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We prove the global well-posedness of weak solutions for nonlinear wave equations 
with supercritical source and damping terms on a three-dimensional torus T3 of the 
prototype

utt − ∆u + |ut|m−1ut = |u|p−1u, (x, t) ∈ T3 ×R+;

u(0) = u0 ∈ H1(T3) ∩ Lm+1(T3), ut(0) = u1 ∈ L2(T3),

where 1 ≤ p ≤ min{ 2
3m + 5

3 , m}. Notably, p is allowed to be larger than 6.
© 2019 Elsevier Inc. All rights reserved.

1. Introduction

1.1. The model

Wave equations under the influence of nonlinear damping and source terms have attracted considerable 
attention. The canonical equation of this type reads

utt − ∆u + |ut|m−1ut = |u|p−1u, (1.1)

where m, p ≥ 1. A major interest for this topic lies in understanding the “competition” between the frictional 
damping term |ut|m−1ut and the energy-amplifying source term |u|p−1u.

The purpose of this paper is to provide a suitable assumption on p and m, such that model (1.1) is 
globally well-posed for weak solutions defined in a three-dimensional periodic physical domain, and the 
source term |u|p−1u is allowed to have a “fast” growth rate p ≥ 6.

Let us review some important results in the literature which are concerned with equation (1.1). Georgiev 
and Todorova [12] studied (1.1) in a bounded domain Ω ⊂ R3 with a Dirichlét boundary condition. For 
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a source term of subcritical or critical growth rate (1 ≤ p ≤ 3), they proved the well-posedness of weak 
solutions for (1.1). In addition, the solution is global if the damping dominates the source term in the sense 
that m ≥ p, whereas the solution blows up in finite time if the strength of the source exceeds the damping 
effect, namely, p > m.

We remark that p = 3 is called the critical growth rate for the source term |u|p−1u because the operator 
u %→ u3 is locally Lipschitz continuous from H1 to L2 in three dimensions.

Bociu and Lasiecka [6–8] considered (1.1) with supercritical source terms, in a bounded domain Ω ⊂ R3

satisfying a Newman boundary condition, and showed the existence and uniqueness of weak solutions if 
1 ≤ p ≤ 6m

m+1 , allowing p have the range [1, 6).
In the literature, the Cauchy problem for (1.1) in Rn was also investigated (see, e.g., [23,25]). Moreover, 

it is of interest to consider interaction between source terms and other types of damping terms in nonlinear 
wave equations, for instance, strong damping (e.g., [11]), degenerate damping (e.g., [4,5]), and viscoelastic 
damping (e.g. [17–19]). One may also refer to [1,3,9,14–16,22,24,26,27] and references therein for more works 
on nonlinear wave equations with damping and source terms. It is also worth mentioning papers [20,21] on 
analyticity for a class of nonlinear wave equations including (1.1) as a special case.

1.2. Main results

In this paper, we study the following nonlinear wave equation with damping and source terms defined in 
a three-dimensional fundamental periodic domain T 3 = [−π, π]3:

utt − ∆u + |ut|m−1ut = |u|p−1u, (x, t) ∈ T 3 ×R+; (1.2)
u(x, 0) = u0(x) ∈ H1(T 3) ∩ Lm+1(T 3), ut(x, 0) = u1(x) ∈ L2(T 3), (1.3)

where m, p ≥ 1. Our main result states, if 1 ≤ p ≤ min{2
3m + 5

3 , m}, then system (1.2)-(1.3) admits a 
unique global weak solution which depends continuously on initial data. Note, in the initial condition (1.3), 
we demand an extra integrability for u0, namely, u0 ∈ Lm+1(T 3) if m > 5.

We choose the physical domain to be a torus T 3 because we want to focus on the interaction between 
the damping and source terms, without influence of boundary conditions. Also, we restrict our analysis 
to 3D since it is more physically relevant. Our results extend easily to an n-dimensional torus Tn, by 
accounting for the corresponding Sobolev imbeddings, and accordingly adjusting the conditions imposed on 
the parameters.

Throughout the paper, we denote by ∥ · ∥s = ∥ · ∥Ls(T3) for Ls-norm. Also, for a function y(x, t) defined 
on T 3×R+, the partial derivative in t is denoted by y′ = yt = ∂y

∂t . Recall the gradient ∇ = (∂x1 , ∂x2 , ∂x3)tr. 
Moreover, the space H1(T 3) is defined as H1(T 3) = {f ∈ L2(T 3) : ∇f ∈ L2(T 3)} with its norm 
∥f∥H1(T3) = (∥f∥2

2 + ∥∇f∥2
2)1/2.

Let us introduce the definition of a weak solution for system (1.2)-(1.3).

Definition 1.1. Let T > 0. We call (u, ut) a weak solution for system (1.2)-(1.3) on [0, T ] if

• u(x, 0) = u0(x) ∈ H1(T 3) ∩ Lm+1(T 3), ut(x, 0) = u1(x) ∈ L2(T 3);
• u ∈ L∞(0, T ; H1(T 3)) ∩ L∞(0, T ; Lm+1(T 3));

ut ∈ L∞(0, T ; L2(T 3)) ∩ Lm+1(T 3 × (0, T ));
utt ∈ L

m+1
m (0, T ; X ′) where X = H1(T 3) ∩ Lm+1(T 3);

• (u, ut) verifies the identity

∫

T3

ut(t)φ(t)dx−
∫

T3

ut(0)φ(0)dx−
t∫

0

∫

T3

ut(τ)φt(τ)dxdτ +
t∫

0

∫

T3

∇u(τ) ·∇φ(τ)dxdτ
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+
t∫

0

∫

T3

|ut(τ)|m−1ut(τ)φ(τ)dxdτ =
t∫

0

∫

T3

|u(τ)|p−1u(τ)φ(τ)dxdτ, (1.4)

for all t ∈ [0, T ], and for any φ ∈ C([0, T ]; H1(T 3)) ∩ Lm+1(T 3 × (0, T )) with φt ∈ C([0, T ]; L2(T 3)).

Our first theorem deals with the global existence of weak solution for the initial value problem (1.2)-(1.3). 
Also the energy identity holds for weak solutions. Moreover, a global solution (u, ut) grows at most expo-
nentially in time.

Theorem 1.2 (Global existence of weak solutions). Assume either Case 1: 1 ≤ p ≤ m ≤ 5 or Case 2: 
1 ≤ p < 5

6 (m + 1) for m > 5. Suppose u0 ∈ H1(T 3) ∩ Lm+1(T 3) and u1 ∈ L2(T 3). Let T > 0 be arbitrarily 
large. Then, system (1.2)-(1.3) has a weak solution (u, ut) on [0, T ] in the sense of Definition 1.1. Also, the 
energy identity holds:

E(t) +
t∫

0

∥ut(τ)∥m+1
m+1dτ = E(0), for all t ∈ [0, T ], (1.5)

where the total energy E(t) := 1
2 (∥∇u(t)∥2

2 + ∥ut(t)∥2
2) − 1

p+1∥u(t)∥p+1
p+1. In addition,

E (t) + 1
2

t∫

0

∥ut(τ)∥m+1
m+1dτ ≤ (E (0) + t) eCt, for all t ∈ [0, T ], (1.6)

where E (t) := 1
2
(
∥∇u(t)∥2

2 + ∥ut(t)∥2
2
)

+ 1
m+1 ∥u(t)∥m+1

m+1.

