

0 (Ω) into L2(Ω). So, in order to apply
Lemma 2.2 to prove Theorem 1.3, we shall construct Lipschitz approximations of the
sources f1 and f2. In particular, we shall use smooth cutoff functions ηn ∈ C∞

0 (R2),
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similar to those used in [30], such that each ηn satisfies: 0 ≤ ηn ≤ 1; ηn(u, v) = 1
if |(u, v)| ≤ n; ηn(u, v) = 0 if |(u, v)| ≥ 2n; and |∇ηn(u, v)| ≤ C/n. Put

(2.43) fn
j (u, v) = fj(u, v)ηn(u, v), u, v ∈ R, j = 1, 2, n ∈ N,

where f1 and f2 satisfy Assumption 1.1. The following proposition summarizes
important properties of fn

1 and fn
2 .

Proposition 2.6. For each j = 1, 2, n ∈ N, then function fn
j , defined in (2.43),

satisfies:

• fn
j (u, v) : H

1(Ω) ×H1
0 (Ω) −→ L2(Ω) is globally Lipschitz continuous with

Lipschitz constant depending on n.
• There exists ε > 0 such that fn

j : H1−ε(Ω)×H1−ε
0 (Ω) −→ Lσ(Ω) is locally

Lipschitz continuous where the local Lipschitz constant is independent of n,
and where σ = m+1

m or σ = r+1
r .

Proof. It is enough to prove the proposition for the function fn
1 . Let (u, v), (û, v̂) ∈

H1(Ω)×H1
0 (Ω) and put

Ω1 = {x ∈ Ω : |(u(x), v(x))| < 2n, |(û(x), v̂(x))| < 2n},
Ω2 = {x ∈ Ω : |(u(x), v(x))| < 2n, |(û(x), v̂(x))| ≥ 2n},
Ω3 = {x ∈ Ω : |(u(x), v(x))| ≥ 2n, |(û(x), v̂(x))| < 2n}.(2.44)

By the definition of η, it is clear that fn
1 (u, v) = fn

1 (û, v̂) = 0 if |(u, v)| ≥ 2n and
|(û, v̂)| ≥ 2n. Therefore, by (2.43) we have

‖fn
1 (u, v)− fn

1 (û, v̂)‖
2
2 = I1 + I2 + I3,(2.45)

where Ij =
∫
Ωj

|f1(u, v)ηn(u, v)− f1(û, v̂)ηn(û, v̂)|2dx, j = 1, 2, 3.

Notice that

I1 ≤ 2

∫
Ω1

|f1(u, v)|2|ηn(u, v)− ηn(û, v̂)|2dx

+ 2

∫
Ω1

|ηn(û, v̂)|2|f1(u, v)− f1(û, v̂)|2dx.(2.46)

Since |∇f1(u, v)| ≤ C(|u|p−1 + |v|p−1 + 1), we have

|f1(u, v)| ≤ C(|u|p + |v|p + 1),(2.47)

and along with the fact |u|, |v| ≤ 2n in Ω1 and |∇ηn| ≤ C/n, we obtain∫
Ω1

|f1(u, v)|2|ηn(u, v)− ηn(û, v̂)|2dx

≤ C

∫
Ω1

(|u|p + |v|p + 1)2|∇ηn(ξ1, ξ2)|2|(u− û, v − v̂)|2dx

≤ Cn2p−2

∫
Ω1

(|u− û|2 + |v − v̂|2)dx.(2.48)
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Moreover, since |ηn| ≤ 1 and |u|, |û|, |v|, |v̂| ≤ 2n in Ω1, then by (2.41) we deduce∫
Ω1

|ηn(û, v̂)|2|f1(u, v)− f1(û, v̂)|2dx

≤ C

∫
Ω1

(|u− û|2 + |v − v̂|2)
(
|u|p−1 + |v|p−1 + |û|p−1 + |v̂|p−1 + 1

)2
dx

≤ Cn2p−2

∫
Ω1

(|u− û|2 + |v − v̂|2)dx.(2.49)

Therefore, it follows from (2.46), (2.48) and (2.49) that

I1 ≤ C(n)

∫
Ω1

(|u− û|2 + |v − v̂|2)dx,

where C(n) = Cn2p−2. To estimate I2, we note that ηn(û, v̂) = 0 in Ω2. Then a
similar argument as in (2.48) yields

I2 =

∫
Ω2

|f1(u, v)|2|ηn(u, v)− ηn(û, v̂)|2dx ≤ C(n)

∫
Ω2

(|u− û|2 + |v − v̂|2)dx,

(2.50)

where C(n) is as in (2.49). By reversing the roles of (u, v) and (û, v̂), one also
obtains I3 ≤ C(n)

∫
Ω3

(|u− û|2 + |v − v̂|2)dx. Thus it follows that

‖fn
1 (u, v)− fn

1 (û, v̂)‖
2
2 ≤ C(n)(‖u− û‖22 + ‖v − v̂‖22)
≤ C(n) ‖(u− û, v − v̂)‖2H1(Ω)×H1

0 (Ω) ,

where C(n) = Cn2p−2, which completes the proof of the first statement of the
proposition.

To prove the second statement we recall Assumption 1.1, in particular, pm+1
m <

6. Then, there exists ε > 0 such that pm+1
m ≤ 6

1+2ε . Let (u, v), (û, v̂) ∈ Ṽ :=

H1−ε(Ω) × H1−ε
0 (Ω) such that ‖(u, v)‖Ṽ , ‖(û, v̂)‖Ṽ ≤ R, where R > 0, and recall

the notation m̃ = m+1
m . Then,

‖fn
1 (u, v)− fn

1 (û, v̂)‖
m̃
m̃ = P1 + P2 + P3,(2.51)

where

Pj =

∫
Ωj

|f1(u, v)ηn(u, v)− f1(û, v̂)ηn(û, v̂)|m̃dx, j = 1, 2, 3,

and each Ωj is as defined in (2.44). Since |ηn| ≤ 1, one has

P1 ≤ C

∫
Ω1

|f1(u, v)|m̃|ηn(u, v)− ηn(û, v̂)|m̃dx

+ C

∫
Ω1

|ηn(û, v̂)|m̃|f1(u, v)− f1(û, v̂)|m̃dx

≤ C

∫
Ω1

|f1(u, v)|m̃|ηn(u, v)− ηn(û, v̂)|m̃dx+ C ‖f1(u, v)− f1(û, v̂)‖m̃m̃ .(2.52)
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By (2.47) and the mean value theorem, we obtain∫
Ω1

|f1(u, v)|m̃|ηn(u, v)− ηn(û, v̂)|m̃dx

≤ C

∫
Ω1

(|u|p + |v|p + 1)m̃|∇ηn(ξ1, ξ2)|m̃|(u− û, v − v̂)|m̃dx

≤ C

∫
Ω1

(|u|(p−1)m̃ + |v|(p−1)m̃ + 1)(|u− û|m̃ + |v − v̂|m̃)dx,(2.53)

where we have used the facts |u|, |v| ≤ 2n in Ω1 and |∇ηn| ≤ C/n.
All terms in (2.53) are estimated in the same manner. By using Hölder’s inequal-

ity, the Sobolev imbedding H1−ε(Ω) ↪→ L
6

1+2ε (Ω), together with the assumption
pm̃ ≤ 6

1+2ε and ‖u‖H1−ε(Ω) ≤ R, we obtain

∫
Ω1

|u|(p−1)m̃|u− û|m̃dx ≤
(∫

Ω1

|u|pm̃dx

) p−1
p
(∫

Ω1

|u− û|pm̃
) 1

p

≤ C ‖u‖(p−1)m̃
H1−ε(Ω) ‖u− û‖m̃H1−ε(Ω) ≤ CR(p−1)m̃ ‖u− û‖m̃H1−ε(Ω) .(2.54)

Therefore, it is easy to see that∫
Ω1

|f1(u, v)|m̃|ηn(u, v)− ηn(û, v̂)|m̃dx ≤ C(R) ‖(u− û, v − v̂)‖m̃Ṽ .(2.55)

By Proposition 2.4, we know f1 : Ṽ = H1−ε(Ω) × H1−ε
0 (Ω) −→ Lm̃(Ω) is locally

Lipschitz. Therefore, it follows from (2.52) and (2.55) that

P1 ≤ C(R) ‖(u− û, v − v̂)‖m̃Ṽ .

To estimate P2, we use ηn(û, v̂) = 0 in Ω2 and adopt the same computation in
(2.53)-(2.55). Thus, we deduce

P2 =

∫
Ω2

|f1(u, v)|m̃|ηn(u, v)− ηn(û, v̂)|m̃dx ≤ C(R) ‖(u− û, v − v̂)‖m̃Ṽ .

Likewise, P3 ≤ C(R) ‖(u− û, v − v̂)‖m̃Ṽ . Therefore, by (2.51) we have

‖fn
1 (u, v)− fn

1 (û, v̂)‖
m̃
m̃ ≤ C(R) ‖(u− û, v − v̂)‖m̃Ṽ ,

where the local Lipschitz constant C(R) is independent of n. This completes the
proof of the proposition. �

The following proposition deals with the boundary source h.

Proposition 2.7. Assume 1 ≤ k < 4, q ≥ 1 and k q+1
q ≤ 4

1+2ε , for some ε > 0.

If h ∈ C1(R) such that |h′(s)| ≤ C(|s|k−1 + 1), then h ◦ γ is locally Lipschitz:

H1−ε(Ω) −→ L
q+1
q (Γ).

Proof. The proof is very similar to the proof of Proposition 2.4 and it is omitted. �

Remark 2.8. Since H1(Ω) ↪→ H1−ε(Ω), then by Proposition 2.7, we know h ◦ γ is

locally Lipschitz from H1(Ω) into L
q+1
q (Γ). In particular, if 1 ≤ k ≤ 2, we can

directly verify that h ◦ γ is locally Lipschitz from H1(Ω) into L2(Γ).
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We note here that if 2 < k < 4, then h ◦ γ is not locally Lipschitz continuous
from H1(Ω) into L2(Γ). As we have done for the interior sources, we shall construct
Lipschitz approximations for the boundary source h. Let ζn ∈ C∞

0 (R) be a cutoff
function such that 0 ≤ ζn ≤ 1; ζn(s) = 1 if |s| ≤ n; ζn(s) = 0 if |s| ≥ 2n; and
|ζ ′n(s)| ≤ C/n. Put

(2.56) hn(s) = h(s)ζn(s), s ∈ R, n ∈ N,

where h satisfies Assumption 1.1. The following proposition summarizes some im-
portant properties of hn.

Proposition 2.9. For each n ∈ N, the function hn defined in (2.56) has the
following properties:

• hn ◦ γ : H1(Ω) −→ L2(Γ) is globally Lipschitz continuous with Lipschitz
constant depending on n.

• There exists ε > 0 such that hn ◦ γ : H1−ε(Ω) −→ L
q+1
q (Γ) is locally

Lipschitz continuous where the local Lipschitz constant does not depend on
n.

Proof. The proof is similar to the proof of Proposition 2.6 and it is omitted. �
2.5. Approximate solutions and passage to the limit. We complete the proof
of the local existence statement in Theorem 1.3 with the following four steps.

Step 1: Approximate system. Recall that in Lemma 2.2, the boundary damping
g is assumed strongly monotone. However, in Assumption 1.1, we only impose
the monotonicity condition on g. To remedy this, we approximate the boundary
damping with

(2.57) gn(s) = g(s) +
1

n
s, n ∈ N.

Note that gn is strongly monotone with the constant mg = 1
n > 0, since g is

monotone increasing. Indeed, for all s1, s2 ∈ R,

(gn(s1)− gn(s2))(s1 − s2) = (g(s1)− g(s2))(s1 − s2) +
1

n
|s1 − s2|2 ≥ 1

n
|s1 − s2|2.

Corresponding to gn, we define the operator Sn as follows: replace g with gn

in (2.7) to define the functional Jn like J in (2.6), and then, similar to (2.9),
we define the operator Sn : D(Sn) = D(∂Jn) ⊂ H1(Ω) −→ (H1(Ω))′ such that
∂Jn(u) = {Sn(u)}. As in (2.10) and (2.11), we have for all u ∈ D(Sn),

〈Sn(u), u〉 =
∫
Ω

g1(u)udx+

∫
Γ

gn(γu)γudΓ(2.58)

and

〈Sn(u), v〉 =
∫
Ω

g1(u)vdx+

∫
Γ

gn(γu)γvdΓ for all v ∈ C(Ω).(2.59)

Recall H = H1(Ω) × H1
0 (Ω) × L2(Ω) × L2(Ω), and the approximate sources

fn
1 , f

n
2 , h

n which were introduced in (2.43) and (2.56). Now, we define the nonlinear
operator A n : D(A n) ⊂ H −→ H by

(2.60) A n

⎡
⎢⎢⎣

u
v
y
z

⎤
⎥⎥⎦
tr

=

⎡
⎢⎢⎣

−y
−z
ΔR(u−Rhn(γu)) + Sn(y)− fn

1 (u, v)
−Δv + g2(z)− fn

2 (u, v)

⎤
⎥⎥⎦
tr

,
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where D(A n) =
{
(u, v, y, z) ∈

(
H1(Ω) ×H1

0 (Ω)
)2

: ΔR(u − Rhn(γu)) + Sn(y) −
fn
1 (u, v) ∈ L2(Ω), y ∈ D(Sn), −Δv + g2(z) − fn

2 (u, v) ∈ L2(Ω), g2(z) ∈ H−1(Ω) ∩
L1(Ω)

}
.

Clearly, from the space of test functions D(Ω)4 ⊂ D(A n), and since D(Ω)4 is
dense in H, for each U0 = (u0, v0, u1, v1) ∈ H there exists a sequence of functions
Un
0 = (un

0 , v
n
0 , u

n
1 , v

n
1 ) ∈ D(Ω)4 such that Un

0 −→ U0 in H.
Put U = (u, v, ut, vt) and consider the approximate system

(2.61) Ut + A nU = 0 with U(0) = (un
0 , v

n
0 , u

n
1 , v

n
1 ) ∈ D(Ω)4.

Step 2: Approximate solutions. Since gn, fn
1 , f

n
2 and hn satisfy the assumptions

of Lemma 2.2, then for each n, the approximate problem (2.61) has a strong local
solution Un = (un, vn, un

t , v
n
t ) ∈ W 1,∞(0, T0;H) such that Un(t) ∈ D(A n) for

t ∈ [0, T0]. It is important to note here that T0 is totally independent of n. In
fact, by (2.38), T0 does not depend on the strong monotonicity constant mg = 1

n ,
and although T0 depends on the local Lipschitz constants of the mappings fn

1 :
H1(Ω)×H1

0 (Ω) −→ Lm̃(Ω), fn
2 : H1(Ω)×H1

0 (Ω) −→ Lr̃(Ω) and hn ◦γ : H1(Ω) −→
Lq̃(Γ), it is fortunate that these Lipschitz constants are independent of n, thanks to
Propositions 2.6 and 2.9. Also, recall that T0 depends on K, which itself depends
on the initial data, and since Un

0 → U0 in H, we can choose K sufficiently large
such that K is uniform for all n. Thus, we will only emphasize the dependence of
T0 on K.

Now, by (2.39), we know En(t) ≤ K2/2 for all t ∈ [0, T0], which implies that

‖Un(t)‖2H = ‖un(t)‖21,Ω + ‖vn(t)‖21,Ω + ‖un
t (t)‖

2
2 + ‖vnt (t)‖

2
2 ≤ K2,(2.62)

for all t ∈ [0, T0]. In addition, by letting 0 < ε ≤ α/2 in (2.35) and by the fact that
m̃, q̃, r̃ ≤ 2 and the bound (2.62), we deduce that

(2.63)

∫ T0

0

‖un
t ‖

m+1
m+1 dt+

∫ T0

0

‖vnt ‖
r+1
r+1 dt+

∫ T0

0

|γun
t |

q+1
q+1dt < C(K),

for some constant C(K) > 0. Since |g1(s)| ≤ β|s|m for |s| ≥ 1 and g1 is increasing
with g1(0) = 0, then |g1(s)| ≤ β(|s|m + 1) for all s ∈ R. Hence, it follows from
(2.63) that

(2.64)

∫ T0

0

∫
Ω

|g1(un
t )|m̃dxdt ≤ βm̃

∫ T0

0

∫
Ω

(|un
t |m+1 + 1)dxdt < C(K).

Similarly, one has

∫ T0

0

∫
Ω

|g2(vnt )|r̃dxdt < C(K) and

∫ T0

0

∫
Ω

|gn(γun
t )|q̃dxdt < C(K).(2.65)

Next, we shall prove the following statement: If w ∈ H1(Ω) ∩ Lm+1(Ω) with
γw ∈ Lq+1(Γ), then

〈Sn(un
t ), w〉 =

∫
Ω

g1(u
n
t )wdx+

∫
Γ

gn(γun
t )γwdΓ, a.e. [0, T0].(2.66)
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Indeed, by Lemma 3.1 in [4], there exists a sequence {wk} ⊂ H2(Ω) such that
wk −→ w in H1(Ω), |wk|m+1 −→ |w|m+1 in L1(Ω) and |γwk|q+1 −→ |γw|q+1 in
L1(Γ). By the Generalized Dominated Convergence Theorem, we conclude, on a
subsequence labeled the same as {wk},

wk −→ w in Lm+1(Ω) and γwk −→ γw in Lq+1(Γ).(2.67)

Since H2(Ω) ↪→ C(Ω) (in 3D), and the fact that un
t ∈ D(Sn), then it follows from

(2.59) that

〈Sn(un
t ), wk〉 =

∫
Ω

g1(u
n
t )wkdx+

∫
Γ

gn(γun
t )γwkdΓ.(2.68)

From (2.64) and (2.65) we note that ‖g1(un
t )‖m̃ and |gn(γun

t )|q̃ < ∞, a.e. [0, T0].