Our second theorem establishes the uniqueness of weak solutions by assuming a slightly stronger restric-
tion on (m, p). Continuous dependence on initial data is also provided.

Theorem 1.3 (Uniqueness and continuous dependence). Assume either Case I: 1 ≤ p ≤ m ≤ 5 or Case II: 
1 ≤ p ≤ 2

3m + 5
3 for m > 5. Suppose u0 ∈ H1(T 3) ∩ Lm+1(T 3) and u1 ∈ L2(T 3). Let T > 0 be arbitrarily 

large. Then, system (1.2)-(1.3) has a unique weak solution (u, ut) on [0, T ] in the sense of Definition 1.1. 
Also, the weak solution depends continuously on initial data. More precisely, let (un

0 , u
n
1 ) be a sequence of 

initial data such that limn→∞ ∥un
0 − u0∥H1 = 0, limn→∞ ∥un

0 − u0∥m+1 = 0 and limn→∞ ∥un
1 − u1∥2 = 0, 

then the corresponding sequence of weak solutions (un, u′
n) converges to (u, ut) in the sense that

lim
n→∞

[
sup

t∈[0,T ]

(
∥un − u∥2

H1 + ∥un − u∥m+1
m+1 + ∥u′

n − ut∥2
2
)
]

= 0. (1.7)

Remark 1.4. The range of (m, p) assumed in Theorem 1.3 (i.e. the “union” of Case I and Case II) can be 
equivalently expressed as 1 ≤ p ≤ min{2

3m + 5
3 , m}. Also, Case II of Theorem 1.3 is a slightly smaller region 

in the (m, p) plane compared to Case 2 of Theorem 1.2.

Remark 1.5. For the sake of clarity, we consider the “typical” frictional damping term |ut|m−1ut and the 
“typical” source term |u|p−1u. Nonetheless, our results hold for more general damping and source terms. 
More precisely, the damping term |ut|m−1ut can be generalized to g(ut) where g ∈ C(R) is a monotone 
increasing function vanishing at the origin such that

a|s|m+1 ≤ g(s)s ≤ b|s|m+1, where b ≥ a > 0 and m ≥ 1.
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Also, the source term |u|p−1u can be generalized to h(u) where h is a C1(R) function (C2 is required if 
p > 3) satisfying

{
|h′(s)| ≤ C(|s|p−1 + 1), if 1 ≤ p ≤ 3;
|h′′(s)| ≤ C(|s|p−2 + 1), if p > 3.

2. Global existence of weak solutions

This section is devoted to proving Theorem 1.2, namely, the existence of global weak solutions, the energy 
identity, and the exponential bound for the growth of solutions at large time.

2.1. Galerkin approximation system

We show the existence of weak solutions for system (1.2)-(1.3) via the standard Galerkin approximation 
method. Let us first review some classical results regarding Fourier series on a torus. For a periodic function 
f ∈ L1(T 3) where T 3 = [−π, π]3, the kth Fourier coefficient of f is defined by f̂(k) =

∫
T3 f(x)e−ik·xdx. 

The Fourier series of f at x ∈ T 3 is written as 
∑

k∈Z3 f̂(k)eik·x. We define the square partial sum of the 
Fourier series of f by

Pnf(x) =
∑

k=(k1,k2,k3)∈Z3

|k1|,|k2|,|k3|≤n

f̂(k)eik·x. (2.1)

Note that, for a Fourier series, the square partial sum defined in (2.1) is different from the spherical partial 
sum: 

∑
|k|≤n f̂(k)eik·x. It is a classical result that the square partial sum Pnf converges to f in Ls(T 3) for 

any s ∈ (1, ∞) (see, e.g., [13]), namely, for an f ∈ Ls(T 3) with 1 < s < ∞,

lim
n→∞

∥Pnf − f∥Ls(T3) = 0. (2.2)

Moreover, for any f ∈ Ls(T 3) with 1 < s < ∞,

∥Pnf∥Ls(T3) ≤ cs∥f∥Ls(T3), (2.3)

for some positive constant cs independent of n and f .
We consider the Galerkin approximation system

u′′
n − ∆un + Pn(|u′

n|m−1u′
n) = Pn(|un|p−1un), (x, t) ∈ T 3 ×R+; (2.4)

un(x, 0) = Pnu0(x), u′
n(x, 0) = Pnu1(x), (2.5)

where un(x, t) is a trigonometric polynomial of the form:

un(x, t) =
∑

k=(k1,k2,k3)∈Z3

|k1|,|k2|,|k3|≤n

ûn(k, t)eik·x.

By the Cauchy-Peano theorem, for each n, Galerkin system (2.4)-(2.5) has a solution un on [0, Tn) for 
some Tn ∈ (0, ∞] which stands for the maximum life span.
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2.2. Energy estimate

In this subsection, we show that (un, u′
n) is bounded in the energy space H1(T 3) × L2(T 3) uniformly 

in n. Multiply (2.4) by u′
n and integrate over T 3 × (0, t). One has, for t ∈ [0, Tn),

1
2
(
∥∇un(t)∥2

2 + ∥u′
n(t)∥2

2
)

+
t∫

0

∫

T3

|u′
n|m+1dxdτ

= 1
2
(
∥∇un(0)∥2

2 + ∥u′
n(0)∥2

2
)

+
t∫

0

∫

T3

|un|p−1unu
′
ndxdτ. (2.6)

Define a modified energy:

En(t) = 1
2
(
∥∇un(t)∥2

2 + ∥u′
n(t)∥2

2
)

+ 1
m + 1 ∥un(t)∥m+1

m+1 ≥ 0. (2.7)

Then (2.6) can be written as

En(t) +
t∫

0

∫

T3

|u′
n|m+1dxdτ

= En(0) +
t∫

0

∫

T3

|un|p−1unu
′
ndxdτ + 1

m + 1

∫

T3

(
|un(t)|m+1 − |un(0)|m+1) dx. (2.8)

Since, for m ≥ 1,

1
m + 1

∫

T3

(
|un(t)|m+1 − |un(0)|m+1) dx

=
∫

T3

t∫

0

d

dτ

( 1
m + 1 |un(τ)|m+1

)
dτdx =

∫

T3

t∫

0

|un(τ)|m−1un(τ)u′
n(τ)dτdx,

it follows from (2.8) that

En(t) +
t∫

0

∫

T3

|u′
n|m+1dxdτ

= En(0) +
t∫

0

∫

T3

|un|p−1unu
′
ndxdτ +

t∫

0

∫

T3

|un|m−1unu
′
ndxdτ. (2.9)

We estimate the integrals on the right-hand side of (2.9). Since m ≥ p ≥ 1, by using Hölder’s inequality 
and Young’s inequality, we obtain

t∫

0

∫

T3

|un|p|u′
n|dxdτ ≤ Ct

m−p
m+1

⎛

⎝
t∫

0

∫

T3

|un|m+1dxdτ

⎞

⎠

p
m+1

⎛

⎝
t∫

0

∫

T3

|u′
n|m+1dxdτ

⎞

⎠

1
m+1
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≤ 1
4

t∫

0

∫

T3

|u′
n|m+1dxdτ + C

t∫

0

∫

T3

|un|m+1dxdτ + t. (2.10)

Similarly, we have

t∫

0

∫

T3

|un|m|u′
n|dxdτ ≤ 1

4

t∫

0

∫

T3

|u′
n|m+1dxdτ + C

t∫

0

∫

T3

|un|m+1dxdτ. (2.11)

Substituting (2.10)-(2.11) into (2.9) yields

En(t) + 1
2

t∫

0

∫

T3

|u′
n|m+1dxdτ ≤ En(0) + C

t∫

0

∫

T3

|un|m+1dxdτ + t

≤ En(0) + C

t∫

0

En(τ)dτ + t, for all t ∈ [0, Tn).

Then, using Grönwall’s inequality, we obtain

En(t) + 1
2

t∫

0

∫

T3

|u′
n|m+1dxdτ ≤ (En(0) + t) eCt, for all t ∈ [0, Tn). (2.12)

By (2.7),

En(0) = 1
2(∥∇(Pnu0)∥2

2 + ∥Pnu1∥2
2) + 1

m + 1∥Pnu0∥m+1
m+1.

According to Plancherel’s theorem, we have ∥Pnu1∥2
2 ≤ ∥u1∥2

2 for all n ∈ N and ∥∇(Pnu0)∥2
2 =

∥Pn(∇u0)∥2
2 ≤ ∥∇u0∥2

2 for all n ∈ N. Moreover, since u0 ∈ Lm+1(T 3) with m ≥ 1, by virtue of (2.3), 
we have ∥Pnu0∥m+1 ≤ cm∥u0∥m+1, for some constant cm independent of n and u0. Therefore, En(0) has an 
upper bound independent of n, namely

En(0) ≤ 1
2(∥∇u0∥2

2 + ∥u1∥2
2) + cm∥u0∥m+1

m+1. (2.13)

Applying (2.13) to the right-hand side of (2.12) yields, for any n ∈ N,

1
2
(
∥∇un(t)∥2

2 + ∥u′
n(t)∥2

2
)

+ 1
m + 1 ∥un(t)∥m+1

m+1 + 1
2

t∫

0

∥u′
n(τ)∥m+1

m+1dτ

≤
(1

2(∥∇u0∥2
2 + ∥u1∥2

2) + cm∥u0∥m+1
m+1 + t

)
eCt, (2.14)

for all t ∈ [0, Tn). Since u0 ∈ H1(T 3) ∩ Lm+1(T 3) and u1 ∈ L2(T 3), we see from (2.14) that a solution 
(un, u′

n) for the Galerkin system (2.4)-(2.5) does not blow up at Tn. Therefore, we conclude Tn = ∞, namely, 
(un, u′

n) is a global solution for (2.4) for all t ∈ [0, ∞).
For m ≥ 1, we have

∥un∥2
H1(T3) = ∥∇un∥2

2 + ∥un∥2
2 ≤ ∥∇un∥2

2 + C∥un∥m+1
m+1 + 1. (2.15)
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Let T > 0. Since (2.14) holds for all t ≥ 0, then by (2.15), one has

un is uniformly bounded in L∞(0, T ;H1(T 3)). (2.16)

Moreover, by (2.14), we have

un is uniformly bounded in L∞(0, T ;Lm+1(T 3)); (2.17)

u′
n is uniformly bounded in L∞(0, T ;L2(T 3)); (2.18)

u′
n is uniformly bounded in Lm+1(T 3 × (0, T )). (2.19)

Notice 
∫
T3

∣∣|un|p−1un

∣∣m+1
m dx =

∫
T3 |un|

(m+1)p
m dx ≤ C

(∫
T3 |un|m+1dx

) p
m for m ≥ p ≥ 1. Thus, because 

of (2.17), we obtain

|un|p−1un is uniformly bounded in L∞(0, T ;Lm+1
m (T 3)). (2.20)

Also, since 
∫ T
0
∫
T3

∣∣|u′
n|m−1u′

n

∣∣m+1
m dxdt =

∫ T
0
∫
T3 |u′

n|m+1dxdt, and due to (2.19), it follows that

|u′
n|m−1u′

n is uniformly bounded in L
m+1
m (T 3 × (0, T )). (2.21)

Because of the Galerkin equation (2.4), we have u′′
n = ∆un −Pn(|u′

n|m−1u′
n) +Pn(|un|p−1un). Note that 

∆un is uniformly bounded in L∞(0, T ; (H1(T 3))′) due to (2.16). Thus, by virtue of (2.3), (2.20) and (2.21), 
we obtain

u′′
n is uniformly bounded in L

m+1
m (0, T ;X ′), where X = H1(T 3) ∩ Lm+1(T 3). (2.22)

By virtue of the uniform bounds (2.16)-(2.19) and (2.22), there exists a subsequence of un satisfying

un → u weakly∗ in L∞(0, T ;H1(T 3)); (2.23)

un → u weakly∗ in L∞(0, T ;Lm+1(T 3)); (2.24)

u′
n → u′ weakly∗ in L∞(0, T ;L2(T 3)); (2.25)

u′
n → u′ weakly in Lm+1(T 3 × (0, T )); (2.26)

u′′
n → u′′ weakly∗ in L

m+1
m (0, T ;X ′), (2.27)

where X = H1(T 3) ∩ Lm+1(T 3).
Moreover, because of (2.16) and (2.18), and by the compact imbedding H1 ↪→ H1−ϵ ↪→ L2 for an 

ϵ ∈ (0, 1), we conclude from the Aubin-Lions-Simon lemma that, on a subsequence

un → u in C([0, T ];H1−ϵ(T 3)). (2.28)

Furthermore, due to (2.28), one can extract a subsequence

un → u almost everywhere in T 3 × (0, T ). (2.29)
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2.3. Convergence of the source term |un|p−1un

We show |un|p−1un converges weakly to |u|p−1u in L
m+1
m (T 3 × (0, T )).

In fact, 
∣∣|un|p−1un − |u|p−1u

∣∣ ≤ C(|un|p−1 + |u|p−1)|un − u|, for p ≥ 1. Thus, due to (2.29), we have

|un|p−1un → |u|p−1u almost everywhere in T 3 × (0, T ). (2.30)

Recall a real analysis result: for a sequence of functions fn defined on a measure space Y , if 
supn ∥fn∥Ls(Y ) < ∞ and fn → f a.e. in Y , then fn → f weakly in Ls(Y ) if 1 < s < ∞ (see, e.g., 
[10]). Here, by (2.20), we know |un|p−1un is uniformly bounded in L

m+1
m (T 3 × (0, T )), thus along with 

(2.30), we conclude

|un|p−1un → |u|p−1u weakly in L
m+1
m (T 3 × (0, T )). (2.31)

2.4. Convergence of the damping term |u′
n|m−1u′

n

In this section, we show that |u′
n|m−1u′

n converges weakly to |u′|m−1u′ in L
m+1
m (T 3 × (0, T )). The mono-

tonicity of the damping term is critical to our argument.
Thanks to (2.21), there exists a function ψ ∈ L

m+1
m (T 3 × (0, T )) and a subsequence of |u′

n|m−1u′
n such 

that

|u′
n|m−1u′

n −→ ψ weakly in L
m+1
m (T 3 × (0, T )). (2.32)

It remains to show ψ = |u′|m−1u′.
Set w = un − uj . Due to the Galerkin system (2.4), the following equality is valid.