Therefore, by using (2.67), we can pass to the limit in (2.68) as k −→ ∞ to obtain
(2.66), as claimed.

Recall that Un = (un, vn, un
t , v

n
t ) ∈ D(A n) is a strong solution of (2.61). If φ

and ψ satisfy the conditions imposed on test functions in Definition 1.2, then by
(2.64)-(2.66), we can test the approximate system (2.61) against φ and ψ to obtain

(un
t (t), φ(t))Ω − (un

1 , φ(0))Ω −
∫ t

0

(un
t , φt)Ωdτ +

∫ t

0

(un, φ)1,Ωdτ

+

∫ t

0

∫
Ω

g1(u
n
t )φdxdτ +

∫ t

0

∫
Γ

g(γun
t )γφdΓdτ +

1

n

∫ t

0

∫
Γ

γun
t γφdΓdτ

=

∫ t

0

∫
Ω

fn
1 (u

n, vn)φdxdτ +

∫ t

0

∫
Γ

hn(γun)γφdΓdτ,(2.69)

and

(vnt (t), ψ(t))Ω − (vn1 , ψ(0))Ω −
∫ t

0

(vnt , ψt)Ωdτ +

∫ t

0

(vn, ψ)1,Ωdτ

+

∫ t

0

∫
Ω

g2(v
n
t )ψdxdτ =

∫ t

0

∫
Ω

fn
2 (u

n, vn)ψdxdτ(2.70)

for all t ∈ [0, T0].

Step 3: Passage to the limit. We aim to prove that there exists a subsequence of
{Un}, labeled again as {Un}, that converges to a solution of the original problem
(1.1). In what follows, we focus on passing to the limit in (2.69) only, since passing
to the limit in (2.70) is similar and is in fact simpler.

First, we note that (2.62) shows {Un} is bounded in L∞(0, T0;H). So, by
Alaoglu’s Theorem, there exists a subsequence, labeled by {Un}, such that

(2.71) Un −→ U weakly∗ in L∞(0, T0;H).

Also, by (2.62), we know {un} is bounded in L∞(0, T0;H
1(Ω)), and so {un} is

bounded in Ls(0, T0;H
1(Ω)) and for any s > 1. In addition, by (2.63), we know

{un
t } is bounded in Lm+1(Ω × (0, T0)), and since m ≥ 1, we see that {un

t } is also
bounded in Lm̃(Ω× (0, T0)) = Lm̃(0, T0;L

m̃(Ω)). We note here that for sufficiently
small ε > 0, the imbedding H1(Ω) ↪→ H1−ε(Ω) is compact, and H1−ε(Ω) ↪→ Lm̃(Ω)
(since m̃ ≤ 2). If s > 1 is fixed, then by Aubin’s Compactness Theorem, there
exists a subsequence such that

un −→ u strongly in Ls(0, T0;H
1−ε(Ω)).(2.72)
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Similarly, we deduce that there exists a subsequence such that

vn −→ v strongly in Ls(0, T0;H
1−ε(Ω)).(2.73)

Now, fix t ∈ [0, T0]. Since φ ∈ C([0, t];H1(Ω)) and φt ∈ L1(0, t;L2(Ω)), then by
(2.71), we obtain

(2.74) lim
n−→∞

∫ t

0

(un, φ)1,Ωdxdτ =

∫ t

0

(u, φ)1,Ωdxdτ

and

(2.75) lim
n−→∞

∫ t

0

(un
t , φt)Ωdxdτ =

∫ t

0

(ut, φt)Ωdxdτ.

In addition, since q̃ ≤ 2 ≤ q + 1 and γφ ∈ Lq+1(Γ× (0, t)), then γφ ∈ Lq̃(Γ× (0, t)),
and along with (2.63), one has

(2.76)

∣∣∣∣ 1n
∫ t

0

∫
Γ

γun
t γφdΓdτ

∣∣∣∣ ≤ 1

n

(∫ t

0

|γun
t |

q+1
q+1dτ

) 1
q+1

(∫ t

0

|γφ|q̃q̃dt
) q

q+1

−→ 0.

Moreover, by (2.64)-(2.65), on a subsequence,

{
g1(u

n
t ) −→ g∗1 weakly in Lm̃(Ω× (0, t)),

g(γun
t ) −→ g∗ weakly in Lq̃(Γ× (0, t)),

(2.77)

for some g∗1 ∈ Lm̃(Ω× (0, t)) and some g∗ ∈ Lq̃(Γ× (0, t)). Our goal is to show that
g∗1 = g1(ut) and g∗ = g(γut). In order to do so, we consider two solutions to the
approximate problem (2.61), Un and U j . For the sake of simplifying the notation,
put ũ = un − uj . Since Un, U j ∈ W 1,∞(0, T0;H) and Un(t), U j(t) ∈ D(A n),
then ũt ∈ W 1,∞(0, T0;L

2(Ω)) and ũt(t) ∈ H1(Ω). Moreover, by (2.63) we know
ũt ∈ Lm+1(Ω × (0, T0)) and γũt ∈ Lq+1(Γ × (0, T0)). Hence, we may consider the
difference of the approximate problems corresponding to the parameters n and j,
and then use the multiplier ũt on the first equation. By performing integration by
parts in the first equation, one has the following energy identity:

1

2

(
‖ũt(t)‖22 + ‖ũ(t)‖21,Ω

)
+

∫ t

0

∫
Ω

(g1(u
n
t )− g1(u

j
t))ũtdxdτ

+

∫ t

0

∫
Γ

(g(γun
t )− g(γuj

t ))γũtdΓdτ +

∫ t

0

∫
Γ

(
1

n
γun

t − 1

j
γuj

t

)
γũtdΓdτ

=
1

2

(
‖ũt(0)‖22 + ‖ũ(0)‖21,Ω

)
+

∫ t

0

∫
Ω

(fn
1 (u

n, vn)− f j
1 (u

j , vj))ũtdxdτ

+

∫ t

0

∫
Γ

(hn(γun)− hj(γuj))γũtdΓdτ,(2.78)
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where we have used (2.66). It follows from (2.78) that

1

2

(
‖ũt(t)‖22 + ‖ũ(t)‖21,Ω

)
+

∫ t

0

∫
Ω

(g1(u
n
t )− g1(u

j
t ))ũtdxdτ

+

∫ t

0

∫
Γ

(g(γun
t )− g(γuj

t ))γũtdΓdτ

≤ 1

2

(
‖ũt(0)‖22 + ‖ũ(0)‖21,Ω

)
+ 2

(
1

n
+

1

j

)∫ t

0

∫
Γ

(
|γun

t |2 + |γuj
t |2
)
dΓdτ

+

∫ t

0

∫
Ω

|fn
1 (u

n, vn)− f j
1 (u

j , vj)||ũt|dxdτ

+

∫ t

0

∫
Γ

|hn(γun)− hj(γuj)||γũt|dΓdτ.(2.79)

We will show that each term on the right hand side of (2.79) converges to 0 as
n, j −→ ∞. First, since limn−→0 ‖un

0 − u0‖1,Ω = 0 and limn−→0 ‖un
1 − u1‖2 = 0,

we obtain

lim
n,j−→0

‖ũ(0)‖1,Ω = lim
n,j−→0

∥∥∥un
0 − uj

0

∥∥∥
1,Ω

= 0,

lim
n,j−→0

‖ũt(0)‖2 = lim
n,j−→0

∥∥∥un
1 − uj

1

∥∥∥
2
= 0.(2.80)

By (2.63), we know
∫ t

0
|γun

t |
q+1
q+1dτ < C(K) for all n ∈ N. Since q ≥ 1, it is easy

to see
∫ t

0
|γun

t |22dτ is also uniformly bounded in n. Thus,

(2.81) lim
n,j−→∞

(
1

n
+

1

j

)∫ t

0

∫
Γ

(
|γun

t |2 + |γuj
t |2
)
dΓdτ = 0.

Next we look at the third term on the right hand side of (2.79). We have

∫ t

0

∫
Ω

|fn
1 (u

n, vn)− f j
1 (u

j , vj)||ũt|dxdτ

≤
∫ t

0

∫
Ω

|fn
1 (u

n, vn)− fn
1 (u, v)||ũt|dxdτ +

∫ t

0

∫
Ω

|fn
1 (u, v)− f1(u, v)||ũt|dxdτ

+

∫ t

0

∫
Ω

|f1(u, v)− f j
1 (u, v)||ũt|dxdτ

+

∫ t

0

∫
Ω

|f j
1 (u, v)− f j

1 (u
j , vj)||ũt|dxdτ.

(2.82)

We now estimate each term on the right hand side of (2.82) as follows. Recall, by
Proposition 2.6, fn

1 : H1−ε(Ω) × H1−ε
0 (Ω) −→ Lm̃(Ω) is locally Lipschitz, where

the local Lipschitz constant is independent of n. By using Hölder’s inequality, we
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obtain∫ t

0

∫
Ω

|fn
1 (u

n, vn)− fn
1 (u, v)||ũt|dxdτ

≤
(∫ t

0

∫
Ω

|fn
1 (u

n, vn)− fn
1 (u, v)|m̃dxdτ

) m
m+1

(∫ t

0

∫
Ω

|ut|m+1dxdτ

) 1
m+1

≤ C(K)

(∫ t

0

(‖un − u‖m̃H1−ε(Ω) + ‖vn − v‖m̃H1−ε(Ω))dτ

) m
m+1

−→ 0,(2.83)

as n −→ ∞, where we have used the convergence (2.72)-(2.73) and the uniform
bound in (2.63).

To handle the second term on the right hand side of (2.82), we shall show

fn
1 (u, v) −→ f1(u, v) in Lm̃(Ω× (0, T0)).(2.84)

Indeed, by (2.71), we know U ∈ L∞(0, T0;H); thus u ∈ L∞(0, T0;H
1(Ω)) and

v ∈ L∞(0, T0;H
1
0 (Ω)). In addition, by (2.43), the definition of fn

1 , we have

‖fn
1 (u, v)− f1(u, v)‖m̃Lm̃(Ω×(0,T0))

=

∫ T0

0

∫
Ω

(|f1(u, v)||ηn(u, v)− 1|)m̃ dxdt.(2.85)

Since ηn(u, v) ≤ 1, it follows that (|f1(u, v)||ηn(u, v)− 1|)m̃ ≤ 2m̃|f1(u, v)|m̃. To see
|f1(u, v)|m̃ ∈ L1(Ω× (0, T0)), we use the assumptions |f1(u, v)| ≤ C(|u|p + |v|p +1)
and pm̃ < 6 along with the imbedding H1(Ω) ↪→ L6(Ω). Indeed,∫ T0

0

∫
Ω

|f1(u, v)|m̃dxdt ≤ C

∫ T0

0

∫
Ω

(|u|pm̃ + |v|pm̃ + 1)dxdt

≤ C

∫ T0

0

(‖u‖pm̃H1(Ω) + ‖v‖pm̃
H1

0 (Ω)
+ |Ω|)dt < ∞.

Clearly, ηn(u(x), v(x)) −→ 1 a.e. on Ω. By applying the Lebesgue Dominated
Convergence Theorem on (2.85), (2.84) follows, as desired. Now, by using Hölder’s
inequality and the limit (2.84), one has

∫ t

0

∫
Ω

|fn
1 (u, v)− f1(u, v)||ũt|dxdτ

≤
(∫ t

0

∫
Ω

|fn
1 (u, v)− f1(u, v)|m̃dxdτ

) m
m+1

(∫ t

0

∫
Ω

|ũt|m+1dxdτ

) 1
m+1

−→ 0,

(2.86)

as n −→ ∞, where we have used the uniform bound in (2.63).
Combining (2.83) and (2.86) in (2.82) gives us the desired result,

(2.87) lim
n,j−→∞

∫ t

0

∫
Ω

|fn
1 (u

n, vn)− f j
1 (u

j , vj)||ũt|dxdτ = 0.

Next we show that

(2.88) lim
n,j−→∞

∫ t

0

∫
Γ

|hn(γun)− hj(γuj)||γũt|dΓdτ = 0.
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To see this, we write∫ t

0

∫
Γ

|hn(γun)− hj(γuj)||γũt|dΓdτ

≤
∫ t

0

∫
Γ

|hn(γun)− hn(γu)||γũt|dΓdτ +

∫ t

0

∫
Γ

|hn(γu)− h(γu)||γũt|dΓdτ

+

∫ t

0

∫
Γ

|h(γu)− hj(γu)||γũt|dΓdτ +

∫ t

0

∫
Γ

|hj(γu)− hj(γuj)||γũt|dΓdτ.(2.89)

By Proposition 2.9, hn ◦γ : H1−ε(Ω) −→ Lq̃(Γ) is locally Lipschitz, where the local
Lipschitz constant is independent of n. Therefore, by Hölder’s inequality∫ t

0

∫
Γ

|hn(γun)− hn(γu)||γũt|dΓdτ

≤
(∫ t

0

∫
Γ

|hn(γun)− hn(γu)|q̃dΓdτ
) q

q+1
(∫ t

0

∫
Γ

|γũt|q+1dΓdτ

) 1
q+1

≤ C(K)

(∫ t

0

‖un − u‖q̃H1−ε(Ω) dτ

) q
q+1

−→ 0, as n −→ ∞,(2.90)

where we have used the convergence (2.72) and the uniform bound in (2.63).
Since u ∈ L∞(0, T ;H1(Ω)), then similar to (2.84), we may deduce that

hn(γu) −→ h(γu) in Lq̃(Ω× (0, T0)).

Again, by using the uniform bound in (2.63), we obtain∫ t

0

∫
Γ

|hn(γu)− h(γu)||γũt|dΓdτ

≤
(∫ t

0

∫
Γ

|hn(γu)− h(γu)|q̃dΓdτ
) q

q+1
(∫ t

0

∫
Γ

|γũt|q+1dΓdτ

) 1
q+1

−→ 0,(2.91)

as n −→ ∞. By combining the estimates (2.89)-(2.91), then (2.88) follows, as
claimed.

Now, by using the fact that g1 and g are monotone increasing and using (2.80)-
(2.81), (2.87)-(2.88), we can take limit as n, j −→ ∞ in (2.79) to deduce that

lim
n,j−→∞

∫ t

0

∫
Ω

(g1(u
n
t )− g1(u

j
t))(u

n
t − uj

t )dxdτ = 0,(2.92)

lim
n,j−→∞

∫ t

0

∫
Γ

(g(γun
t )− g(γuj

t ))(γu
n
t − γuj

t )dΓdτ = 0.(2.93)

In addition, it follows from (2.63) that, on a relabeled subsequence, un
t −→ ut

weakly in Lm+1(Ω× (0, T0)). Therefore, Lemma 1.3 (p. 49) of [5] along with (2.77)
and (2.92) assert that g∗1 = g1(ut), provided we show that

g1 : Lm+1(Ω× (0, t)) −→ Lm̃(Ω× (0, t))

is maximal monotone. Indeed, since g1 is monotone increasing, it is easy to see g1
is a monotone operator. Thus, we need to verify that g1 is hemi-continuous, i.e.,
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we have to show that

(2.94) lim
λ−→∞

∫ t

0

∫
Ω

g1(u+ λv)wdxdτ =

∫ t

0

∫
Ω

g1(u)wdxdτ,

for all u, v, w ∈ Lm+1(Ω× (0, t)).
Indeed, since g1 is continuous, then g1(u+λv)w −→ g1(u)w point-wise as λ −→

0. Moreover, since |g1(s)| ≤ β(|s|m + 1) for all s ∈ R, we know if |λ| ≤ 1, then
|g1(u+λv)w| ≤ β(|u+λv|m+1)|w| ≤ C(|u|m|w|+ |v|m|w|+ |w|) ∈ L1(Ω×(0, t)), by
Hölder’s inequality. Thus, (2.94) follows from the Lebesgue Dominated Convergence
Theorem. Hence, g1 is maximal monotone and we conclude that g∗1 = g1(ut), i.e.,

(2.95) g1(u
n
t ) −→ g1(ut) weakly in Lm̃(Ω× (0, t)).

In a similar way, one can show that g∗ = g(γut), that is,

(2.96) g(γun
t ) −→ g(γut) weakly in Lq̃(Γ× (0, t)).

It remains to show that

(2.97) lim
n−→∞

∫ t

0

∫
Ω

fn
1 (u

n, vn)φdxdτ =

∫ t

0

∫
Ω

f1(u, v)φdxdτ.

To prove (2.97), we write

∣∣∣∣
∫ t

0

∫
Ω

(fn
1 (u

n, vn)− f1(u, v))φdxdτ

∣∣∣∣
≤
∫ t

0

∫
Ω

|fn
1 (u

n, vn)− fn
1 (u, v)||φ|dxdτ +

∫ t

0

∫
Ω

|fn
1 (u, v)− f1(u, v)||φ|dxdτ.