1
2
(
∥∇w(t)∥2

2 + ∥w′(t)∥2
2
)

+
t∫

0

∫

T3

[
Pn(|u′

n|m−1u′
n) − Pj(|u′

j |m−1u′
j)
]
w′dxdτ

= 1
2
(
∥∇w(0)∥2

2 + ∥w′(0)∥2
2
)

+
t∫

0

∫

T3

[
Pn(|un|p−1un) − Pj(|uj |p−1uj)

]
w′dxdτ. (2.33)

We remark that the projection Pn in the Galerkin system affects the monotonicity of the nonlinear 
damping term. Especially, 

∫
T3

[
Pn(|u′

n|m−1u′
n) − Pj(|u′

j |m−1u′
j)
]
w′dx is not necessarily positive. To remedy 

the situation, we split this integral into a positive part and a “residue” part. More precisely, by assuming
n ≥ j, we have

∫

T3

[
Pn(|u′

n|m−1u′
n) − Pj(|u′

j |m−1u′
j)
]
w′dx =

∫

T3

[
|u′

n|m−1u′
n − Pj(|u′

j |m−1u′
j)
]
w′dx

=
∫

T3

(
|u′

n|m−1u′
n − |u′

j |m−1u′
j

)
w′dx +

∫

T3

[
(Pn − Pj)(|u′

j |m−1u′
j)
]
w′dx. (2.34)

In addition, for the sake of convenience, we also split the integral of source terms in (2.33) in the same 
manner as (2.34). As a result, if n ≥ j, then equality (2.33) can be written as

1
2
(
∥∇w(t)∥2

2 + ∥w′(t)∥2
2
)

+
t∫

0

∫

T3

(
|u′

n|m−1u′
n − |u′

j |m−1u′
j

)
w′dxdτ
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+
t∫

0

∫

T3

[
(Pn − Pj)(|u′

j |m−1u′
j)
]
w′dxdτ

= 1
2
(
∥∇w(0)∥2

2 + ∥w′(0)∥2
2
)

+
t∫

0

∫

T3

(
|un|p−1un − |uj |p−1uj

)
w′dxdτ

+
t∫

0

∫

T3

[
(Pn − Pj)(|uj |p−1uj)

]
w′dxdτ. (2.35)

Note (|u′
n|m−1u′

n − |u′
j |m−1u′

j)w′ = (|u′
n|m−1u′

n − |u′
j |m−1u′

j)(u′
n − u′

j) ≥ 0 due to monotonicity of the 
function |s|m−1s for m ≥ 1. Then we obtain from (2.35) that, for n ≥ j,

0 ≤ 1
2
(
∥∇w(t)∥2

2 + ∥w′(t)∥2
2
)

+
t∫

0

∫

T3

(
|u′

n|m−1u′
n − |u′

j |m−1u′
j

)
w′dxdτ

≤ 1
2
(
∥∇w(0)∥2

2 + ∥w′(0)∥2
2
)

+

∣∣∣∣∣∣

t∫

0

∫

T3

(
|un|p−1un − |uj |p−1uj

)
w′dxdτ

∣∣∣∣∣∣

+

∣∣∣∣∣∣

t∫

0

∫

T3

[
(Pn − Pj)(|uj |p−1uj)

]
w′dxdτ

∣∣∣∣∣∣
+

∣∣∣∣∣∣

t∫

0

∫

T3

[
(Pn − Pj)(|u′

j |m−1u′
j)
]
w′dxdτ

∣∣∣∣∣∣
. (2.36)

2.4.1. Estimate for the “residue” terms
We estimate the two “residue” terms in (2.36). They are 

∫ t
0
∫
T3 [(Pn − Pj)(|u′

j |m−1u′
j)]w′dxdτ and ∫ t

0
∫
T3

[
(Pn − Pj)(|uj |p−1uj)

]
w′dxdτ , for n ≥ j. We aim to show that they approach zero when n and 

j are large. The estimates for these two integrals are essentially the same. Thus we present the estimate for ∫ t
0
∫
T3 [(Pn − Pj)(|u′

j |m−1u′
j)]w′dxdτ in details only.

By the definition of Pn in (2.1), we know that for any functions f , g ∈ L2(T 3) and any n ∈ N,

∫

T3

(Pnf)gdx =
∑

k=(k1,k2,k3)∈Z3

|k1|,|k2|,|k3|≤n

f̂(k)ĝ(k) =
∫

T3

f(Png)dx. (2.37)

Formula (2.37) will be repeatedly used in the following calculations.
Since we assume n ≥ j in (2.35), then Pnu′

j = u′
j = Pju′

j , i.e., (Pn −Pj)u′
j = 0. Also, recall w = un − uj . 

As a result,

t∫

0

∫

T3

[
(Pn − Pj)(|u′

j |m−1u′
j)
]
w′dxdτ =

t∫

0

∫

T3

(|u′
j |m−1u′

j)
[
(Pn − Pj)(u′

n − u′
j)
]
dxdτ

=
t∫

0

∫

T3

(|u′
j |m−1u′

j) [(Pn − Pj)u′
n] dxdτ

=
t∫

0

∫

T3

(|u′
j |m−1u′

j)u′
ndxdτ −

t∫

0

∫

T3

(|u′
j |m−1u′

j)Pju
′
ndxdτ. (2.38)



1096 Y. Guo / J. Math. Anal. Appl. 477 (2019) 1087–1113

Recall that |u′
j |m−1u′

j → ψ weakly in L
m+1
m (T 3×(0, T )) by (2.32), and u′

n → u′ weakly in Lm+1(T 3×(0, T ))
by (2.26). Hence, for 0 ≤ t ≤ T ,

lim
j→∞

lim
n→∞

t∫

0

∫

T3

(|u′
j |m−1u′

j)u′
ndxdτ = lim

j→∞

t∫

0

∫

T3

(|u′
j |m−1u′

j)u′dxdτ

=
t∫

0

∫

T3

ψu′dxdτ. (2.39)

Next, we look at the second term on the right-hand side of (2.38). Owing to (2.3), we have 
∫ T
0
∫
T3 |Pj(|u′

j |m−1u′
j)|

m+1
m dxdt ≤ cm

∫ T
0
∫
T3

∣∣|u′
j |m−1u′

j

∣∣m+1
m dxdt = cm

∫ T
0
∫
T3 |u′

j |m+1dxdt < ∞ due to 
(2.19). Hence Pj(|u′

j |m−1u′
j) ∈ L

m+1
m (T 3×(0, T )). Consequently, since u′

n → u′ weakly in Lm+1(T 3×(0, T )), 
then, for each fixed j, using (2.37),

lim
n→∞

t∫

0

∫

T3

(|u′
j |m−1u′

j)Pju
′
ndxdτ = lim

n→∞

t∫

0

∫

T3

[
Pj(|u′

j |m−1u′
j)
]
u′
ndxdτ

=
t∫

0

∫

T3

[
Pj(|u′

j |m−1u′
j)
]
u′dxdτ, (2.40)

for 0 ≤ t ≤ T . Again, use (2.37) to get

t∫

0

∫

T3

[
Pj(|u′

j |m−1u′
j)
]
u′dxdτ =

t∫

0

∫

T3

(|u′
j |m−1u′

j)Pju
′dxdτ

=
t∫

0

∫

T3

(|u′
j |m−1u′

j)(Pju
′ − u′)dxdτ +

t∫

0

∫

T3

(|u′
j |m−1u′

j)u′dxdτ. (2.41)

Since u′ ∈ Lm+1(T 3 × (0, T )) and |u′
j |m−1u′

j → ψ weakly in L
m+1
m (T 3 × (0, T )), one has

lim
j→∞

t∫

0

∫

T3

(|u′
j |m−1u′

j)u′dxdτ =
t∫

0

∫

T3

ψu′dxdτ, (2.42)

for 0 ≤ t ≤ T . Now we deal with the first integral on the right-hand side of (2.41). Since u′ ∈ Lm+1(T 3 ×
(0, T )), limj→∞ ∥Pju′ − u′∥m+1 = 0 for a.e. t ∈ [0, T ], due to (2.2). Also, ∥Pju′ − u′∥m+1 ≤ ∥Pju′∥m+1 +
∥u′∥m+1 ≤ cm∥u′∥m+1 by (2.3). Hence, applying the Lebesgue’s dominated convergence theorem, one has 
limj→∞

∫ T
0 ∥Pju′ − u′∥m+1

m+1dt = 0. Then, employing the Hölder’s inequality,

T∫

0

∫

T3

|u′
j |m|Pju

′ − u′|dxdt ≤ ∥u′
j∥Lm+1(T3×(0,T ))

⎛

⎝
T∫

0

∥Pju
′ − u′∥m+1

m+1dt

⎞

⎠

1
m+1

≤ C

⎛

⎝
T∫

0

∥Pju
′ − u′∥m+1

m+1dt

⎞

⎠

1
m+1

−→ 0, as j → ∞, (2.43)
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where we have used the fact that u′
j is uniformly bounded in Lm+1(T 3 × (0, T )) by (2.19).

Combining (2.41), (2.42) and (2.43) gives

lim
j→∞

t∫

0

∫

T3

[
Pj(|u′

j |m−1u′
j)
]
u′dxdτ =

t∫

0

∫

T3

ψu′dxdτ. (2.44)

Then, by (2.40) and (2.44), one has

lim
j→∞

lim
n→∞

t∫

0

∫

T3

(|u′
j |m−1u′

j)Pju
′
ndxdτ =

t∫

0

∫

T3

ψu′dxdτ, for all t ∈ [0, T ]. (2.45)

Finally, by (2.38), (2.39) and (2.45), we conclude

lim
j→∞

lim
n→∞

t∫

0

∫

T3

[
(Pn − Pj)(|u′

j |m−1u′
j)
]
w′dxdτ = 0, for all t ∈ [0, T ]. (2.46)

In the same manner, we can show

lim
j→∞

lim
n→∞

t∫

0

∫

T3

[(Pn − Pj)(|uj |p−1uj)]w′dxdτ = 0, for all t ∈ [0, T ]. (2.47)

2.4.2. Estimate for the integral 
∫ t
0
∫
T3(|un|p−1un − |uj |p−1uj)w′dxdτ

Case A: 1 ≤ p < 5
6 (m + 1).

We estimate

T∫

0

∫

T3

∣∣|un|p−1un − |uj |p−1uj

∣∣ |w′|dxdt

≤ C

T∫

0

∫

T3

|un − uj |(|un|p−1 + |uj |p−1)|w′|dxdt

≤ C∥un − uj∥
L

m+1
m+1−p (T3×(0,T ))

(
∥un∥p−1

Lm+1(T3×(0,T )) + ∥uj∥p−1
Lm+1(T3×(0,T ))

)
∥w′∥Lm+1(T3×(0,T )), (2.48)

where we use the Hölder’s inequality in the last step.
Notice that p < 5

6 (m + 1) implies m+1
m+1−p < 6. So there exists ϵ0 ∈ (0, 1) such that H1−ϵ0(T 3) ↪→

L
m+1

m+1−p (T 3). Then, by (2.28), there is a subsequence un → u in C([0, T ]; H1−ϵ0(T 3)), which implies that 
un → u in L

m+1
m+1−p (T 3 × (0, T )). It follows that

lim
n,j→∞

∥un − uj∥
L

m+1
m+1−p (T3×(0,T ))

= 0. (2.49)

Since w′ = u′
n − u′

j and u′
n is uniformly bounded in Lm+1(T 3 × (0, T )), one has w′ is uniformly bounded 

in Lm+1(T 3 × (0, T )). Also, recall un is uniformly bounded in L∞(0, T ; Lm+1(T 3)) by (2.17). Then, by 
(2.48) and (2.49), we have
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lim
n,j→∞

T∫

0

∫

T3

∣∣|un|p−1un − |uj |p−1uj

∣∣ |w′|dxdt = 0. (2.50)

Applying (2.46), (2.47) and (2.50) to inequality (2.36), and since limn,j→∞(∥∇w(0)∥2
2 + ∥w′(0)∥2

2) =
limn,j→∞(∥∇(Pn − Pj)u0∥2

2 + ∥(Pn − Pj)u1∥2
2) = 0, we obtain

lim
j→∞

lim
n→∞

T∫

0

∫

T3

(
|u′

n|m−1u′
n − |u′

j |m−1uj

)
w′dxdτ = 0. (2.51)

Remark 2.1. Recall Case 1 of the assumption for the “existence” result (Theorem 1.2) is that 1 ≤ p ≤ m ≤ 5. 
Notice

{(m, p) ̸= (5, 5) : 1 ≤ p ≤ m ≤ 5} ⊂ {(m, p) : 1 ≤ p <
5
6(m + 1)}. (2.52)

Nonetheless, the situation m = p = 5 does not satisfy 1 ≤ p < 5
6 (m + 1), thus we have to discuss it 

separately.

Case B: m = p = 5.
In this case,

t∫

0

∫

T3

(
|un|p−1un − |uj |p−1uj

)
w′dxdτ =

t∫

0

∫

T3

(
u5
n − u5

j

)
w′dxdτ.

We estimate the above integral by using integration by parts in time. Such “integration by parts” technique 
originates from [6]. Indeed, since w = un − uj ,

∣∣∣∣∣∣

t∫

0

∫

T3

(
u5
n − u5

j

)
w′dxdτ

∣∣∣∣∣∣

= 1
2

∣∣∣∣∣∣

t∫

0

∫

T3

(u4
n + u3

nuj + u2
nu

2
j + unu

3
j + u4

j )(w2)′dxdτ

∣∣∣∣∣∣

≤ C

∫

T3

(
|un(t)|4 + |uj(t)|4

)
|w(t)|2dx + C

∫

T3

(
|un(0)|4 + |uj(0)|4

)
|w(0)|2dx

+ C

t∫

0

∫

T3

(
|un|3 + |uj |3

) (
|u′

n| + |u′
j |
)
w2dxdτ. (2.53)

We shall estimate each term on the right-hand side of (2.53).
Owing to (2.14) and (2.15), when m = 5, there exists a uniform bound K such that

∥un(t)∥2
H1 + ∥u′

n(t)∥2
2 +

t∫

0

∥u′
n(τ)∥6

6dτ ≤ K, for all t ∈ [0, T ], for all n ∈ N. (2.54)

Also, if one restricts T ≤ 1, then the bound K depends only on E (0) = 1
2 (∥∇u0∥2