(2.98)

Since φ ∈ Lm+1(Ω× (0, t)), then by replacing ũt with φ in (2.83), we deduce

lim
n−→∞

∫ t

0

∫
Ω

|fn
1 (u

n, vn)− fn
1 (u, v)||φ|dxdτ = 0.(2.99)

In addition, (2.84) yields

lim
n→∞

∫ t

0

∫
Ω

|fn
1 (u, v)− f1(u, v)||φ|dxdτ = 0.(2.100)

Hence, (2.97) is verified.
In a similar manner, one can deduce

(2.101) lim
n−→∞

∫ t

0

∫
Γ

hn(γun)γφdΓdτ =

∫ t

0

∫
Γ

h(γu)γφdΓdτ.

Finally, by using (2.71)-(2.76), (2.95)-(2.97) and (2.101) we can pass to the limit
in (2.69) to obtain (1.6). In a similar way, we can work on (2.70) term by term to
pass to the limit and obtain (1.7) .
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Step 4: Completion of the proof. Since t ∈ [0, T0] and g, g1 are monotone increasing
on R, then (2.79) implies

1

2

(
‖ũt(t)‖22 + ‖ũ(t)‖21,Ω

)

≤ 1

2

(
‖ũt(0)‖22 + ‖ũ(0)‖21,Ω

)
+ 2

(
1

n
+

1

m

)∫ T0

0

∫
Γ

(|γun
t |2 + |γuj

t |2)dΓdτ

+

∫ T0

0

∫
Ω

|fn
1 (u

n, vn)− f j
1 (u

j , vj)||ũt|dxdτ

+

∫ T0

0

∫
Γ

|hn(γun)− hj(γuj)||γũt|dΓdτ.(2.102)

By (2.80)-(2.81) and (2.87)-(2.88), we know the right hand side of (2.102) converges
to 0 as n, j −→ ∞, so

lim
n,j−→∞

∥∥un(t)− uj(t)
∥∥
1,Ω

= lim
n,j−→∞

‖ũ(t)‖1,Ω = 0 uniformly in t ∈ [0, T0],

lim
n,j−→∞

∥∥∥un
t (t)− uj

t (t)
∥∥∥
2
= lim

n,j−→∞
‖ũt(t)‖2 = 0 uniformly in t ∈ [0, T0].

Hence

un(t) −→ u(t) in H1(Ω) uniformly on [0, T0],

un
t (t) −→ ut(t) in L2(Ω) uniformly on [0, T0].(2.103)

Since un ∈ W 1,∞([0, T0];H
1(Ω)) and un

t ∈ W 1,∞([0, T0];L
2(Ω)), by (2.103), we

conclude

u ∈ C([0, T0];H
1(Ω)) and ut ∈ C([0, T0];L

2(Ω)).

Moreover, (2.103) shows un(0) −→ u(0) in H1(Ω). Since un(0) = un
0 −→ u0 in

H1(Ω), then the initial condition u(0) = u0 holds. Also, since un
t (0) −→ ut(0) in

L2(Ω) and un
t (0) = un

1 −→ u1 in L2(Ω), we obtain ut(0) = u1. Similarly, we may
deduce that v, vt satisfy the required regularity and the imposed initial conditions,
as stated in Definition 1.2. This completes the proof of the local existence statement
in Theorem 1.3.

3. Energy identity

This section is devoted to deriving the energy identity (1.8) in Theorem 1.3.
One is tempted to test (1.6) with ut and (1.7) with vt, and with that carry out
standard calculations to obtain energy identity. However, this procedure is only
formal, since ut and vt are not regular enough and cannot be used as test functions
in (1.6) and (1.7). In order to overcome this difficulty we shall use the difference
quotients Dhu and Dhv and their well-known properties (see [19] and also [33, 36]
for more details).

3.1. Properties of the difference quotient. Let X be a Banach space. For any
function u ∈ C([0, T ];X) and h > 0, we define the symmetric difference quotient
by

(3.1) Dhu(t) =
ue(t+ h)− ue(t− h)

2h
,
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where ue(t) denotes the extension of u(t) to R given by

ue(t) =

⎧⎪⎨
⎪⎩
u(0) for t ≤ 0,

u(t) for t ∈ (0, T ),

u(T ) for t ≥ T.

(3.2)

The results in the following proposition have been established by Koch and Lasiecka
in [19].

Proposition 3.1 ([19]). Let u ∈ C([0, T ];X), where X is a Hilbert space with
inner product (·, ·)X . Then,

(3.3) lim
h−→0

∫ T

0

(u,Dhu)Xdt =
1

2

(
‖u(T )‖2X − ‖u(0)‖2X

)
.

If, in addition, ut ∈ C([0, T ];X), then

(3.4)

∫ T

0

(ut, (Dhu)t)Xdt = 0, for each h > 0,

and, as h −→ 0,

Dhu(t) −→ ut(t) weakly in X, for every t ∈ (0, T ),(3.5)

Dhu(0) −→
1

2
ut(0) and Dhu(T ) −→

1

2
ut(T ) weakly in X.(3.6)

The following proposition is essential for the proof of the energy identity (1.8).

Proposition 3.2. Let X and Y be Banach spaces. Assume u ∈ C([0, T ];Y ) and
ut ∈ L1(0, T ;Y ) ∩ Lp(0, T ;X), where 1 ≤ p < ∞. Then Dhu ∈ Lp(0, T ;X) and
‖Dhu‖Lp(0,T ;X) ≤ ‖ut‖Lp(0,T ;X). Moreover, Dhu −→ ut in Lp(0, T ;X), as h −→ 0.

Proof. Throughout the proof, we write ut as u′. Since u ∈ C([0, T ];Y ), then by
(3.2), ue ∈ C([−h, T + h];Y ). Also note that

(3.7) u′
e(t) = u′(t) for t ∈ (0, T ) and u′

e(t) = 0 for t ∈ (−h, 0) ∪ (T, T + h),

and along with the assumption u′ ∈ L1(0, T ;Y ), one has u′
e ∈ L1(−h, T + h;Y ).

Since ue and u′
e ∈ L1(−h, T + h;Y ), we conclude (for instance, see Lemma 1.1,

page 250 in [41])

(3.8) Dhu(t) =
ue(t+ h)− ue(t− h)

2h
=

1

2h

∫ t+h

t−h

u′
e(s)ds, a.e. t ∈ [0, T ].

By using Jensen’s inequality, it follows that

(3.9) ‖Dhu(t)‖pX ≤ 1

2h

∫ t+h

t−h

‖u′
e(s)‖

p
X ds, a.e. t ∈ [0, T ].

By integrating both sides of (3.9) over [0, T ] and by using Tonelli’s Theorem, one
has

∫ T

0

‖Dhu(t)‖pX dt ≤ 1

2h

∫ T

0

∫ t+h

t−h

‖u′
e(s)‖

p
X dsdt =

1

2h

∫ T

0

∫ h

−h

‖u′
e(s+ t)‖pX dsdt

=
1

2h

∫ h

−h

∫ T

0

‖u′
e(s+ t)‖pX dtds =

1

2h

∫ h

−h

∫ T+s

s

‖u′
e(t)‖

p
X dtds.

(3.10)
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We split the last integral in (3.10) as the sum of two integrals, and by recalling
(3.7), we deduce that∫ T

0

‖Dhu(t)‖pX dt ≤ 1

2h

∫ 0

−h

∫ T+s

s

‖u′
e(t)‖

p
X dtds+

1

2h

∫ h

0

∫ T+s

s

‖u′
e(t)‖

p
X dtds

=
1

2h

∫ 0

−h

∫ T+s

0

‖u′(t)‖pX dtds+
1

2h

∫ h

0

∫ T

s

‖u′(t)‖pX dsdt

≤ 1

2h

∫ 0

−h

∫ T

0

‖u′(t)‖pX dtds+
1

2h

∫ h

0

∫ T

0

‖u′(t)‖pX dtds

=
1

2h

∫ h

−h

∫ T

0

‖u′(t)‖pX dtds =

∫ T

0

‖u′(t)‖pX dt.

Thus,

(3.11) ‖Dhu‖Lp(0,T ;X) ≤ ‖u′‖Lp(0,T ;X) ,

as desired.
It remains to show that Dhu −→ u′ in Lp(0, T ;X), as h −→ 0.
Let ε > 0 be given. By Lemma 7.2 in the Appendix, C0((0, T );X) is dense in

Lp(0, T ;X), and since u′ ∈ Lp(0, T ;X), there exists φ ∈ C0((0, T );X) such that
‖u′ − φ‖Lp(0,T ;X) ≤ ε/3. Note that (3.8) yields

Dhu(t)− u′(t) =
1

2h

∫ t+h

t−h

(u′
e(s)− u′(t))ds, a.e. t ∈ [0, T ].

In particular,

‖Dhu(t)− u′(t)‖pX ≤ 1

2h

∫ t+h

t−h

‖u′
e(s)− u′(t)‖pX ds

≤ 1

2h

∫ t+h

t−h

(
‖u′

e(s)− φ(s)‖X + ‖φ(s)− φ(t)‖X + ‖φ(t)− u′(t)‖X
)p

ds

≤ 3p−1

2h

∫ t+h

t−h

‖u′
e(s)− φ(s)‖pX ds+

3p−1

2h

∫ t+h

t−h

‖φ(s)− φ(t)‖pX ds

+ 3p−1 ‖φ(t)− u′(t)‖pX ,(3.12)

where we have used Jensen’s inequality. Now, integrating both sides of (3.12) over
[0, T ] we obtain ∫ T

0

‖Dhu(t)− u′(t)‖pX dt ≤ I1 + I2 + I3,(3.13)

where

I1 =
3p−1

2h

∫ T

0

∫ t+h

t−h

‖u′
e(s)− φ(s)‖pX dsdt,

I2 =
3p−1

2h

∫ T

0

∫ t+h

t−h

‖φ(s)− φ(t)‖pX dsdt,

I3 = 3p−1 ‖φ(t)− u′(t)‖pLp(0,T ;X) .

Since ‖u′ − φ‖Lp(0,T ;X) ≤ ε/3, then

(3.14) I3 ≤ 3p−1 ε
p

3p
=

εp

3
.
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In addition, since φ ∈ C0((0, T );X), then φ : R −→ X is uniformly continuous.
Thus, there exists δ > 0 (say δ < T ) such that ‖φ(s)− φ(t)‖X < ε

3T 1/p whenever

|s− t| < δ. So, if 0 < h < δ
2 , then one has

I2 ≤ 3p−1

2h

∫ T

0

∫ t+h

t−h

( ε

3T 1/p

)p
dsdt =

εp

3
.(3.15)

As for I1, we change variables and use Tonelli’s Theorem as follows:

I1 =
3p−1

2h

∫ T

0

∫ h

−h

‖u′
e(s+ t)− φ(s+ t)‖pX dsdt

=
3p−1

2h

∫ h

−h

∫ T+s

s

‖u′
e(t)− φ(t)‖pX dtds.(3.16)

Now, split I1 into two integrals and recall (3.7) to obtain (for sufficiently small h)

I1 =
3p−1

2h

(∫ 0

−h

∫ T+s

0

‖u′(t)− φ(t)‖pX dtds+

∫ h

0

∫ T

s

‖u′(t)− φ(t)‖pX dtds

)

≤ 3p−1

2h

∫ h

−h

∫ T

0

‖u′(t)− φ(t)‖pX dtds = 3p−1

∫ T

0

‖u′(t)− φ(t)‖pX dt

= 3p−1 ‖u′ − φ‖pLp(0,T ;X) ≤ 3p−1 · ε
p

3p
=

εp

3
.(3.17)

Therefore, if 0 < h < δ
2 , then it follows from (3.14), (3.15), (3.17), and (3.13) that

‖Dhu− u′‖pLp(0,T ;X) ≤ εp,

completing the proof. �
3.2. Proof of the energy identity. Throughout the proof, we fix t ∈ [0, T0] and
let (u, v) be a weak solution of system (1.1) in the sense of Definition 1.2. Recall the
regularity of u and v, in particular, ut ∈ C([0, t];L2(Ω)) and ut ∈ Lm+1(Ω×(0, t)) =
Lm+1(0, t;Lm+1(Ω)). We can define the difference quotient Dhu(τ ) on [0, t] as in
(3.1), i.e., Dhu(τ ) =

1
2h [ue(τ +h)−ue(τ −h)], where ue(τ ) extends u(τ ) from [0, t]

to R as in (3.2). By Proposition 3.2, with X = Lm+1(Ω) and Y = L2(Ω), we have

Dhu ∈ Lm+1(Ω× (0, t)) and Dhu −→ ut in Lm+1(Ω× (0, t)).(3.18)

A similar argument yields

Dhv ∈ Lr+1(Ω× (0, t)) and Dhv −→ vt in Lr+1(Ω× (0, t)).(3.19)

Recall that the notation γut stands for (γu)t, and since u ∈ C([0, t];H1(Ω)),
then γu ∈ C([0, t];L2(Γ)). Moreover, we know (γu)t = γut ∈ Lq+1(Γ × (0, t)) =
Lq+1(0, t;Lq+1(Γ)), so (γu)t ∈ L2(Γ× (0, t)) = L2(0, t;L2(Γ)). So, by Proposition
3.2 with X = Lq+1(Γ) and Y = L2(Γ), one has

γDhu = Dh(γu) ∈ Lq+1(Γ× (0, t)) and

γDhu = Dh(γu) −→ (γu)t = γut in Lq+1(Γ× (0, t)).(3.20)

Moreover, since u ∈ C([0, t];H1(Ω)) and v ∈ C([0, t];H1
0 (Ω)), then

Dhu ∈ C([0, t];H1(Ω)) and Dhv ∈ C([0, t];H1
0 (Ω)).(3.21)

We now show

(Dhu)t ∈ L1(0, t;L2(Ω)) and (Dhv)t ∈ L1(0, t;L2(Ω)).(3.22)
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Indeed, for 0 < h < t
2 , we note that

(Dhu)t(τ ) =

⎧⎪⎪⎨
⎪⎪⎩

1
2h [ut(τ + h)− ut(τ − h)], if h < τ < t− h,

− 1
2hut(τ − h), if t− h < τ < t,

1
2hut(τ + h), if 0 < τ < h,

and since ut ∈ C([0, t];L2(Ω)), we conclude (Dhu)t ∈ L1(0, t;L2(Ω)). Similarly,
(Dhv)t ∈ L1(0, t;L2(Ω)).

Thus, (3.18)-(3.22) show that Dhu and Dhv satisfy the required regularity con-
ditions to be suitable test functions in Definition 1.2. Therefore, by taking φ = Dhu
in (1.6) and ψ = Dhv in (1.7), we obtain

(ut(t), Dhu(t))Ω − (ut(0), Dhu(0))Ω −
∫ t

0

(ut, (Dhu)t)Ωdτ +

∫ t

0

(u,Dhu)1,Ωdτ

+

∫ t

0

∫
Ω

g1(ut)Dhudxdτ +

∫ t

0

∫
Γ

g(γut)γDhudΓdτ

=

∫ t

0

∫
Ω

f1(u, v)Dhudxdτ +

∫ t

0

∫
Γ

h(γu)γDhudΓdτ(3.23)

and

(vt(t), Dhv(t))Ω − (vt(0), Dhv(0))Ω −
∫ t

0

(vt, (Dhv)t)Ωdτ +

∫ t

0

(v,Dhv)1,Ωdτ

+

∫ t

0

∫
Ω

g2(vt)Dhvdxdτ =

∫ t

0

∫
Ω

f2(u, v)Dhvdxdτ.(3.24)

We will pass to the limit as h −→ 0 in (3.23) only, since passing to the limit in
(3.24) can be handled in the same way.

Since u, ut ∈ C([0, t];L2(Ω)), then (3.6) shows

Dhu(0) −→
1

2
ut(0) and Dhu(t) −→

1

2
ut(t) weakly in L2(Ω).

It follows that

lim
h−→0

(ut(0), Dhu(0))Ω =
1

2
‖ut(0)‖22 ,

lim
h−→0

(ut(t), Dhu(t))Ω =
1

2
‖ut(t)‖22 .(3.25)

Also, by (3.4)

(3.26)

∫ t

0

(ut, (Dhu)t)Ωdτ = 0.

In addition, since u ∈ C([0, t];H1(Ω)), then (3.3) yields

lim
h−→0

∫ t

0

(u,Dhu)1,Ωdτ =
1

2

(
‖u(t)‖21,Ω − ‖u(0)‖21,Ω

)
.(3.27)

Since ut ∈ Lm+1(Ω × (0, t)) and |g1(s)| ≤ β|s|m whenever |s| ≥ 1, then clearly
g1(ut) ∈ Lm̃(Ω× (0, t)), where m̃ = m+1

m . Hence, by (3.18)

(3.28) lim
h−→0

∫ t

0

∫
Ω

g1(ut)Dhudxdτ =

∫ t

0

∫
Ω

g1(ut)utdxdτ.
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Similarly, since g(γut) ∈ Lq̃(Γ× (0, t)), then (3.20) implies

(3.29) lim
h−→0

∫ t

0

∫
Γ

g(γut)γDhudΓdτ =

∫ t

0

∫
Γ

g(γut)γutdxdτ.