2 + ∥u1∥2
2) + 1

6∥u0∥6
6.
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By Hölder’s inequality,

t∫

0

∫

T3

(
|un|3 + |uj |3

) (
|u′

n| + |u′
j |
)
w2dxdτ ≤ C

t∫

0

(
∥un∥3

6 + ∥uj∥3
6
) (

∥u′
n∥6 + ∥u′

j∥6
)
∥w∥2

6dτ

≤ C(K)
t∫

0

(
∥u′

n∥6 + ∥u′
j∥6

)
∥w∥2

H1dτ, for all t ∈ [0, T ], (2.55)

where we use H1 ↪→ L6 as well as (2.54) to obtain the last inequality.
Also, using Hölder’s inequality, we have

∫

T3

(
|un(0)|4 + |uj(0)|4

)
|w(0)|2dx

≤
(
∥un(0)∥4

6 + ∥uj(0)∥4
6
)
∥w(0)∥2

6 ≤ C(K)∥w(0)∥2
H1 , (2.56)

where the last inequality is due to (2.54).
Next, we estimate 

∫
T3

(
|un(t)|4 + |uj(t)|4

)
|w(t)|2dx. Indeed,

∫

T3

|un(t)|4|w(t)|2dx ≤C

∫

T3

|un(t) − un(0)|4|w(t)|2dx + C

∫

T3

|un(0) − u0|4|w(t)|2dx

+ C

∫

T3

|u0|4|w(t)|2dx. (2.57)

We estimate each term on the right-hand side of (2.57). First,

∫

T3

|un(t) − un(0)|4|w(t)|2dx =
∫

T3

∣∣∣∣∣∣

t∫

0

u′
n(τ)dτ

∣∣∣∣∣∣

4

|w(t)|2dx

≤

⎛

⎜⎝
∫

T3

∣∣∣∣∣∣

t∫

0

u′
n(τ)dτ

∣∣∣∣∣∣

6

dx

⎞

⎟⎠

2
3

∥w(t)∥2
6

≤ Ct
10
3

⎛

⎝
t∫

0

∥u′
n(τ)∥6

6dτ

⎞

⎠

2
3

∥w(t)∥2
H1 ≤ C(K)t 10

3 ∥w(t)∥2
H1 , for all t ∈ [0, T ], (2.58)

where the last inequality is due to (2.54). Also, since un(0) = Pnu0 → u0 in H1, then

∫

T3

|un(0) − u0|4|w(t)|2dx ≤ ∥un(0) − u0∥4
6∥w(t)∥2

6

≤ C∥un(0) − u0∥4
H1∥w(t)∥2

H1 ≤ ϵ∥w(t)∥2
H1 , for n ≥ Nϵ. (2.59)

Notice
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∥w(t)∥2
2 =

∫

T3

|w(t)|2dx ≤
∫

T3

∣∣∣∣∣∣

t∫

0

w′(τ)dτ

∣∣∣∣∣∣

2

dx + ∥w(0)∥2
2

≤ t

t∫

0

∥w′(τ)∥2
2dτ + ∥w(0)∥2

2. (2.60)

We let ϕ be a periodic smooth function such that ∥u0 − ϕ∥4
H1 ≤ ϵ. Since ϕ is smooth, there exists Cϵ > 0

such that |ϕ(x)| ≤ Cϵ for all x ∈ T 3. As a result,

∫

T3

|u0|4|w(t)|2dx ≤ C

∫

T3

|u0 − ϕ|4|w(t)|2dx + C

∫

T3

|ϕ|4|w(t)|2dx

≤ C∥u0 − ϕ∥4
6∥w(t)∥2

6 + Cϵ∥w(t)∥2
2

≤ Cϵ∥w(t)∥2
H1 + Cϵt

t∫

0

∥w′(τ)∥2
2dτ + Cϵ∥w(0)∥2

2, for all t ∈ [0, T ], (2.61)

owing to (2.60).
Applying estimates (2.58), (2.59) and (2.61) to the right-hand side of (2.57) yields

∫

T3

|un(t)|4|w(t)|2dx ≤ C(K)(t 10
3 + ϵ)∥w(t)∥2

H1 + Cϵt

t∫

0

∥w′(τ)∥2
2dτ + Cϵ∥w(0)∥2

2, (2.62)

for all t ∈ [0, T ], and for all n ≥ Nϵ. Thus, 
∫
T3

(
|un(t)|4 + |uj(t)|4

)
|w(t)|2dx is also bounded by the 

right-hand side of (2.62) if n, j ≥ Nϵ.
By virtue of (2.53), (2.55), (2.56) and (2.62), we obtain

∣∣∣∣∣∣

t∫

0

∫

T3

(
u5
n − u5

j

)
w′dxdτ

∣∣∣∣∣∣

≤ C(K)(t 10
3 + ϵ)∥w(t)∥2

H1 + Cϵt

t∫

0

∥w′(τ)∥2
2dτ

+ C(K)
t∫

0

(
∥u′

n∥6 + ∥u′
j∥6

)
∥w∥2

H1dτ + C(K, ϵ)∥w(0)∥2
H1 , (2.63)

for all t ∈ [0, T ] and n, j ≥ Nϵ.
Applying estimates (2.60) and (2.63) to inequality (2.36) with m = p = 5, and using ∥w∥2

H1 = ∥∇w∥2
2 +

∥w∥2
2, we have

0 ≤ 1
2
(
∥w(t)∥2

H1 + ∥w′(t)∥2
2
)

+
t∫

0

∫

T3

[
(u′

n)5 − (u′
j)5

]
w′dxdτ

≤ C(K, ϵ)∥w(0)∥2
H1 + 1

2∥w
′(0)∥2

2 + C(K)(t 10
3 + ϵ)∥w(t)∥2

H1
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+ Cϵt

t∫

0

∥w′(τ)∥2
2dτ + C(K)

t∫

0

(
∥u′

n∥6 + ∥u′
j∥6

)
∥w∥2

H1dτ

+

∣∣∣∣∣∣

t∫

0

∫

T3

[
(Pn − Pj)u5

j

]
w′dxdτ

∣∣∣∣∣∣
+

∣∣∣∣∣∣

t∫

0

∫

T3

[
(Pn − Pj)(u′

j)5
]
w′dxdτ

∣∣∣∣∣∣
, (2.64)

for all t ∈ [0, T ] and n, j ≥ Nϵ.
We remark that our strategy is to first prove the local existence of weak solutions on [0, T ], and extend 

the local solution to a global solution later. Thus, we can choose ϵ and T sufficiently small such that 
C(K)(T 10

3 + ϵ) ≤ 1
4 , then (2.64) shows

0 ≤ 1
4
(
∥w(t)∥2

H1 + ∥w′(t)∥2
2
)

+
t∫

0

∫

T3

[
(u′

n)5 − (u′
j)5

]
w′dxdτ

≤ C(K, ϵ)∥w(0)∥2
H1 + 1

2∥w
′(0)∥2

2 + Cϵt

t∫

0

∥w′(τ)∥2
2dτ + C(K)

t∫

0

(
∥u′

n∥6 + ∥u′
j∥6

)
∥w∥2

H1dτ

+

∣∣∣∣∣∣

t∫

0

∫

T3

[
(Pn − Pj)(u5

j )
]
w′dxdτ

∣∣∣∣∣∣
+

∣∣∣∣∣∣

t∫

0

∫

T3

[
(Pn − Pj)(u′

j)5
]
w′dxdτ

∣∣∣∣∣∣
, (2.65)

for all t ∈ [0, T ] and n, j ≥ Nϵ. Recall, if one restricts T ≤ 1, then the uniform bound K defined in (2.54)
depends only on E (0). Thus, T depends only on E (0).

Because of (2.54), we can apply the Grönwall’s inequality to (2.65), it follows that

0 ≤ 1
4
(
∥w(t)∥2

H1 + ∥w′(t)∥2
2
)

+
t∫

0

∫

T3

[
(u′

n)5 − (u′
j)5

]
w′dxdτ

≤ C(K,T, ϵ)
(
∥w(0)∥2

H1 + ∥w′(0)∥2
2 +

∣∣∣∣∣∣

t∫

0

∫

T3

[(Pn − Pj)u5
j ]w′dxdτ

∣∣∣∣∣∣

+

∣∣∣∣∣∣

t∫

0

∫

T3

[(Pn − Pj)(u′
j)5]w′dxdτ

∣∣∣∣∣∣

)
, (2.66)

for t ∈ [0, T ] and n, j ≥ Nϵ.
Since w = un − uj , one has

lim
n,j→∞

(∥w(0)∥2
H1 + ∥w′(0)∥2

2) = lim
n,j→∞

(∥Pnu0 − Pju0∥2
H1 + ∥Pnu1 − Pju1∥2

2) = 0.

Then, by using (2.46) and (2.47), we derive from (2.66) that

lim
j→∞

lim
n→∞

t∫

0

∫

T3

[
(u′

n)5 − (u′
j)5

]
w′dxdτ = 0, for all t ∈ [0, T ],

under the scenario that m = p = 5.



1102 Y. Guo / J. Math. Anal. Appl. 477 (2019) 1087–1113

In sum, for both Case A (i.e. 1 ≤ p < 5
6 (m + 1)) and Case B (i.e. m = p = 5), we have

lim
j→∞

lim
n→∞

T∫

0

∫

T3

(
|u′

n|m−1u′
n − |u′

j |m−1uj

)
w′dxdτ = 0. (2.67)

Remark 2.2. For Case A, the length T of the time interval can be arbitrarily large. However, for Case B, 
we restrict T to be small which depends on E (0) only. But this restriction does not affect our intention to 
prove the local existence of weak solutions on [0, T ]. Local weak solutions will eventually be extended to 
global ones in subsection 2.7.

We also remark that the “union” of Case A and Case B in the above proof is same as the “union” of 
Case 1 and Case 2 in the statement of Theorem 1.2.

2.4.3. Completion of the proof for |u′
n|m−1u′

n → |u′|m−1u′ in L
m+1
m (T 3 × (0, T ))

We recall from (2.26) and (2.32) that u′
n → u′ weakly in Lm+1(T 3 × (0, T )) and |u′

n|m−1u′
n → ψ weakly 

in L
m+1
m (T 3 × (0, T )). Then, by (2.67), we have

lim
j→∞

lim
n→∞

T∫

0

∫

T3

(|u′
n|m−1u′

n − |u′
j |m−1u′

j)(u′
n − u′

j)dxdt

= lim
n→∞

T∫

0

∫

T3

|u′
n|m+1dxdt + lim

j→∞

T∫

0

∫

T3

|u′
j |m+1dxdt

− lim
j→∞

lim
n→∞

T∫

0

∫

T3

(|u′
n|m−1u′

n)u′
jdxdt− lim

j→∞
lim
n→∞

T∫

0

∫

T3

(|u′
j |m−1uj)u′

ndxdt

= 2 lim
n→∞

T∫

0

∫

T3

|u′
n|m+1dxdt− 2

T∫

0

∫

T3

ψu′dxdt = 0.

It follows that

lim
n→∞

T∫

0

∫

T3

|u′
n|m+1dxdt =

T∫

0

∫

T3

ψu′dxdt. (2.68)

Since |s|m−1s is a monotone increasing function on R, then for any v ∈ Lm+1(T 3 × (0, T )), we have

T∫

0

∫

T3

(|u′
n|m−1u′

n − |v|m−1v)(u′
n − v)dxdt ≥ 0. (2.69)

Owing to (2.68) and (2.69), as well as the fact that u′
n → u′ weakly in Lm+1(T 3×(0, T )) and |u′

n|m−1u′
n → ψ

weakly in L
m+1
m (T 3 × (0, T )), we obtain

lim
n→∞

T∫

0

∫

T3

(|u′
n|m−1u′

n − |v|m−1v)(u′
n − v)dxdt
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= lim
n→∞

T∫

0

∫

T3

|u′
n|m+1dxdt− lim

n→∞

T∫

0

∫

T3

(|u′
n|m−1u′

n)vdxdt

− lim
n→∞

T∫

0

∫

T3

(|v|m−1v)u′
ndxdt +

T∫

0

∫

T3

|v|m+1dxdt

=
T∫

0

∫

T3

ψu′dxdt−
T∫

0

∫

T3

ψvdxdt−
T∫

0

∫

T3

(|v|m−1v)u′dxdt +
T∫

0

∫

T3

|v|m+1dxdt

=
T∫

0

∫

T3

(ψ − |v|m−1v)(u′ − v)dxdt ≥ 0, for any v ∈ Lm+1(T 3 × (0, T )). (2.70)

We claim that v %→ |v|m−1v is a maximal monotone operator mapping from Lm+1(T 3×(0, T )) → L
m+1
m (T 3×

(0, T )). It suffices to show that this operator is both monotone and hemicontinuous (see, e.g., [2]). The 
monotonicity is obvious. It remains to verify the hemicontinuity. Recall that an operator A mapping from 
a Banach space to its dual is said to be hemicontinuous if A(v + λy) converges weakly to A(v) as λ → 0
for all v, y in this Banach space. Hence, to check the operator v %→ |v|m−1v is hemicontinuous from 
Lm+1(T 3 × (0, T )) → L

m+1
m (T 3 × (0, T )), it is enough to verify that, for all v, y, η ∈ Lm+1(T 3 × (0, T )),

lim
λ→∞

T∫

0

∫

T3

[
|v + λy|m−1(v + λy)

]
ηdxdt =

T∫

0

∫

T3

(|v|m−1v)ηdxdt. (2.71)

As a matter of fact, (2.71) follows from Lebesgue’s dominated convergence theorem.
Since we have shown the maximal monotonicity of the operator v %→ |v|m−1v from Lm+1(T 3 × (0, T )) →

L
m+1
m (T 3 × (0, T )), it can be concluded from (2.70) that ψ = |u′|m−1u′. Namely,

|u′
n|m−1u′

n → |u′|m−1u′ weakly in L
m+1
m (T 3 × (0, T )). (2.72)

2.5. Passage to the limit for the Galerkin system

In this section, we let n → ∞ in the Galerkin approximation system, and aim to show that (u, u′) is a weak 
solution for model (1.2)-(1.3) on [0, T ]. Let φ be a trigonometric polynomial with smooth coefficients, i.e., 
φ =