In order to handle the interior source, we note that since u ∈ C([0, t];H1(Ω)) and
v ∈ C([0, t];H1

0 (Ω)), then there exists M0 > 0 such that ‖u(τ )‖6, ‖v(τ )‖6 ≤ M0 for
all τ ∈ [0, t]. Also, since |f1(u, v)| ≤ C(|u|p + |v|p + 1), then∫

Ω

|f1(u(τ ), v(τ ))|
6
p dx ≤ C

∫
Ω

(|u(τ )|6 + |v(τ )|6 + 1)dx ≤ C(M0),

for all τ ∈ [0, t]. Hence, f1(u, v) ∈ L∞(0, t;L
6
p (Ω)), and so, f1(u, v) ∈ L

6
p (Ω×(0, t)).

Since 6
p > m̃, then f1(u, v) ∈ Lm̃(Ω× (0, t)). Therefore, it follows from (3.18) that

(3.30) lim
h−→0

∫ t

0

∫
Ω

f1(u, v)Dhudxdτ =

∫ t

0

∫
Ω

f1(u, v)utdxdτ.

Finally, we consider the boundary source. Again, since u ∈ C([0, t];H1(Ω)) and
H1(Ω) ↪→ L4(Γ), then there exists M1 > 0 such that |γu(τ )|4 ≤ M1 for all τ ∈ [0, t].
By recalling the assumption |h(γu)| ≤ C(|γu|k + 1), then∫

Γ

|h(γu(τ ))| 4k dx ≤ C

∫
Γ

(|γu(τ )|4 + 1)dΓ ≤ C(M1)

for all τ ∈ [0, t]. Hence, h(γu) ∈ L∞(0, t;L
4
k (Γ)), and in particular, h(γu) ∈

L
4
k (Γ× (0, t)). Since 4

k > q̃, we conclude h(γu) ∈ Lq̃(Γ× (0, t)). Therefore, (3.20)
yields

(3.31) lim
h−→0

∫ t

0

∫
Γ

h(γu)γDhudΓdτ =

∫ t

0

∫
Γ

h(γu)γutdΓdτ.

By combining (3.25)-(3.31), we can pass to the limit as h −→ 0 in (3.23) to
obtain

1

2
(‖ut(t)‖22 + ‖u(t)‖21,Ω) +

∫ t

0

∫
Ω

g1(ut)utdxdτ +

∫ t

0

∫
Γ

g(γut)γutdΓdτ

=
1

2
(‖ut(0)‖22 + ‖u(0)‖21,Ω) +

∫ t

0

∫
Ω

f1(u, v)utdxdτ +

∫ t

0

∫
Γ

h(γu)γutdΓdτ.

(3.32)

Similarly, we can also pass to the limit as h −→ 0 in (3.24) to obtain

1

2
(‖vt(t)‖22 + ‖v(t)‖21,Ω) +

∫ t

0

∫
Ω

g2(vt)vtdxdτ

=
1

2
(‖vt(0)‖22 + ‖v(0)‖21,Ω) +

∫ t

0

∫
Ω

f2(u, v)vtdxdτ.(3.33)

By adding (3.32) to (3.33), then the energy identity (1.8) follows.

4. Uniqueness of weak solutions

The uniqueness results of Theorem 1.5 and Theorem 1.7 will be justified in the
following two subsections.
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4.1. Proof of Theorem 1.5. The proof of Theorem 1.5 will be carried out in the
following four steps.

Step 1. Let (u, v) and (û, v̂) be two weak solutions on [0, T ] in the sense of Definition
1.2 satisfying the same initial conditions. Put y = u− û and z = v− v̂. The energy
corresponding to (y, z) is given by

Ẽ(t) =
1

2
(‖y(t)‖21,Ω + ‖z(t)‖21,Ω + ‖yt(t)‖22 + ‖zt(t)‖22)(4.1)

for all t ∈ [0, T ]. We aim to show that Ẽ(t) = 0, and thus y(t) = 0 and z(t) = 0 for
all t ∈ [0, T ].

By the regularity imposed on weak solutions in Definition 1.2, there exists a
constant R > 0 such that⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

‖u(t)‖1,Ω , ‖û(t)‖1,Ω , ‖v(t)‖1,Ω , ‖v̂(t)‖1,Ω ≤ R,

‖ut(t)‖2 , ‖ût(t)‖2 , ‖vt(t)‖2 , ‖v̂t(t)‖2 ≤ R,∫ T

0
‖ut‖m+1

m+1 dt,
∫ T

0
‖ût‖m+1

m+1 dt,
∫ T

0
|γut|q+1

q+1dt,
∫ T

0
|γût|q+1

q+1dt ≤ R,∫ T

0
‖vt‖r+1

r+1 dt,
∫ T

0
‖v̂t‖r+1

r+1 dt ≤ R

(4.2)

for all t ∈ [0, T ]. Since y(0) = yt(0) = z(0) = zt(0) = 0, then by Definition 1.2, y
and z satisfy

(yt(t),φ(t))Ω −
∫ t

0

(yt, φt)Ωdτ +

∫ t

0

(y, φ)1,Ωdτ

+

∫ t

0

∫
Ω

(g1(ut)− g1(ût))φdxdτ +

∫ t

0

∫
Γ

(g(γut)− g(γût))γφdΓdτ

=

∫ t

0

∫
Ω

(f1(u, v)− f1(û, v̂))φdxdτ +

∫ t

0

∫
Γ

(h(γu)− h(γû))γφdΓdτ(4.3)

and

(zt(t), ψ(t))Ω −
∫ t

0

(zt, ψt)Ωdτ +

∫ t

0

(z, ψ)1,Ωdτ +

∫ t

0

∫
Ω

(g2(vt)− g2(v̂t))ψdxdτ

=

∫ t

0

∫
Ω

(f2(u, v)− f2(û, v̂))ψdxdτ,(4.4)

for all t ∈ [0, T ] and for all test functions φ and ψ as described in Definition 1.2.
Let φ(τ ) = Dhy(τ ) in (4.3) and ψ(τ ) = Dhz(τ ) in (4.4) for τ ∈ [0, t], where the

difference quotients Dhy and Dhz are defined in (3.1). Using a similar argument
as in obtaining the energy identity (1.8), we can pass to the limit as h −→ 0 and
deduce

1

2
(‖y(t)‖21,Ω + ‖yt(t)‖22) +

∫ t

0

∫
Ω

(g1(ut)− g1(ût))ytdxdτ

+

∫ t

0

∫
Γ

(g(γut)− g(γût))γytdΓdτ

=

∫ t

0

∫
Ω

(f1(u, v)− f1(û, v̂))ytdxdτ +

∫ t

0

∫
Γ

(h(γu)− h(γû))γytdΓdτ(4.5)
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and

1

2
(‖z(t)‖21,Ω + ‖zt(t)‖22) +

∫ t

0

∫
Ω

(g2(vt)− g2(v̂t))ztdxdτ

=

∫ t

0

∫
Ω

(f2(u, v)− f2(û, v̂))ztdxdτ.(4.6)

Adding (4.5) and (4.6) and employing the monotonicity properties of g1, g2 yield

Ẽ(t) ≤
∫ t

0

∫
Ω

(f1(u, v)− f1(û, v̂))ytdxdτ +

∫ t

0

∫
Ω

(f2(u, v)− f2(û, v̂))ztdxdτ

+

∫ t

0

∫
Γ

(h(γu)− h(γû))γytdΓdτ −
∫ t

0

∫
Γ

(g(γut)− g(γût))γytdΓ,(4.7)

for all t ∈ [0, T ] where Ẽ(t) is defined in (4.1).
We will estimate each term on the right hand side of (4.7).

Step 2. “Estimate for the terms due to the interior sources”.

Put

Rf =

∫ t

0

∫
Ω

(f1(u, v)− f1(û, v̂))ytdxdτ +

∫ t

0

∫
Ω

(f2(u, v)− f2(û, v̂))ztdxdτ.(4.8)

First we note that, if 1 ≤ p ≤ 3, then by Remark 2.5 we know f1 and f2 are
both locally Lipschitz from H1(Ω)×H1

0 (Ω) into L2(Ω). In this case, the estimate
for Rf is straightforward. By using Hölder’s inequality, we have

∫ t

0

∫
Ω

(f1(u, v)− f1(û, v̂))ytdxdτ

≤
(∫ t

0

∫
Ω

|f1(u, v)− f1(û, v̂)|2dxdτ
)1/2(∫ t

0

∫
Ω

|yt|2dxdτ
)1/2

≤ C(R)

(∫ t

0

(‖y‖21,Ω + ‖z‖21,Ω)dτ
)1/2(∫ t

0

‖yt‖22 dτ
)1/2

≤ C(R)

∫ t

0

Ẽ(τ )dτ.

(4.9)

Likewise,
∫ t

0

∫
Ω
(f2(u, v)−f2(û, v̂))ztdxdτ ≤ C(R)

∫ t

0
Ẽ(τ )dτ. Therefore, for 1 ≤ p ≤

3, we have the following estimate for Rf :

Rf ≤ C(R)

∫ t

0

Ẽ(τ )dτ.(4.10)

For the case 3 < p < 6, f1 and f2 are not locally Lipschitz from H1(Ω)×H1
0 (Ω)

into L2(Ω), and therefore the computation in (4.9) does not work. To overcome
this difficulty, we shall use a clever idea by Bociu and Lasiecka [8,9] which involves
integration by parts. In order to do so, we require f1 and f2 to be C2-functions.
More precisely, we impose the following assumption: there exists F ∈ C3(R2) such
that f1(u, v) = ∂uF (u, v), f2(u, v) = ∂vF (u, v) and |DαF (u, v)| ≤ C(|u|p−2 +
|v|p−2 + 1) for all α such that |α| = 3. It follows from this assumption that
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fj ∈ C2(R2), j = 1, 2, and

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∣∣Dβfj(u, v)
∣∣ ≤ C(|u|p−2 + |v|p−2 + 1), for all |β| = 2,

|∇fj(u, v)| ≤ C(|u|p−1 + |v|p−1 + 1) and |fj(u, v)| ≤ C(|u|p + |v|p + 1),

|∇fj(u, v)−∇fj(û, v̂)| ≤ C(|u|p−2 + |û|p−2 + |v|p−2 + |v̂|p−2 + 1)(|y|+ |z|),
|fj(u, v)− fj(û, v̂)| ≤ C(|u|p−1 + |û|p−1 + |v|p−1 + |v̂|p−1 + 1)(|y|+ |z|),

(4.11)

where y = u− û and z = v − v̂.
Now, we evaluate Rf in the case 3 < p < 6. By integration by parts in time and

by recalling y(0) = 0, one has∫ t

0

∫
Ω

[f1(u, v)− f1(û, v̂)]ytdxdτ =

∫
Ω

[f1(u(t), v(t))− f1(û(t), v̂(t))]y(t)dx

−
∫
Ω

∫ t

0

[
∇f1(u, v) ·

(
ut

vt

)
−∇f1(û, v̂) ·

(
ût

v̂t

)]
ydτdx

=

∫
Ω

[f1(u(t), v(t))− f1(û(t), v̂(t))]y(t)dx−
∫
Ω

∫ t

0

∇f1(u, v) ·
(
yt
zt

)
ydτdx

−
∫
Ω

∫ t

0

[∇f1(u, v)−∇f1(û, v̂)] ·
(
ût

v̂t

)
ydτdx.(4.12)

As in (4.12), we have a similar expression for
∫ t

0

∫
Ω
[f2(u, v)−f2(û, v̂)]ztdxdτ . There-

fore, we deduce

Rf = P1 + P2 + P3 + P4 + P5,(4.13)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P1 =
∫
Ω
[f1(u(t), v(t))− f1(û(t), v̂(t))]y(t)dx,

P2 =
∫
Ω
[f2(u(t), v(t))− f2(û(t), v̂(t))]z(t)dx,

P3 =
∫
Ω

∫ t

0
[∇f1(u, v)−∇f1(û, v̂)] ·

(
ût

v̂t

)
ydτdx,

P4 =
∫
Ω

∫ t

0
[∇f2(u, v)−∇f2(û, v̂)] ·

(
ût

v̂t

)
z)dτdx,

P5 =
∫
Ω

∫ t

0

(
∇f1(u, v) ·

(
yt

zt

)
y +∇f2(u, v) ·

(
yt

zt

)
z

)
dτdx.

By using (4.11) and Young’s inequality, we obtain

|P1 + P2|

≤ C

∫
Ω

(|u(t)|p−1 + |û(t)|p−1 + |v(t)|p−1 + |v̂(t)|p−1 + 1)(y2(t) + z2(t))dx,
(4.14)

|P3 + P4|

≤ C

∫
Ω

∫ t

0

(|u|p−2 + |û|p−2 + |v|p−2 + |v̂|p−2 + 1)(y2 + z2)(|ût|+ |v̂t|)dτdx.

(4.15)

Licensed to Weizmann Institute of Science. Prepared on Tue Aug 18 14:49:08 EDT 2015 for download from IP 132.76.61.22.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



SYSTEMS OF NONLINEAR WAVE EQUATIONS 2303

As for P5, we integrate by parts one more time and use the assumptions f1(u, v) =
∂uF (u, v) and f2(u, v) = ∂vF (u, v). Indeed,

P5 =

∫
Ω

∫ t

0

(
∂uf1(u, v)yty + ∂vf1(u, v)zty

)
dτdx

+

∫
Ω

∫ t

0

(
∂uf2(u, v)ytz + ∂vf2(u, v)ztz

)
dτdx

=

∫
Ω

∫ t

0

(1
2
∂uf1(u, v)(y

2)t + ∂2
uvF (u, v)(yz)t +

1

2
∂vf2(u, v)(z

2)t

)
dτdx

=

∫
Ω

(1
2
∂uf1(u(t), v(t))y(t)

2 + ∂2
uvF (u(t), v(t))y(t)z(t)

)
dx

+

∫
Ω

1

2
∂vf2(u(t), v(t))z(t)

2dx

+

∫
Ω

∫ t

0

(1
2
∇∂uf1(u, v)y

2 +∇∂2
uvF (u, v)yz

)
·
(
ut

vt

)
dτdx

+

∫
Ω

∫ t

0

1

2
∇∂vf2(u, v)z

2 ·
(
ut

vt

)
dτdx.(4.16)

By employing (4.11) and Young’s inequality, we deduce that

P5 ≤ C

∫
Ω

(|u(t)|p−1 + |v(t)|p−1 + 1)(|y(t)|2 + |z(t)|2)dx

+ C

∫
Ω

∫ t

0

(|u|p−2 + |v|p−2 + 1)(y2 + z2)(|ut|+ |vt|)dτdx.(4.17)

It follows from (4.14), (4.15), (4.17), and (4.13) that

Rf ≤ C

∫
Ω

(|y(t)|2 + |z(t)|2)dx+ C

∫ t

0

∫
Ω

(y2 + z2)(|ut|+ |vt|+ |ût|+ |v̂t|)dxdτ

+ C

∫ t

0

∫
Ω

(|u|p−2 + |û|p−2 + |v|p−2 + |v̂|p−2)(y2 + z2)(|ut|+ |vt|+ |ût|+ |v̂t|)dxdτ

+ C

∫
Ω

(|u(t)|p−1 + |û(t)|p−1 + |v(t)|p−1 + |v̂(t)|p−1)(|y(t)|2 + |z(t)|2)dx.

(4.18)

Now, we estimate the terms on the right hand side of (4.18) as follows.

1. Estimate for

I1 =

∫
Ω

(|y(t)|2 + |z(t)|2)dx.

Since y, yt ∈ C([0, T ];L2(Ω)) and y(0) = 0, we obtain∫
Ω

|y(t)|2dx =

∫
Ω

∣∣∣∣
∫ t

0

yt(τ )dτ

∣∣∣∣
2

dx ≤ t

∫ t

0

‖yt(τ )‖22 dτ ≤ 2T

∫ t

0

Ẽ(τ )dτ.(4.19)

Likewise,
∫
Ω
|z(t)|2dx ≤ 2T

∫ t

0
Ẽ(τ )dτ . Therefore,

I1 ≤ 4T

∫ t

0

Ẽ(τ )dτ.(4.20)
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2. Estimate for

I2 =

∫ t

0

∫
Ω

(y2 + z2)(|ut|+ |vt|+ |ût|+ |v̂t|)dxdτ.

A typical term in I2 is estimated as follows. By using Hölder’s inequality and
the imbedding H1(Ω) ↪→ L6(Ω), we have∫ t

0

∫
Ω

y2|ut|dxdτ ≤
∫ t

0

‖y‖26 ‖ut‖3/2 dτ

≤ C

∫ t

0

‖y‖21,Ω ‖ut‖2 dτ ≤ C(R)

∫ t

0

Ẽ(τ )dτ,(4.21)

where we have used the fact that ‖ut(t)‖2 ≤ R for all t ∈ [0, T ] (see (4.2)). There-
fore,

(4.22) I2 ≤ C(R)

∫ t

0

Ẽ(τ )dτ.

3. Estimate for

I3 =

∫ t

0

∫
Ω

(|u|p−2 + |û|p−2 + |v|p−2 + |v̂|p−2)(y2 + z2)(|ut|+ |vt|+ |ût|+ |v̂t|)dxdτ.

A typical term in I3 is estimated as follows. Recall the assumption pm+1
m < 6

which implies 6
6−p < m+ 1. Thus, by using Hölder’s inequality and (4.2), one has

∫ t

0

∫
Ω

|u|p−2y2|ut|dxdτ ≤
∫ t

0

‖u‖p−2
6 ‖y‖26 ‖ut‖ 6

6−p
dτ

≤ C

∫ t

0

‖u‖p−2
1,Ω ‖y‖21,Ω ‖ut‖m+1 dτ ≤ C(R)

∫ t

0

Ẽ(τ ) ‖ut‖m+1 dτ.(4.23)

Therefore,

I3 ≤ C(R)

∫ t

0

Ẽ(τ )
(
‖ut‖m+1 + ‖vt‖r+1 + ‖ût‖m+1 + ‖v̂t‖r+1

)
dτ.(4.24)

4. Estimate for

I4 =

∫
Ω

(|u(t)|p−1 + |û(t)|p−1 + |v(t)|p−1 + |v̂(t)|p−1)(|y(t)|2 + |z(t)|2)dx.

Estimating I4 is quite involved. We focus on the typical term
∫
Ω
|u(t)|p−1|y(t)|2dx

in the following two cases for the exponent p ∈ (3, 6).

Case 1: 3 < p < 5. In this case, we have∫
Ω

|u(t)|p−1|y(t)|2dx ≤
∫
Ω

|y(t)|2dx+

∫
{x∈Ω:|u(t)|>1}

|u(t)|p−1|y(t)|2dx.(4.25)

The first term on the right hand side of (4.25) has already been estimated in (4.19).
For the second term, we notice that if 0 < ε < 5−p, then |u(t)|p−1 ≤ |u(t)|4−ε, since
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|u(t)| > 1. Again, by using Hölder’s inequality, (4.2), (1.3), and (1.4), it follows
that∫

{x∈Ω:|u(t)|>1}
|u(t)|p−1|y(t)|2dx ≤

∫
Ω

|u(t)|4−ε|y(t)|2dx ≤ ‖u(t)‖4−ε
6 ‖y(t)‖2 6

1+ε/2

≤ C ‖u(t)‖4−ε
1,Ω ‖y(t)‖2H1−ε/4(Ω)

= C(R)
(
ε ‖y(t)‖21,Ω + Cε ‖y(t)‖22

)
.(4.26)

By using (4.19) and (4.26), then from (4.25) it follows that

∫
Ω

|u(t)|p−1|y(t)|2dx ≤ C(R)

(
εẼ(t) + CεT

∫ t

0

Ẽ(τ )dτ

)
,(4.27)

in the case 3 < p < 5 and where 0 < ε < 5− p.

Case 2: 5 ≤ p < 6. In this case, the assumption pm+1
m < 6 implies m > 5. Recall

that in Theorem 1.5 we required a higher regularity of initial data u0, v0, namely,
u0, v0 ∈ L

3
2 (p−1)(Ω). By density of C0(Ω) in L

3
2 (p−1)(Ω), then for any ε > 0, there

exists φ ∈ C0(Ω) such that ‖u0 − φ‖ 3
2 (p−1) < ε

1
p−1 .

Now,∫
Ω

|u(t)|p−1|y(t)|2dx ≤ C

∫
Ω

|u(t)− u0|p−1|y(t)|2dx+ C

∫
Ω

|u0 − φ|p−1|y(t)|2dx

+ C

∫
Ω

|φ|p−1|y(t)|2dx.(4.28)

Since p < 6m
m+1 and m > 5, then 3(p−1)

2(m+1) < 1. So, by using Hölder’s inequality and

the bound
∫ T

0
‖ut‖m+1

m+1 dt ≤ R, one has

∫
Ω

|u(t)− u0|p−1|y(t)|2dx ≤
(∫

Ω

|u(t)− u(0)|
3(p−1)

2 dx

)2/3

‖y(t)‖26

≤ C

⎛
⎝∫

Ω

∣∣∣∣
∫ t

0

ut(τ )dτ

∣∣∣∣
3(p−1)

2

dx

⎞
⎠

2/3

‖y(t)‖21,Ω

≤ C

⎡
⎣∫

Ω

(∫ t

0

|ut|m+1dτ

) 3(p−1)
2(m+1)

dx

⎤
⎦
2/3

T
m(p−1)
m+1 Ẽ(t)

≤ C(R)T
m(p−1)
m+1 Ẽ(t),(4.29)

where we have used the important fact that 3(p−1)
2(m+1) < 1.

The second term on the right hand side of (4.28) is easily estimated as follows:∫
Ω

|u0 − φ|p−1|y(t)|2dx ≤ ‖u0 − φ‖p−1
3(p−1)

2

‖y(t)‖26 ≤ CεẼ(t).(4.30)
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Since φ ∈ C0(Ω), then |φ(x)| ≤ C(ε), for all x ∈ Ω. So, by (4.19), the last term on
the right hand side of (4.28) is estimated as follows:∫

Ω

|φ|p−1|y(t)|2dx ≤ C(ε)

∫
Ω

|y(t)|2dx ≤ C(ε, T )

∫ t

0

Ẽ(τ )dτ.(4.31)

By combining (4.29)-(4.31), then (4.28) yields∫
Ω

|u(t)|p−1|y(t)|2dx ≤ C(R)
(
T

m(p−1)
m+1 + ε

)
Ẽ(t) + C(ε, T )

∫ t

0

Ẽ(τ )dτ,(4.32)

in the case 5 ≤ p < 6.
By combining the estimates in (4.27) and (4.32), then for the case 3 < p < 6,

one has∫
Ω

|u(t)|p−1|y(t)|2dx ≤ C(R)
(
T

m(p−1)
m+1 + ε

)
Ẽ(t) + C(ε, R, T )

∫ t

0

Ẽ(τ )dτ,(4.33)

where ε > 0 such that ε < 5− p, if 3 < p < 5.
The other terms in I4 can be estimated in the same way, and we have

I4 ≤ C(R)
(
T

m(p−1)
m+1 + T

r(p−1)
r+1 + ε

)
Ẽ(t) + C(ε, R, T )

∫ t

0

Ẽ(τ )dτ.(4.34)

Finally, by combining the estimates (4.20), (4.22), (4.24) and (4.34) back into
(4.18), we obtain for 3 < p < 6:

Rf ≤ C(R)
(
T

m(p−1)
m+1 + T

r(p−1)
r+1 + ε

)
Ẽ(t)

+ C(ε, R, T )

∫ t

0

Ẽ(τ )(‖ut‖m+1 + ‖vt‖r+1 + ‖ût‖m+1 + ‖v̂t‖r+1 + 1)dτ,(4.35)

where ε > 0 is sufficiently small. According to (4.10), estimate (4.35) also holds for
1 ≤ p ≤ 3, i.e., (4.35) holds for all 1 ≤ p < 6.

Step 3. Estimate for

Rh =

∫ t

0

∫
Γ

(h(γu)− h(γû))γytdΓdτ.

First, we consider the subcritical case: 1 ≤ k < 2. Although, in this case, h is
locally Lipschitz from H1(Ω) into L2(Γ), we cannot estimate Rh by using the same
method as we have done for Rf . More precisely, an estimate as in (4.9) won’t work

for Rh, because the energy Ẽ does not control the boundary trace γyt.
In order to overcome this difficulty, we shall take advantage of the boundary

damping term:
∫ t

0

∫
Γ
(g(γut) − g(γût))γytdΓdτ . It is here where the strong mono-

tonicity condition imposed on g in Assumption 1.4 is critical; namely, the assump-
tion that there exists mg > 0 such that (g(s1) − g(s2))(s1 − s2) ≥ mg|s1 − s2|2.
Now, by recalling y = u− û, we have∫ t

0

∫
Γ

(g(γut)− g(γût))γytdΓdτ ≥ mg

∫ t

0

∫
Γ

|γyt|2dΓdτ.(4.36)
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To estimate Rh, we employ Hölder’s inequality followed by Young’s inequality,
and the fact that h is locally Lipschitz from H1(Ω) into L2(Γ) when 1 ≤ k < 2 (see
Remark 2.8). Thus,

Rh ≤
(∫ t

0

∫
Γ

|h(γu)− h(γû)|2dΓdτ
) 1

2
(∫ t

0

∫
Γ

|γyt|2dΓdτ
) 1

2

≤ C(R)

(∫ t

0

‖y‖21,Ω dτ

) 1
2
(∫ t

0

∫
Γ

|γyt|2dΓdτ
) 1

2

≤ ε

∫ t

0

∫
Γ

|γyt|2dΓdτ + C(R, ε)

∫ t

0

Ẽ(τ )dτ.(4.37)

Therefore, if we choose ε ≤ mg, then by (4.36) and (4.37), we obtain for 1 ≤ k < 2:

Rh −
∫ t

0

∫
Γ

(g(γut)− g(γût))γyt ≤ C(R, ε)

∫ t

0

Ẽ(τ )dτ.(4.38)

Next, we consider the case 2 ≤ k < 4. In this case, we need the extra assumption
h ∈ C2(R) such that h′′(s) ≤ C(|s|k−2 + 1), which implies⎧⎪⎪⎨

⎪⎪⎩
|h′(s)| ≤ C(|s|k−1 + 1), |h(s)| ≤ C(|s|k + 1),

|h′(u)− h′(û)| ≤ C(|u|k−2 + |û|k−2 + 1)|y|,
|h(u)− h(û)| ≤ C(|u|k−1 + |û|k−1 + 1)|y|,

(4.39)

where y = u− û.
To evaluate Rh, integrate by parts twice with respect to time, employ (4.39) and

the fact that y(0) = 0 to obtain

Rh ≤
∣∣∣∣
∫
Γ

[h(γu(t))− h(γû(t))]γy(t)dΓ

∣∣∣∣+
∣∣∣∣
∫ t

0

∫
Γ

[h′(γu)γut − h′(γû)γût]γydΓdτ

∣∣∣∣
≤
∣∣∣∣
∫
Γ

[h(γu(t))− h(γû(t))]γy(t)dΓ

∣∣∣∣+
∣∣∣∣
∫ t

0

∫
Γ

[h′(γu)− h′(γû)]γûtγydΓdτ

∣∣∣∣
+

1

2

∣∣∣∣
∫
Γ

h′(γu(t))(γy(t))2dΓ

∣∣∣∣+ 1

2

∣∣∣∣
∫ t

0

∫
Γ

h′′(γu)γut(γy)
2dΓdτ

∣∣∣∣
≤ I5 + I6 + I7 + I8,

(4.40)

where

I5 = C

∫
Γ

|γy(t)|2dΓ,

I6 = C

∫ t

0

∫
Γ

(|γut|+ |γût|)|γy|2dΓdτ,

I7 = C

∫ t

0

∫
Γ

(|γu|k−2 + |γû|k−2)(|γut|+ |γût|)|γy|2dΓdτ,

I8 = C

∫
Γ

(|γu(t)|k−1 + |γû(t)|k−1)|γy(t)|2dΓ.
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Since y(t) ∈ H1(Ω), then I5 is easily estimated as follows:

I5 = |γy(t)|22 ≤ C ‖y(t)‖2
H

1
2 (Ω)

≤ ε ‖y(t)‖21,Ω + Cε ‖y(t)‖22

≤ 2εẼ(t) + CεT

∫ t

0

Ẽ(τ )dτ,(4.41)

where we have used (1.3), (1.4) and (4.19).
Since q ≥ 1 and H1(Ω) ↪→ L4(Γ), then I6 is estimated by

I6 ≤ C

∫ t

0

(|γut|2 + |γût|2)|γy|24dτ ≤ C

∫ t

0

(|γut|q+1 + |γût|q+1)Ẽ(τ )dτ.(4.42)

In I7 we focus on the typical term
∫ t

0

∫
Γ
|γu|k−2|γut||γy|2dΓdτ . Notice that the

assumption k q+1
q < 4 implies 4

4−k < q + 1. Therefore,∫ t

0

∫
Γ

|γu|k−2|γut||γy|2dΓdτ ≤
∫ t

0

|γu|k−2
4 |γut| 4

4−k
|γy|24dτ

≤ C

∫ t

0

‖u‖k−2
1,Ω |γut|q+1 ‖y‖21,Ω dτ ≤ C(R)

∫ t

0

|γut|q+1Ẽ(τ )dτ,(4.43)

where we have used (4.2). The other terms in I7 can be estimated in the same
manner, thus

I7 ≤ C(R)

∫ t

0

(|γut|q+1 + |γût|q+1)Ẽ(τ )dτ.(4.44)

Finally, we estimate I8 by focusing on the typical term
∫
Γ
|γu(t)|k−1|γy(t)|2dΓ.

We consider the following two cases for the exponent k ∈ [2, 4).

Case 1: 2 ≤ k < 3. First, we note that

∫
Γ

|γu(t)|k−1|γy(t)|2dΓ ≤
∫
Γ

|γy(t)|2dΓ +

∫
{x∈Γ:|γu(t)|>1}

|γu(t)|k−1|γy(t)|2dΓ.

(4.45)

The first term on the right hand side of (4.45) has been estimated in (4.41). As for
the second term, we choose 0 < ε < 3− k, and so, k− 1 < 2− ε. By using Hölder’s
inequality, (1.3) and (1.4), we obtain∫

{x∈Γ:|γu(t)|>1}
|γu(t)|k−1|γy(t)|2dΓ ≤

∫
Γ

|γu(t)|2−ε|γy(t)|2dΓ

≤ |γu(t)|2−ε
4 |γy(t)|2 4

1+ε/2

≤ C ‖u(t)‖2−ε
1,Ω ‖y(t)‖2H1−ε/4(Ω)

≤ C(R)(ε ‖y(t)‖21,Ω + Cε ‖y(t)‖22).(4.46)

Therefore, by using the estimates (4.46), (4.41) and (4.19), we obtain from (4.45)
that ∫

Γ

|γu(t)|k−1|γy(t)|2dΓ ≤ C(R)

(
εẼ(t) + CεT

∫ t

0

Ẽ(τ )dτ

)
(4.47)

for the case 2 < k < 3, and where 0 < ε < 3− k.
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Case 2: 3 ≤ k < 4. Observe that, in this case, the assumption k q+1
q < 4 implies

q > 3. Also, recall that in Theorem 1.5 we required the extra assumption: γu0 ∈
L2(k−1)(Γ).

By the density of C(Γ) in L2(k−1)(Γ), for any ε > 0, there exists ψ ∈ C(Γ) such

that |γu0 − ψ|2(k−1) ≤ ε
1

k−1 . Note that∫
Γ

|γu(t)|k−1|γy(t)|2dΓ ≤ C

∫
Γ

|γu(t)− γu0|k−1|γy(t)|2dΓ

+ C

∫
Γ

|γu0 − ψ|k−1|γy(t)|2dΓ + C

∫
Γ

|ψ|k−1|γy(t)|2dΓ.(4.48)

Since k < 4q
q+1 and q > 3, then 2(k−1)

q+1 < 1. Therefore, by using (4.2), we have

∫
Γ

|γu(t)− γu0|k−1|γy(t)|2dΓ ≤
(∫

Γ

∣∣∣∣
∫ t

0

γut(τ )dτ

∣∣∣∣
2(k−1)

dΓ

) 1
2 (∫

Γ

|γy(t)|4dΓ
) 1

2

≤ C
(∫

Γ

∣∣∣∣
∫ t

0

|γut(τ )|q+1dτ

∣∣∣∣
2(k−1)
q+1

dΓ
) 1

2

T
q(k−1)
q+1 ‖y(t)‖21,Ω ≤ C(R)T

q(k−1)
q+1 Ẽ(t).

(4.49)

The second term on the right hand side of (4.48) is estimated by
(4.50)∫

Γ

|γu0 − ψ|k−1|γy(t)|2dΓ ≤ |γu0 − ψ|k−1
2(k−1)|γy(t)|

2
4 ≤ Cε ‖y(t)‖21,Ω ≤ CεẼ(t).

Finally, we estimate the last term on the right hand side of (4.48). Since ψ ∈
C(Γ), then |ψ(x)| ≤ C(ε), for all x ∈ Γ. It follows from (4.41) that∫

Γ

|ψ|k−1|γy(t)|2dΓ ≤ C(ε)

∫
Γ

|γy(t)|2dΓ

≤ εC(ε)Ẽ(t) + C(ε, T )

∫ t

0

Ẽ(τ )dτ.(4.51)

Now, (4.49)-(4.51) and (4.48) yield∫
Γ

|γu(t)|k−1|γy(t)|2dΓ ≤ C(R, ε)(T
q(k−1)
q+1 + ε)Ẽ(t) + C(ε, T )

∫ t

0

Ẽ(τ )dτ,(4.52)

for the case 3 ≤ k < 4. It is easy to see that the other term in I8 has the same
estimate as (4.47) and (4.52). So, we may conclude that for 2 < k < 4 and
sufficiently small ε > 0:

I8 ≤ C(R, ε)(T
q(k−1)
q+1 + ε)Ẽ(t) + C(ε, R, T )

∫ t

0

Ẽ(τ )dτ.(4.53)

Combine (4.41), (4.42), (4.44) and (4.53) back into (4.40) to obtain the following
estimate for Rh in the case 2 ≤ k < 4:

Rh ≤ C(R, ε)(T
q(k−1)
q+1 + ε)Ẽ(t)

+ C(ε, R, T )

∫ t

0

(|γut|q+1 + |γût|q+1 + 1)Ẽ(τ )dτ,(4.54)

where ε > 0 is sufficiently small.
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Step 4. Completion of the proof.
By the estimates (4.35), (4.38), (4.54) and employing the monotonicity property

of g, we obtain from (4.7) that

Ẽ(t) ≤ C(R)
(
T

m(p−1)
m+1 + T

r(p−1)
r+1 + T

q(k−1)
q+1 + ε

)
Ẽ(t)

+ C(ε, R, T )

∫ t

0

Ẽ(τ )
(
‖ut‖m+1 + ‖vt‖r+1 + ‖ût‖m+1 + ‖v̂t‖r+1

+ |γut|q+1 + |γût|q+1 + 1
)
dτ,

for all t ∈ [0, T ]. Choose ε and T small enough so that

C(R)
(
T

m(p−1)
m+1 + T

r(p−1)
r+1 + T

q(k−1)
q+1 + ε

)
< 1.

By applying Gronwall’s inequality with an L1-kernel, it follows that Ẽ(t) = 0 on
[0, T ]. Hence, y(t) = z(t) = 0 on [0, T ]. Finally we note that it is sufficient to
consider a small time interval [0, T ], since this process can be reiterated. The proof
of Theorem 1.5 is now complete.

4.2. Proof of Theorem 1.7. We begin by pointing out that the only difference
between Theorem 1.7 and Theorem 1.5 is that Assumption 1.4 (a) is not imposed
in Theorem 1.7. Thus, the proof of Theorem 1.7 is essentially the same as Theorem
1.5, with the exception of the estimate for Rf in (4.8). So, we focus on estimating
Rf in the case p > 3 and the interior sources f1, f2 are not necessarily C2-functions.
With this scenario in place, the method of integration by parts fails twice. To handle
this difficulty, recall the additional restriction on parameters and the initial data in
Theorem 1.7, namely, m, r ≥ 3p− 4, if p > 3, and u0, v0 ∈ L3(p−1)(Ω).

Now, since |∇f1(u, v)| ≤ C(|u|p−1+ |v|p−1+1), then by the mean value theorem,

|f1(u, v)− f1(û, v̂)| ≤ C(|u|p−1 + |û|p−1 + |v|p−1 + |v̂|p−1 + 1)(|y|+ |z|),(4.55)

where y = u− û and z = v − v̂. Thus,∫ t

0

∫
Ω

(f1(u, v)− f1(û, v̂))ytdxdτ ≤ I1 + I2,(4.56)

where

I1 = C

∫ t

0

∫
Ω

(|y|+ |z|)|yt|dxdτ,

I2 = C

∫ t

0

∫
Ω

(|u|p−1 + |û|p−1 + |v|p−1 + |v̂|p−1)(|y|+ |z|)|yt|dxdτ.

The estimate for I1 is straightforward. Invoking Hölder’s inequality yields

I1 ≤ C

∫ t

0

(‖y‖6 + ‖z‖6) ‖yt‖2 dτ ≤ C

∫ t

0

Ẽ(τ )
1
2 Ẽ(τ )

1
2 dτ = C

∫ t

0

Ẽ(τ )dτ.(4.57)

A typical term in I2 is estimated as follows:∫ t

0

∫
Ω

|u|p−1|y||yt|dxdτ

≤ C

∫ t

0

∫
Ω

|u− u0|p−1|y||yt|dxdτ + C

∫ t

0

∫
Ω

|u0|p−1|y||yt|dxdτ.(4.58)
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By Hölder’s inequality,∫ t

0

∫
Ω

|u− u0|p−1|y||yt|dxdτ

≤
∫ t

0

(∫
Ω

|u(τ )− u0|3(p−1)dx

) 1
3
(∫

Ω

|y(τ )|6dx
) 1

6
(∫

Ω

|yt(τ )|2dx
) 1

2

dτ.(4.59)

Since u, ut ∈ C([0, T ];L2(Ω)), we can write∫
Ω

|u(τ )− u0|3(p−1)dx =

∫
Ω

∣∣∣∣
∫ τ

0

ut(s)ds

∣∣∣∣
3(p−1)

dx

≤ C(T )

∫
Ω

(∫ τ

0

|ut(s)|m+1ds

) 3(p−1)
m+1

dx.(4.60)

Since m ≥ 3p − 4, then 3(p−1)
m+1 ≤ 1. Therefore, by using Hölder’s inequality and

(4.2), it follows that∫
Ω

|u(τ )− u0|3(p−1)dx ≤ C(T )

(∫
Ω

∫ τ

0

|ut(s)|m+1dsdx

) 3(p−1)
m+1

≤ C(R, T ).(4.61)

So, (4.61) and (4.59) yield∫ t

0

∫
Ω

|u− u0|p−1|y||yt|dxdτ ≤ C(R, T )

∫ t

0

‖y(τ )‖6 ‖yt(τ )‖2 dτ

≤ C(R, T )

∫ t

0

Ẽ(τ )
1
2 Ẽ(τ )

1
2 dτ = C(R, T )

∫ t

0

Ẽ(τ )dτ.(4.62)

By recalling the assumption u0 ∈ L3(p−1)(Ω), then the second term on the right
hand side of (4.58) is estimated by∫ t

0

∫
Ω

|u0|p−1|y||yt|dxdτ ≤
∫ t

0

‖u0‖p−1
3(p−1) ‖y(τ )‖6 ‖yt(τ )‖2 dτ

≤ C ‖u0‖p−1
3(p−1)

∫ t

0

Ẽ(τ )dτ.(4.63)

Combining (4.62) and (4.63) back into (4.58) yields∫ t

0

∫
Ω

|u|p−1|y||yt|dxdτ ≤ C
(
R, T, ‖u0‖3(p−1)

)∫ t

0

Ẽ(τ )dτ.(4.64)

The other terms in I2 are estimated in the same manner, and one has

I2 ≤ C
(
R, T, ‖u0‖3(p−1) , ‖v0‖3(p−1)

)∫ t

0

Ẽ(τ )dτ.(4.65)

Hence, (4.57), (4.65), and (4.56) yield∫ t

0

∫
Ω

(f1(u, v)− f1(û, v̂))ytdxdτ

≤ C
(
R, T, ‖u0‖3(p−1) , ‖v0‖3(p−1)

)∫ t

0

Ẽ(τ )dτ.(4.66)

It is clear that
∫ t

0

∫
Ω
(f2(u, v)− f2(û, v̂))ztdxdτ has the same estimate as in (4.66).

Finally, we may use the same argument as in Step 3 and Step 4 in the proof of
Theorem 1.5 and complete the proof of Theorem 1.7.
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5. Global existence

This section is devoted to proving the existence of global solutions (Theorem
1.8). Here, we apply a standard continuation procedure for ODE’s to conclude
that either the weak solution (u, v) is global or there exists 0 < T < ∞ such that
lim supt−→T− E1(t) = +∞, where E1(t) is the modified energy defined by

E1(t) :=
1

2
(‖u(t)‖21,Ω + ‖v(t)‖21,Ω + ‖ut(t)‖22 + ‖vt(t)‖22)

+
1

p+ 1
(‖u(t)‖p+1

p+1 + ‖v(t)‖p+1
p+1) +

1

k + 1
|γu(t)|k+1

k+1.(5.1)

We aim to show that the latter cannot happen under the assumptions of Theorem
1.8. Indeed, this assertion is contained in the following proposition.

Proposition 5.1. Let (u, v) be a weak solution of (1.1) on [0, T0] as furnished by
Theorem 1.3. Assume u0, v0 ∈ Lp+1(Ω), if p > 5, and γu0 ∈ Lk+1(Γ), if k > 3.
We have:

• If p ≤ min{m, r} and k ≤ q, then for all t ∈ [0, T0], (u, v) satisfies

E1(t) +

∫ t

0

(
‖ut‖m+1

m+1 + ‖vt‖r+1
r+1 + |γut|q+1

q+1

)
dτ ≤ C(T0, E1(0)),(5.2)

where T0 > 0 is being arbitrary.
• If p > min{m, r} or k > q, then the bound in (5.2) holds for 0 ≤ t < T ′,
for some T ′ > 0 depending on E1(0) and T0.

Proof. With the modified energy as given in (5.1), the energy identity (1.8) yields

E1(t) +

∫ t

0

∫
Ω

[g1(ut)ut + g2(vt)vt] dxdτ +

∫ t

0

∫
Γ

g(γut)γutdΓdτ

= E1(0) +

∫ t

0

∫
Ω

[f1(u, v)ut + f2(u, v)vt] dxdτ +

∫ t

0

∫
Γ

h(γu)γutdΓdτ

+
1

p+ 1

∫
Ω

(|u(t)|p+1 − |u(0)|p+1 + |v(t)|p+1 − |v(0)|p+1)dx

+
1

k + 1

∫
Γ

(|γu(t)|k+1 − |γu(0)|k+1)dΓ

= E1(0) +

∫ t

0

∫
Ω

[f1(u, v)ut + f2(u, v)vt] dxdτ +

∫ t

0

∫
Γ

h(γu)γutdΓdτ

+

∫ t

0

∫
Ω

(|u|p−1uut + |v|p−1vvt)dxdτ +

∫ t

0

∫
Γ

|γu|k−1γuγutdΓdτ.(5.3)

To estimate the source terms on the right hand side of (5.3), we recall the assump-
tions |h(s)| ≤ C(|s|k +1), |fj(u, v)| ≤ C(|u|p + |v|p +1), j = 1, 2. So, by employing
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Hölder’s and Young’s inequalities, we find∣∣∣∣
∫ t

0

∫
Ω

f1(u, v)utdxdτ

∣∣∣∣ ≤ C

∫ t

0

∫
Ω

(|u|p + |v|p + 1)|ut|dxdτ

≤ C

∫ t

0

‖ut‖p+1

(
‖u‖pp+1 + ‖v‖pp+1 + |Ω|

p
p+1

)
dτ

≤ ε

∫ t

0

‖ut‖p+1
p+1 dτ + Cε

∫ t

0

(
‖u‖p+1

p+1 + ‖v‖p+1
p+1 + |Ω|

)
dτ

≤ ε

∫ t

0

‖ut‖p+1
p+1 dτ + Cε

∫ t

0

E1(τ )dτ + CεT0|Ω|.(5.4)

Similarly, we deduce∣∣∣∣
∫ t

0

∫
Ω

f2(u, v)vtdxdτ

∣∣∣∣ ≤ ε

∫ t

0

‖vt‖p+1
p+1 dτ + Cε

∫ t

0

E1(τ )dτ + CεT0|Ω|(5.5)

and ∣∣∣∣
∫ t

0

∫
Γ

h(γu)γut

∣∣∣∣ ≤ ε

∫ t

0

|γut|k+1
k+1dτ + Cε

∫ t

0

E1(τ )dτ + CεT0|Γ|.(5.6)

By adopting similar estimates as in (5.4), we obtain

∣∣∣∣
∫ t

0

∫
Ω

(|u|p−1uut + |v|p−1vvt)dxdτ +

∫ t

0

∫
Γ

|γu|k−1γuγutdΓdτ

∣∣∣∣
≤
∫ t

0

∫
Ω

(|u|p|ut|+ |v|p|vt|)dxdτ +

∫ t

0

∫
Γ

|γu|k|γut|dΓdτ

≤ ε

∫ t

0

(‖ut‖p+1
p+1 + ‖vt‖p+1

p+1 + |γut|k+1
k+1)dτ + Cε

∫ t

0

E1(τ )dτ.(5.7)

By recalling (2.34), one has

∫ t

0

∫
Ω

[g1(ut)ut + g2(vt)vt] dxdτ +

∫ t

0

∫
Γ

g(γut)γutdΓdτ

≥ α

∫ t

0

(‖ut‖m+1
m+1 + ‖vt‖r+1

r+1 + |γut|q+1
q+1)dτ − αT0(2|Ω|+ |Γ|).(5.8)

Now, if p ≤ min{m, r} and k ≤ q, it follows from (5.4)-(5.8) and the energy
identity (5.3) that, for t ∈ [0, T0],

E1(t) + α

∫ t

0

(‖ut‖m+1
m+1 + ‖vt‖r+1

r+1 + |γut|q+1
q+1)dτ

≤ E1(0) + ε

∫ t

0

(‖ut‖p+1
p+1 + ‖vt‖p+1

p+1 + |γut|k+1
k+1)dτ + Cε

∫ t

0

E1(τ )dτ + CT0,ε

≤ E1(0) + ε

∫ t

0

(‖ut‖m+1
m+1 + ‖vt‖r+1

r+1 + |γut|q+1
q+1)dτ + Cε

∫ t

0

E1(τ )dτ + CT0,ε,

(5.9)
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where we have used Hölder’s and Young’s inequalities in the last line of (5.9). By
choosing 0 < ε ≤ α/2, then (5.9) yields

E1(t) +
α

2

∫ t

0

(‖ut‖m+1
m+1 + ‖vt‖r+1

r+1 + |γut|q+1
q+1)dτ

≤ Cε

∫ t

0

E1(τ )dτ + E1(0) + CT0,ε.(5.10)

In particular,

E1(t) ≤ Cε

∫ t

0

E1(τ )dτ + E1(0) + CT0,ε.(5.11)

By Gronwall’s inequality, we conclude that

E1(t) ≤ (E1(0) + CT0,ε)e
CεT0 for t ∈ [0, T0],(5.12)

where T0 > 0 is arbitrary, and by combining (5.10) and (5.12), the desired result
in (5.2) follows.

Now, if p > min{m, r} or k > q, then we slightly modify estimate (5.4) by using
different Hölder’s conjugates. Specifically, we apply Hölder’s inequality with m+1
and m̃ = m+1

m followed by Young’s inequality to obtain

∣∣∣∣
∫ t

0

∫
Ω

f1(u, v)utdxdτ

∣∣∣∣ ≤ C

∫ t

0

∫
Ω

(|u|p + |v|p + 1)|ut|dxdτ

≤ C

∫ t

0

‖ut‖m+1

(
‖u‖ppm̃ + ‖v‖ppm̃ + |Ω|1/m̃

)
dτ

≤ ε

∫ t

0

‖ut‖m+1
m+1 dτ + Cε

∫ t

0

(
‖u‖pm̃pm̃ + ‖v‖pm̃pm̃ + |Ω|

)
dτ.(5.13)

Since pm̃ < 6 and H1(Ω) ↪→ �L6(Ω), then

∣∣∣∣
∫ t

0

∫
Ω

f1(u, v)utdxdτ

∣∣∣∣ ≤ ε

∫ t

0

‖ut‖m+1
m+1 dτ + Cε

∫ t

0

(
‖u‖pm̃1,Ω + ‖v‖pm̃1,Ω + |Ω|

)
dτ

≤ ε

∫ t

0

‖ut‖m+1
m+1 dτ + Cε

∫ t

0

E1(τ )
pm̃
2 dτ + CεT0|Ω|.(5.14)

Likewise, we may deduce

∣∣∣∣
∫ t

0

∫
Ω

f2(u, v)vtdxdτ

∣∣∣∣ ≤ ε

∫ t

0

‖vt‖r+1
r+1 dτ + Cε

∫ t

0

E1(τ )
pr̃
2 dτ + CεT0|Ω|(5.15)

and ∣∣∣∣
∫ t

0

∫
Γ

h(γu)γut

∣∣∣∣ ≤ ε

∫ t

0

|γut|q+1
q+1dτ + Cε

∫ t

0

E1(τ )
kq̃
2 dτ + CεT0|Γ|.(5.16)
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In addition, by employing similar estimates as in (5.13)-(5.14), we have∣∣∣ ∫ t

0

∫
Ω

(|u|p−1uut + |v|p−1vvt)dxdτ +

∫ t

0

∫
Γ

|γu|k−1γuγutdΓdτ
∣∣∣

≤
∫ t

0

∫
Ω

(|u|p|ut|+ |v|p|vt|)dxdτ +

∫ t

0

∫
Γ

|γu|k|γut|dΓdτ

≤ ε

∫ t

0

(‖ut‖m+1
m+1 + ‖vt‖r+1

r+1 + |γut|q+1
q+1)dτ

+ Cε

∫ t

0

(E1(τ )
pm̃
2 + E1(τ )

pr̃
2 + E1(τ )

kq̃
2 )dτ.(5.17)

By using (5.14)-(5.17) along with (5.8), we obtain from the energy identity (5.3)
that

E1(t) + α

∫ t

0

(‖ut‖m+1
m+1 + ‖vt‖r+1

r+1 + |γut|q+1
q+1)dτ

≤ E1(0) + ε

∫ t

0

(‖ut‖m+1
m+1 + ‖vt‖r+1

r+1 + |γut|q+1
q+1)dτ + Cε

∫ t

0

E1(τ )
σdτ + CT0,ε,

(5.18)

where σ = max{pm̃
2 , pr̃

2 , kq̃2 } > 1. Notice that the assumption p > min{m, r} or
k > q implies that σ > 1. By choosing 0 < ε ≤ α/2, then it follows that

E1(t) +
α

2

∫ t

0

(‖ut‖m+1
m+1 + ‖vt‖r+1

r+1 + |γut|q+1
q+1)dτ

≤ Cε

∫ t

0

E1(τ )
σdτ + E1(0) + CT0,ε for t ∈ [0, T0].(5.19)

In particular,

E1(t) ≤ Cε

∫ t

0

E1(τ )
σdτ + E1(0) + CT0,ε for t ∈ [0, T0].(5.20)

By using a standard comparison theorem (see [22] for instance), then (5.20) yields

that E1(t) ≤ z(t), where z(t) = [(E1(0)+CT0,ε)
1−σ−Cε(σ−1)t]−

1
σ−1 is the solution

of the Volterra integral equation

z(t) = Cε

∫ t

0

z(s)σds+ E1(0) + CT0,ε.

Since σ > 1, then clearly z(t) blows up at the finite time T1 = 1
Cε(σ−1) (E1(0) +

CT0,ε)
1−σ, i.e., z(t) −→ ∞, as t −→ T−

1 . Note that T1 depends on the initial
energy E1(0) and the original existence time T0. Nonetheless, if we choose T ′ =
min{T0,

1
2T1}, then

E1(t) ≤ z(t) ≤ C0 := [(E1(0) + CT0,ε)
1−σ − Cε(σ − 1)T ′]−

1
σ−1 ,(5.21)

for all t ∈ [0, T ′]. Finally, we may combine (5.19) and (5.21) to obtain

E1(t) +
α

2

∫ t

0

(‖ut‖m+1
m+1 + ‖vt‖r+1

r+1 + |γut|q+1
q+1)dτ ≤ CεT

′Cσ
0 + E1(0) + CT0,ε,

(5.22)

for all t ∈ [0, T ′], which completes the proof of the proposition. �
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6. Continuous dependence on initial data

In this section, we provide the proof of Theorem 1.10. The strategy here is to
adopt the same argument as in the proof of Theorem 1.5 and use the bounds of
Proposition 5.1.

Proof. Let U0 = (u0, v0, u1, v1) ∈ X, where

X =
(
H1(Ω) ∩ L

3(p−1)
2 (Ω)

)
×
(
H1

0 (Ω) ∩ L
3(p−1)

2 (Ω)
)
× L2(Ω)× L2(Ω)

such that γu0 ∈ L2(k−1)(Γ). Assume that {Un
0 = (un

0 , u
n
1 , v

n
0 , v

n
1 )} is a sequence of

initial data that satisfies

Un
0 −→ U0 in X and γun

0 −→ γu0 in L2(k−1)(Γ), as n −→ ∞.(6.1)

Notice that in Remark 1.11, we have pointed out that if p ≤ 5, then the space
X is identical to H = H1(Ω) × H1

0 (Ω) × L2(Ω) × L2(Ω), and if k ≤ 3, then the
assumption γun

0 −→ γu0 in L2(k−1)(Γ) is redundant.
Let {(un, vn)} and (u, v) be the unique weak solutions to (1.1) defined on [0, T0]

in the sense of Definition 1.2, corresponding to the initial data {Un
0 } and {U0},

respectively. First, we show that the local existence time T0 can be taken inde-
pendent of n ∈ N. To see this, we recall that the local existence time provided by
Theorem 1.3 depends on the initial energy E(0). In addition, since Un

0 −→ U0 in
X, then un

0 −→ u0, v
n
0 −→ v0 in Lp+1(Ω), if p > 5, and γun

0 −→ γu0 in Lk+1(Γ),
if k > 3. Hence, we may assume En

1 (0) ≤ E1(0) + 1, for all n ∈ N, where E1(t) is
defined in (5.1) and En

1 (t) is defined by

En
1 (t) := En(t) +

1

p+ 1
(‖un(t)‖p+1

p+1 + ‖vn(t)‖p+1
p+1) +

1

k + 1
|γun(t)|k+1

k+1,

where En(t) = 1
2 (‖un(t)‖21,Ω + ‖vn(t)‖21,Ω + ‖un

t (t)‖
2
2 + ‖vnt (t)‖

2
2). Therefore, we

can choose K, as in (2.38), sufficiently large, say K2 ≥ 4E1(0) + 5. Then the local
existence time T0 for the solutions {(un, vn)} and (u, v) can be chosen independent
of n ∈ N. Moreover, in view of (5.2), T0 can be taken arbitrarily large in the case
when p ≤ min{m, r} and k ≤ q. However, in the case when p > min{m, r} or k > q,
we select the local existence time to be T = T ′, where T ′ is given in Proposition 5.1
(which is also uniform in n). In either case, it follows from (5.2) that there exists
R > 0 such that, for all n ∈ N and all t ∈ [0, T ],⎧⎨

⎩
E1(t) +

∫ t

0
(‖ut‖m+1

m+1 + ‖vt‖r+1
r+1 + |γut|q+1

q+1)dτ ≤ R,

En
1 (t) +

∫ t

0
(‖un

t ‖
m+1
m+1 + ‖vnt ‖

r+1
r+1 + |γun

t |
q+1
q+1)dτ ≤ R,

(6.2)

where T can be arbitrarily large if p ≤ min{m, r} and k ≤ q, or T is sufficiently
small if p > min{m, r} or k > q.

Now, put yn(t) = u(t)− un(t), zn(t) = v(t)− vn(t), and

Ẽn(t) =
1

2
(‖yn(t)‖21,Ω + ‖zn(t)‖21,Ω + ‖ynt (t)‖

2
2 + ‖znt (t)‖

2
2),(6.3)

for t ∈ [0, T ]. We aim to show Ẽn(t) −→ 0 uniformly on [0, T ], for sufficiently small
T .

We begin by following the proof of Theorem 1.5, where here u, v, un, vn, yn, zn,
Ẽn replace u, v, û, v̂, y, z, Ẽ in the proof of Theorem 1.5, respectively. However,
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due to having nonzero initial data, yn(0) = u0 − un
0 and zn(0) = v0 − vn0 , we have

to take care of the additional terms resulting from integration by parts.
First, as in (4.7), accounting for the nonzero initial data, we obtain the energy

inequality

Ẽn(t) ≤ Ẽn(0) +Rn
f + Rn

h,(6.4)

where

Rn
f =

∫ t

0

∫
Ω

(f1(u, v)− f1(u
n, vn))ynt dxdτ +

∫ t

0

∫
Ω

(f2(u, v)− f2(u
n, vn))znt dxdτ

and

Rn
h =

∫ t

0

∫
Γ

(h(γu)− h(γun))γynt dΓdτ.

As in Step 2 in the proof of Theorem 1.5, the estimate for Rn
f when 1 ≤ p ≤ 3

is straightforward. Indeed, following (4.9)-(4.10), we find

Rn
f ≤ C(R)

∫ t

0

Ẽn(τ )dτ.(6.5)

If 3 < p < 5, we utilize Assumption 1.4, and integration by parts in (4.12)-(4.13)
yields the additional terms:

Q1 =

∣∣∣∣
∫
Ω

(f1(u0, v0)− f1(u
n
0 , v

n
0 )) y

n(0)dx

∣∣∣∣+
∣∣∣∣
∫
Ω

(f2(u0, v0)−f2(u
n
0 , v

n
0 )) z

n(0)dx

∣∣∣∣ ,
which must be added to the right hand side of (4.13). Another place where we pick
up additional nonzero terms is in (4.16); namely, the terms

Q2 =

∣∣∣∣
∫
Ω

(
1

2
∂uf1(u0, v0)|yn(0)|2 + ∂2

uvF (u0, v0)y
n(0)zn(0)

+
1

2
∂vf2(u0, v0)|zn(0)|2

)
dx

∣∣∣∣
must be added to the right hand side of (4.16).

By using (4.11), we deduce

Q1 +Q2

≤ C

∫
Ω

(|u0|p−1 + |un
0 |p−1 + |v0|p−1 + |vn0 |p−1 + 1)(|yn(0)|2 + |zn(0)|2)dx.(6.6)

A typical term on the right hand side of (6.6) is estimated in the following manner.
By using Hölder’s inequality and (6.2), we have

∫
Ω

|un
0 |p−1|yn(0)|2dx ≤ ‖un

0‖
p−1
3(p−1)

2

‖yn(0)‖26 ≤ C(R) ‖yn(0)‖21,Ω ≤ C(R)Ẽn(0).

(6.7)

Thus,

Q1 +Q2 ≤ C(R)Ẽn(0).(6.8)
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The nonzero initial data, yn(0) �= 0 and zn(0) �= 0, also changes the estimates in
(4.19)-(4.20). Indeed,

∫
Ω

|yn(t)|2dx =

∫
Ω

∣∣∣∣yn(0) +
∫ t

0

ynt (τ )dτ

∣∣∣∣
2

dx

≤ 2

∫
Ω

|yn(0)|2dx+ 2

∫
Ω

∣∣∣∣
∫ t

0

ynt (τ )dτ

∣∣∣∣
2

dx

≤ C
(
‖yn(0)‖21,Ω + t

∫ t

0

‖ynt (τ )‖
2
2 dτ

)

≤ C

(
Ẽn(0) + T

∫ t

0

Ẽn(τ )dτ

)
.(6.9)

Also, since the integral
∫
Ω
|zn(t)|2dx can be estimated as in (6.9), we conclude that

∫
Ω

(
|yn(t)|2 + |zn(t)|2

)
dx ≤ C

(
Ẽn(0) + T

∫ t

0

Ẽn(τ )dτ

)
.(6.10)

Another place where one must exercise caution in estimating the typical term is
in
∫
Ω
|un(t)|p−1|yn(t)|2dx. As in the proof of Theorem 1.5, we consider two cases,

3 < p < 5 and 5 ≤ p < 6.
If 3 < p < 5, then by using (4.25), (4.26) and (6.9), we obtain for 0 < ε < 5− p:∫

Ω

|un(t)|p−1|yn(t)|2dx ≤ 2εẼ(t) + C(ε, R)Ẽn(0) + C(ε, R, T )

∫ t

0

Ẽ(τ )dτ.(6.11)

If 5 ≤ p < 6, the nonzero initial data make the computations more involved

than (4.28)-(4.32). Recall the choice of φ ∈ C0(Ω) such that ‖u0 − φ‖ 3(p−1)
2

≤ ε
1

p−1 ,

where the value of ε > 0 will be chosen later. Then, we have

∫
Ω

|un(t)|p−1|yn(t)|2dx ≤ C
(∫

Ω

|un(t)− un
0 |p−1|yn(t)|2dx

+

∫
Ω

|un
0 − u0|p−1|yn(t)|2dx+

∫
Ω

|u0 − φ|p−1|yn(t)|2dx+

∫
Ω

|φ|p−1|yn(t)|2dx
)
.

(6.12)

As in (4.29), we deduce that∫
Ω

|un(t)− un
0 |p−1|yn(t)|2dx ≤ C(R)T

m(p−1)
m+1 Ẽn(t).(6.13)

Also, by using Hölder’s inequality and the embedding H1(Ω) ↪→ L6(Ω), we obtain∫
Ω

|un
0 − u0|p−1|yn(t)|2dx ≤ ‖un

0 − u0‖p−1
3(p−1)

2

‖yn(t)‖26 ≤ εẼn(t),(6.14)

for all sufficiently large n, since un
0 −→ u0 in L

3(p−1)
2 (Ω). Moreover, from (4.30),

we know ∫
Ω

|u0 − φ|p−1|yn(t)|2dx ≤ CεẼn(t).(6.15)
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As for the last term on the right hand side of (6.12), we refer to (4.31) and (6.9),
and we have

∫
Ω

|φ|p−1|yn(t)|2dx ≤ C(ε)

∫
Ω

|yn(t)|2dx ≤ C(ε)

(
Ẽn(0) + T

∫ t

0

Ẽn(τ )dτ

)
.

(6.16)

Thus, for the case 5 ≤ p < 6, it follows from (6.13)-(6.16) and (6.12) that∫
Ω

|un(t)|p−1|yn(t)|2dx

≤ C(ε)Ẽn(0) + C(R)
(
T

m(p−1)
m+1 + ε

)
Ẽn(t) + C(ε)T

∫ t

0

Ẽn(τ )dτ.(6.17)

By combining the two cases (6.11) and (6.17), we have for 3 < p < 6:∫
Ω

|un(t)|p−1|yn(t)|2dx

≤ C(ε, R)Ẽn(0) + C(R)
(
T

m(p−1)
m+1 + ε

)
Ẽn(t) + C(ε, R, T )

∫ t

0

Ẽn(τ )dτ.(6.18)

Now, by looking at (6.8), (6.10) and (6.18), we notice that the nonzero initial data

yn(0) and zn(0) also contribute the additional term C(ε, R)Ẽn(0), which should be
added to the right hand side of Rf , and so, for 3 < p < 6 we have:

Rn
f ≤ C(ε, R)Ẽn(0) + C(R)

(
T

m(p−1)
m+1 + T

r(p−1)
r+1 + ε

)
Ẽn(t)

+ C(ε, R, T )

∫ t

0

Ẽn(τ )
(
‖ut‖m+1 + ‖vt‖r+1 + ‖un

t ‖m+1 + ‖vnt ‖r+1 + 1
)
dτ,(6.19)

for all sufficiently large n, and ε > 0 sufficiently small, and according to (6.5), the
estimate (6.19) also holds for the case 1 ≤ p ≤ 3.

By using a similar approach (which is omitted) we can estimate Rn
h in (6.4) as

well. Finally, from (6.4), we conclude that

Ẽn(t) ≤ Ẽn(0) +Rn
f +Rn

h

≤ C(ε, R)Ẽn(0) + C(R)
(
T

m(p−1)
m+1 + T

r(p−1)
r+1 + T

q(k−1)
q+1 + ε

)
Ẽn(t)

+ C(ε, R, T )

∫ t

0

Ẽn(τ )
(
‖ut‖m+1 + ‖vt‖r+1 + ‖un

t ‖m+1 + ‖vnt ‖r+1

+ |ut|q+1 + |un
t |q+1 + 1

)
dτ.

Again, we can choose ε and T small enough so that

C(R)
(
T

m(p−1)
m+1 + T

r(p−1)
r+1 + T

q(k−1)
q+1 + ε

)
< 1.

By Gronwall’s inequality, we obtain

Ẽn(t) ≤ C(ε, R, T )Ẽn(0) exp
[ ∫ t

0

(
‖ut‖m+1 + ‖vt‖r+1

+ ‖un
t ‖m+1 + ‖vnt ‖r+1 + |ut|q+1 + |un

t |q+1 + 1
)
dτ
]
,(6.20)
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and so, by (6.2), we have

Ẽn(t) ≤ C(ε, R, T )Ẽn(0),(6.21)

for all sufficiently large n. Hence, Ẽn(t) −→ 0 uniformly on [0, T ]. This concludes
the proof of Theorem 1.10. �

7. Appendix

Proposition 7.1. Let X and Y be Banach spaces and assume A1 : D(A1) ⊂ X −→
X∗, A2 : D(A2) ⊂ Y −→ Y ∗ are single-valued maximal monotone operators. Then,
the operator A : D(A1)×D(A2) ⊂ X × Y −→ X∗ × Y ∗ defined by

A

(
x
y

)tr

=

(
A1(x)
A2(y)

)tr

is also maximal monotone.

Proof. The fact that A is monotone is trivial. In order to show that A is maximal
monotone, assume (x0, y0) ∈ X × Y and (x∗

0, y
∗
0) ∈ X∗ × Y ∗ such that

〈x− x0, A1(x)− x∗
0〉+ 〈y − y0, A2(y)− y∗0〉 ≥ 0,(7.1)

for all (x, y) ∈ D(A1)×D(A2).
If x0 ∈ D(A1), then by taking x = x0 in (7.1) and using the maximal monotonic-

ity of A2, we obtain y0 ∈ D(A2) and y∗0 = A2(y0), and then we can put y = y0 in
(7.1) and conclude from the maximal monotonicity of A1 that x∗

0 = A1(x0). Simi-
larly, if y0 ∈ D(A2), then it follows that x0 ∈ D(A1), x

∗
0 = A1(x0) and y∗0 = A2(y0).

Now, if x0 �∈ D(A1) and y0 �∈ D(A2), then since A1 and A2 are both maximal
monotone, there exist x1 ∈ D(A1), y1 ∈ D(A2) such that 〈x1−x0, A1(x1)−x∗

0〉 < 0
and 〈y1−y0, A2(y1)−y∗0〉 < 0. Therefore, 〈x1−x0, A1(x1)−x∗

0〉+〈y1−y0, A2(y1)−
y∗0〉 < 0, which contradicts (7.1).

Therefore, we must have x0 ∈ D(A1) and y0 ∈ D(A2), with x∗
0 = A1(x0) and

y∗0 = A2(y0). Thus, A is maximal monotone. �

Lemma 7.2. Let X be a Banach space and 1 ≤ p < ∞. Then, C0((0, T );X) is
dense in Lp(0, T ;X), where C0((0, T );X) denotes the space of continuous functions
u : (0, T ) −→ X with compact support in (0, T ).

Remark 7.3. The result is well known if X = R
n. Although for a general Banach

space X such a result is expected, we couldn’t find a reference for it in the literature.
Thus, we provide a proof for it.

Proof. Let u ∈ Lp(0, T ;X), ε > 0 be given. By the definition of Lp(0, T ;X), there
exists a simple function φ with values in X such that∫ T

0

‖φ(t)− u(t)‖pX dt < εp.(7.2)

Say φ(t) =
∑n

j=1 xjχEj
(t), where xj ∈ X are distinct, each xj �= 0, and Ej ⊂ (0, T )

are Lebesgue measurable such that Ej ∩ Ek = ∅, for all j �= k.
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By a standard result in analysis, for each Ej , there exists a finite disjoint sequence
of open segments {Ij,k}mj

k=1 such that

m

(
Ej�

mj⋃
k=1

Ij,k

)
<

(
ε

2n ‖xj‖X

)p

for j = 1, 2, ..., n,(7.3)

where m denotes the Lebesgue measure, and E�F is the symmetric difference of
the sets E and F . In particular, we have

m

((
Ej�

mj⋃
k=1

Ij,k

)
∩ [0, T ]

)
<

(
ε

2n ‖xj‖X

)p

for j = 1, 2, ..., n.

Let us note that
(
Ej�

⋃mj

k=1 Ij,k

)
∩ [0, T ] = Ej�

(⋃mj

k=1 Ij,k ∩ [0, T ]
)
. So, we may

assume, without loss of generality, that each Ij,k ⊂ [0, T ].
Now, if E, F ⊂ [0, T ] are Lebesgue measurable, then

∫ T

0

|χE(t)− χF (t)|pdt

=

∫
E\F

|χE(t)− χF (t)|pdt+
∫
F\E

|χE(t)− χF (t)|pdt+
∫
E∩F

|χE(t)− χF (t)|pdt

=

∫
E\F

χE(t)dt+

∫
F\E

χF (t)dt = m(E�F ).

(7.4)

Therefore, by (7.4) and (7.3),

‖xj‖pX
∫ T

0

|χEj
(t)− χ⋃mj

k=1 Ij,k
(t)|pdt = ‖xj‖pX m

(
Ej�

mj⋃
k=1

Ij,k

)
<
( ε

2n

)p
.(7.5)

Since Ij,k ⊂ [0, T ], we can select δj,k such that 0 < δj,k < 1
4 (bj,k − aj,k), where

Ij,k = (aj,k, bj,k). Choose δ > 0 such that

δ < min
{
δj,k,

1

8(2n)p−1
∑n

j=1(‖xj‖pX mj)
εp : k = 1, . . . ,mj ; j = 1, . . . , n

}
.(7.6)

Now we define the functions gj,k ∈ C0((0, T );R) such that gj,k(t) = 1 on [aj,k +
2δ, bj,k−2δ], gj,k(t) is linear on [aj,k+δ, bj,k+2δ]∪ [bj,k−2δ, bj,k−δ], and gj,k(t) = 0
outside [aj,k + δ, bj,k − δ]. Let us notice that

∫ T

0

∣∣∣∣∣
mj∑
k=1

(χIj,k(t)− gj,k(t))

∣∣∣∣∣
p

dt≤
∫ T

0

(mj∑
k=1

(χ(aj,k,aj,k+2δ)(t) + χ(bj,k−2δ,bj,k)(t))

)p

dt

=

∫ T

0

mj∑
k=1

(
χ(aj,k,aj,k+2δ)(t) + χ(bj,k−2δ,bj,k)(t)

)
dt =

mj∑
k=1

4δ = 4mjδ.

(7.7)

Finally, we define g(t) =
n∑

j=1

xj

mj∑
k=1

gj,k(t). Clearly, g ∈ C0((0, T );X). Then, (7.2)

yields
(7.8)
‖u− g‖Lp(0,T ;X) ≤ ‖u− φ‖Lp(0,T ;X) + ‖φ− g‖Lp(0,T ;X) < ε+ ‖φ− g‖Lp(0,T ;X) .
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For t ∈ (0, T ), we note that

‖φ(t)− g(t)‖X =

∥∥∥∥∥∥
n∑

j=1

(
xjχEj

(t)− xj

mj∑
k=1

gj,k(t)

)∥∥∥∥∥∥
X

=

∥∥∥∥∥∥
n∑

j=1

⎛
⎝xjχEj

(t)− xj

mj∑
j=1

χIj,k(t) + xj

mj∑
j=1

χIj,k(t)− xj

mj∑
k=1

gj,k(t)

⎞
⎠
∥∥∥∥∥∥
X

≤
n∑

j=1

‖xj‖X
∣∣∣χEj

(t)− χ⋃mj
k=1 Ij,k

(t)
∣∣∣+ n∑

j=1

‖xj‖X
mj∑
k=1

∣∣∣χIj,k(t)− gj,k(t)
∣∣∣.

So, by Jensen’s inequality and (7.5)-(7.7), we have

∫ T

0

‖φ(t)− g(t)‖pX dt ≤ (2n)p−1
n∑

j=1

‖xj‖p
∫ T

0

|χEj
(t)− χ⋃mj

k=1 Ij,k
(t)|pdt

+ (2n)p−1
n∑

j=1

‖xj‖p
∫ T

0

(mj∑
k=1

|χIj,k(t)− gj,k(t)|
)p

dt

< (2n)p−1
n∑

j=1

( ε

2n

)p
+ (2n)p−1

n∑
j=1

‖xj‖pX 4mjδ <
1

2
εp +

1

2
εp = εp.(7.9)

Combining (7.9) with (7.8) yields ‖u− g‖Lp(0,T ;X) < 2ε. �
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Basel, 2002, pp. 197–216. MR1944164 (2003j:35199)

[20] Hideo Kubo and Masahito Ohta, Critical blowup for systems of semilinear wave equa-
tions in low space dimensions, J. Math. Anal. Appl. 240 (1999), no. 2, 340–360, DOI
10.1006/jmaa.1999.6585. MR1731649 (2001f:35266)

[21] John E. Lagnese, Boundary stabilization of thin plates, SIAM Studies in Applied Mathemat-
ics, vol. 10, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1989.
MR1061153 (91k:73001)

[22] V. Lakshmikantham and S. Leela, Differential and integral inequalities: Theory and applica-
tions. Vol. I: Ordinary differential equations, Academic Press, New York, 1969, Mathematics
in Science and Engineering, Vol. 55-I. MR0379933 (52:837)

[23] I. Lasiecka and D. Tataru, Uniform boundary stabilization of semilinear wave equations
with nonlinear boundary damping, Differential Integral Equations 6 (1993), no. 3, 507–533.
MR1202555 (94c:35129)

[24] I. Lasiecka and R. Triggiani, Sharp regularity theory for second order hyperbolic equations of
Neumann type. I. L2 nonhomogeneous data, Ann. Mat. Pura Appl. (4) 157 (1990), 285–367,
DOI 10.1007/BF01765322. MR1108480 (92e:35102)

[25] Irena Lasiecka, Mathematical control theory of coupled PDEs, CBMS-NSF Regional Confer-
ence Series in Applied Mathematics, vol. 75, Society for Industrial and Applied Mathematics

(SIAM), Philadelphia, PA, 2002. MR1879543 (2003a:93002)
[26] Irena Lasiecka and Daniel Toundykov, Energy decay rates for the semilinear wave equation

with nonlinear localized damping and source terms, Nonlinear Anal. 64 (2006), no. 8, 1757–
1797, DOI 10.1016/j.na.2005.07.024. MR2197360 (2006k:35189)

Licensed to Weizmann Institute of Science. Prepared on Tue Aug 18 14:49:08 EDT 2015 for download from IP 132.76.61.22.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=2646044
http://www.ams.org/mathscinet-getitem?mr=2646044
http://www.ams.org/mathscinet-getitem?mr=0341077
http://www.ams.org/mathscinet-getitem?mr=0341077
http://www.ams.org/mathscinet-getitem?mr=2322019
http://www.ams.org/mathscinet-getitem?mr=2322019
http://www.ams.org/mathscinet-getitem?mr=1941662
http://www.ams.org/mathscinet-getitem?mr=1941662
http://www.ams.org/mathscinet-getitem?mr=2438025
http://www.ams.org/mathscinet-getitem?mr=2438025
http://www.ams.org/mathscinet-getitem?mr=1273304
http://www.ams.org/mathscinet-getitem?mr=1273304
http://www.ams.org/mathscinet-getitem?mr=3068842
http://www.ams.org/mathscinet-getitem?mr=1407454
http://www.ams.org/mathscinet-getitem?mr=1407454
http://www.ams.org/mathscinet-getitem?mr=0130462
http://www.ams.org/mathscinet-getitem?mr=0130462
http://www.ams.org/mathscinet-getitem?mr=1944164
http://www.ams.org/mathscinet-getitem?mr=1944164
http://www.ams.org/mathscinet-getitem?mr=1731649
http://www.ams.org/mathscinet-getitem?mr=1731649
http://www.ams.org/mathscinet-getitem?mr=1061153
http://www.ams.org/mathscinet-getitem?mr=1061153
http://www.ams.org/mathscinet-getitem?mr=0379933
http://www.ams.org/mathscinet-getitem?mr=0379933
http://www.ams.org/mathscinet-getitem?mr=1202555
http://www.ams.org/mathscinet-getitem?mr=1202555
http://www.ams.org/mathscinet-getitem?mr=1108480
http://www.ams.org/mathscinet-getitem?mr=1108480
http://www.ams.org/mathscinet-getitem?mr=1879543
http://www.ams.org/mathscinet-getitem?mr=1879543
http://www.ams.org/mathscinet-getitem?mr=2197360
http://www.ams.org/mathscinet-getitem?mr=2197360


2324 Y. GUO AND M. A. RAMMAHA

[27] Howard A. Levine and James Serrin, Global nonexistence theorems for quasilinear evolution
equations with dissipation, Arch. Rational Mech. Anal. 137 (1997), no. 4, 341–361, DOI
10.1007/s002050050032. MR1463799 (99b:34110)

[28] L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equa-
tions, Israel J. Math. 22 (1975), no. 3-4, 273–303. MR0402291 (53 #6112)

[29] David R. Pitts and Mohammad A. Rammaha, Global existence and non-existence theorems
for nonlinear wave equations, Indiana Univ. Math. J. 51 (2002), no. 6, 1479–1509, DOI

10.1512/iumj.2002.51.2215. MR1948457 (2003j:35219)
[30] Petronela Radu, Weak solutions to the Cauchy problem of a semilinear wave equation

with damping and source terms, Adv. Differential Equations 10 (2005), no. 11, 1261–1300.
MR2175336 (2007a:35110)

[31] Mohammad A. Rammaha, The influence of damping and source terms on solutions of
nonlinear wave equations, Bol. Soc. Parana. Mat. (3) 25 (2007), no. 1-2, 77–90, DOI
10.5269/bspm.v25i1-2.7427. MR2379676 (2008k:35328)

[32] Mohammad A. Rammaha and Sawanya Sakuntasathien, Critically and degenerately damped
systems of nonlinear wave equations with source terms, Appl. Anal. 89 (2010), no. 8, 1201–
1227, DOI 10.1080/00036811.2010.483423. MR2681440 (2011e:35198)

[33] Mohammad A. Rammaha and Sawanya Sakuntasathien, Global existence and blow up of
solutions to systems of nonlinear wave equations with degenerate damping and source terms,
Nonlinear Anal. 72 (2010), no. 5, 2658–2683, DOI 10.1016/j.na.2009.11.013. MR2577827
(2011a:35320)

[34] Mohammad A. Rammaha and Theresa A. Strei, Global existence and nonexistence for
nonlinear wave equations with damping and source terms, Trans. Amer. Math. Soc. 354
(2002), no. 9, 3621–3637 (electronic), DOI 10.1090/S0002-9947-02-03034-9. MR1911514
(2003f:35214)

[35] Michael Reed, Abstract non-linear wave equations, Lecture Notes in Mathematics, Vol. 507,
Springer-Verlag, Berlin, 1976. MR0605679 (58 #29290)

[36] Sawanya Sakuntasathien, Global well-posedness for systems of nonlinear wave equations,
ProQuest LLC, Ann Arbor, MI, 2008. Thesis (Ph.D.)–The University of Nebraska - Lincoln.
MR2711412

[37] R. Seeley, Interpolation in Lp with boundary conditions, Studia Math. 44 (1972), 47–60.
Collection of articles honoring the completion by Antoni Zygmund of 50 years of scientific
activity, I. MR0315432 (47 #3981)

[38] Irving Segal, Non-linear semi-groups, Ann. of Math. (2) 78 (1963), 339–364. MR0152908
(27 #2879)

[39] R. E. Showalter, Monotone operators in Banach space and nonlinear partial differential
equations, Mathematical Surveys and Monographs, vol. 49, American Mathematical Society,
Providence, RI, 1997. MR1422252 (98c:47076)

[40] Daniel Tataru, On the regularity of boundary traces for the wave equation, Ann. Scuola Norm.
Sup. Pisa Cl. Sci. (4) 26 (1998), no. 1, 185–206. MR1633000 (99e:35129)

[41] Roger Temam, Navier-Stokes equations, 3rd ed., Studies in Mathematics and its Applications,
vol. 2, North-Holland Publishing Co., Amsterdam, 1984. Theory and numerical analysis; With
an appendix by F. Thomasset. MR769654 (86m:76003)

[42] Daniel Toundykov, Optimal decay rates for solutions of a nonlinear wave equation with
localized nonlinear dissipation of unrestricted growth and critical exponent source terms
under mixed boundary conditions, Nonlinear Anal. 67 (2007), no. 2, 512–544, DOI
10.1016/j.na.2006.06.007. MR2317185 (2008f:35257)

[43] Enzo Vitillaro, Some new results on global nonexistence and blow-up for evolution problems
with positive initial energy, Rend. Istit. Mat. Univ. Trieste 31 (2000), no. suppl. 2, 245–
275. Workshop on Blow-up and Global Existence of Solutions for Parabolic and Hyperbolic
Problems (Trieste, 1999). MR1800451 (2001j:35210)

[44] Enzo Vitillaro, A potential well theory for the wave equation with nonlinear source

and boundary damping terms, Glasg. Math. J. 44 (2002), no. 3, 375–395, DOI
10.1017/S0017089502030045. MR1956547 (2003k:35169)

Licensed to Weizmann Institute of Science. Prepared on Tue Aug 18 14:49:08 EDT 2015 for download from IP 132.76.61.22.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=1463799
http://www.ams.org/mathscinet-getitem?mr=1463799
http://www.ams.org/mathscinet-getitem?mr=0402291
http://www.ams.org/mathscinet-getitem?mr=0402291
http://www.ams.org/mathscinet-getitem?mr=1948457
http://www.ams.org/mathscinet-getitem?mr=1948457
http://www.ams.org/mathscinet-getitem?mr=2175336
http://www.ams.org/mathscinet-getitem?mr=2175336
http://www.ams.org/mathscinet-getitem?mr=2379676
http://www.ams.org/mathscinet-getitem?mr=2379676
http://www.ams.org/mathscinet-getitem?mr=2681440
http://www.ams.org/mathscinet-getitem?mr=2681440
http://www.ams.org/mathscinet-getitem?mr=2577827
http://www.ams.org/mathscinet-getitem?mr=2577827
http://www.ams.org/mathscinet-getitem?mr=1911514
http://www.ams.org/mathscinet-getitem?mr=1911514
http://www.ams.org/mathscinet-getitem?mr=0605679
http://www.ams.org/mathscinet-getitem?mr=0605679
http://www.ams.org/mathscinet-getitem?mr=2711412
http://www.ams.org/mathscinet-getitem?mr=0315432
http://www.ams.org/mathscinet-getitem?mr=0315432
http://www.ams.org/mathscinet-getitem?mr=0152908
http://www.ams.org/mathscinet-getitem?mr=0152908
http://www.ams.org/mathscinet-getitem?mr=1422252
http://www.ams.org/mathscinet-getitem?mr=1422252
http://www.ams.org/mathscinet-getitem?mr=1633000
http://www.ams.org/mathscinet-getitem?mr=1633000
http://www.ams.org/mathscinet-getitem?mr=769654
http://www.ams.org/mathscinet-getitem?mr=769654
http://www.ams.org/mathscinet-getitem?mr=2317185
http://www.ams.org/mathscinet-getitem?mr=2317185
http://www.ams.org/mathscinet-getitem?mr=1800451
http://www.ams.org/mathscinet-getitem?mr=1800451
http://www.ams.org/mathscinet-getitem?mr=1956547
http://www.ams.org/mathscinet-getitem?mr=1956547


SYSTEMS OF NONLINEAR WAVE EQUATIONS 2325

Department of Mathematics, University of Nebraska-Lincoln, Lincoln, Nebraska

68588

E-mail address: s-yguo2@math.unl.edu
Current address: Department of Computer Science and Applied Mathematics, Weizmann

Institute of Science, Rehovot 76100, Israel
E-mail address: yanqiu.guo@weizmann.ac.il

Department of Mathematics, University of Nebraska-Lincoln, Lincoln, Nebraska

68588

E-mail address: mrammaha1@math.unl.edu

Licensed to Weizmann Institute of Science. Prepared on Tue Aug 18 14:49:08 EDT 2015 for download from IP 132.76.61.22.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use


	1. Introduction and main results
	1.1. The model
	1.2. Notation
	1.3. Main results

	2. Local solutions
	2.1. Operator theoretic formulation
	2.2. Globally Lipschitz sources
	2.3. Locally Lipschitz sources
	2.4. Lipschitz approximations of the sources
	2.5. Approximate solutions and passage to the limit

	3. Energy identity
	3.1. Properties of the difference quotient
	3.2. Proof of the energy identity

	4. Uniqueness of weak solutions
	4.1. Proof of Theorem 1.5
	4.2. Proof of Theorem 1.7

	5. Global existence
	6. Continuous dependence on initial data
	7. Appendix
	References