∑
k=(k1,k2,k3)∈Z3

|k1|,|k2|,|k3|≤N

φ̂(k, t)eik·x where φ̂(k, t) is smooth in t. We multiply the Galerkin system (2.4) with φ

and integrate over T 3×(0, t). Assume n is larger than the degree N of φ, then 
∫ t
0
∫
T3 Pn(|u′

n|m−1u′
n)φdxdτ =∫ t

0
∫
T3(|u′

n|m−1u′
n)φdxdτ , and 

∫ t
0
∫
T3 Pn(|un|p−1un)φdxdτ =

∫ t
0
∫
T3(|un|p−1un)φdxdτ . It follows that

t∫

0

∫

T3

u′′
nφdxdτ +

t∫

0

∫

T3

∇un ·∇φdxdτ +
t∫

0

∫

T3

(|u′
n|m−1u′

n)φdxdτ

=
t∫

0

∫

T3

(|un|p−1un)φdxdτ, for all t ∈ [0, T ]. (2.73)

Then, since |u′
n|m−1u′

n → |u′|m−1u′ weakly in L
m+1
m (T 3×(0, T )), |un|p−1un → |u|p−1u weakly in L

m+1
m (T 3×

(0, T )), un → u weakly∗ in L∞(0, T ; H1(T 3)) and u′′
n → u′′ weakly∗ in L

m+1
m (0, T ; X ′) where X = H1(T 3) ∩

Lm+1(T 3), we can pass to the limit as n → ∞ in (2.73) to obtain
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t∫

0

⟨u′′,φ⟩dτ +
t∫

0

∫

T3

∇u ·∇φdxdτ +
t∫

0

∫

T3

(|u′|m−1u′)φdxdτ

=
t∫

0

∫

T3

(|u|p−1u)φdxdτ, for all t ∈ [0, T ]. (2.74)

After integration by parts in time, we obtain

∫

T3

u′(t)φ(t)dx−
∫

T3

u′(0)φ(0)dx−
t∫

0

∫

T3

u′φ′dxdτ

+
t∫

0

∫

T3

∇u ·∇φdxdτ +
t∫

0

∫

T3

(|u′|m−1u′)φdxdτ =
t∫

0

∫

T3

(|u|p−1u)φdxdτ, (2.75)

for all t ∈ [0, T ], and for any trigonometric polynomial φ with smooth coefficients.
Recall u ∈ L∞(0, T ; H1(T 3)), u′ ∈ L∞(0, T ; L2(T 3)), and |u|p−1u, |u′|m−1u′ ∈ L

m+1
m (T 3 × (0, T )). 

Thus, by density, we conclude that (2.75) holds for all φ ∈ C([0, T ]; H1(T 3)) ∩ Lm+1(T 3 × (0, T )) with 
φ′ ∈ C([0, T ]; L2(T 3)).

We shall verify the initial condition u(0) = u0 and u′(0) = u1. Indeed, let φ̃ be a trigonometric polynomial 
with smooth coefficients such that φ̃(T ) = φ̃′(T ) = 0. By setting t = T and φ = φ̃ in (2.73), then after 
integration by parts in time, we obtain

∫

T3

[(Pnu0)φ̃′(0) − (Pnu1)φ̃(0)]dx +
T∫

0

∫

T3

unφ̃
′′dxdτ +

T∫

0

∫

T3

∇un ·∇φ̃dxdτ

+
T∫

0

∫

T3

(|u′
n|m−1u′

n)φ̃dxdτ =
T∫

0

∫

T3

(|un|p−1un)φ̃dxdτ, (2.76)

where we have used un(0) = Pnu0 and u′
n(0) = Pnu1.

Letting n → ∞ in (2.76), we have

∫

T3

[u0φ̃
′(0) − u1φ̃(0)]dx +

T∫

0

∫

T3

uφ̃′′dxdτ +
T∫

0

∫

T3

∇u ·∇φ̃dxdτ

+
T∫

0

∫

T3

(|u′|m−1u′)φ̃dxdτ =
T∫

0

∫

T3

(|u|p−1u)φ̃dxdτ. (2.77)

However, by setting t = T and φ = φ̃ in (2.74), and after integration by parts, we have

∫

T3

[u(0)φ̃′(0) − u′(0)φ̃(0)]dx +
T∫

0

∫

T3

uφ̃′′dxdτ +
T∫

0

∫

T3

∇u ·∇φ̃dxdτ

+
T∫

0

∫

T3

(|u′|m−1u′)φ̃dxdτ =
T∫

0

∫

T3

(|u|p−1u)φ̃dxdτ. (2.78)
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Comparing (2.77) and (2.78), we obtain

∫

T3

[u0φ̃
′(0) − u1φ̃(0)]dx =

∫

T3

[u(0)φ̃′(0) − u′(0)φ̃(0)]dx. (2.79)

Since φ̃(0) and φ̃′(0) are arbitrary trigonometric polynomials, we obtain u(0) = u0 and u′(0) = u1. This 
completes the proof for the existence of weak solutions on [0, T ].

2.6. Energy identity

Let (u, ut) be a weak solution for (1.2)-(1.3) on [0, T ] in the sense of Definition 1.1. We aim to show that 
the energy identity (1.5) holds for all t ∈ [0, T ].

One may multiply equation (1.2) with ut, and perform integration by parts to obtain the energy identity 
(1.5) formally. However, ut is not smooth enough, this formal procedure is not rigorous. To remedy it, we 
regularize solutions by the projection operator Pn defined in (2.1). We set φ = Pnut in the variational 
identity (1.4) to get

1
2
(
∥Pnut(t)∥2

2 + ∥∇Pnu(t)∥2
2
)

+
t∫

0

∫

T3

(|ut|m−1ut)(Pnut)dxdτ

= 1
2
(
∥Pnut(0)∥2

2 + ∥∇Pnu(0)∥2
2
)

+
t∫

0

∫

T3

(|u|p−1u)(Pnut)dxdτ, (2.80)

for all t ∈ [0, T ].
Since ut ∈ Lm+1(T 3 × (0, T )), one has ut ∈ Lm+1(T 3) for a.e. t ∈ [0, T ]. Then by (2.2), Pnut → ut in 

Lm+1(T 3) as n → ∞ for a.e. t ∈ [0, T ]. Also, due to (2.3), we know ∥Pnut∥m+1 ≤ cm∥ut∥m+1. Therefore, 
by the Lebesgue’s dominated convergence theorem, we obtain

lim
n→∞

t∫

0

∫

T3

|Pnut − ut|m+1dxdτ = 0. (2.81)

Thus, by Hölder’s inequality,

∣∣∣∣∣∣

t∫

0

∫

T3

(|ut|m−1ut)(Pnut − ut)dxdτ

∣∣∣∣∣∣

≤

⎛

⎝
t∫

0

∫

T3

|ut|m+1dxdτ

⎞

⎠

m
m+1

⎛

⎝
t∫

0

∫

T3

|Pnut − ut|m+1dxdτ

⎞

⎠

1
m+1

→ 0, as n → ∞,

where the convergence to zero is due to (2.81). It follows that

lim
n→∞

t∫

0

∫

T3

(|ut|m−1ut)(Pnut)dxdτ =
t∫

0

∫

T3

|ut|m+1dxdτ, for all t ∈ [0, T ]. (2.82)
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Analogously, we can derive

lim
n→∞

t∫

0

∫

T3

(|u|p−1u)(Pnut)dxdτ =
t∫

0

∫

T3

|u|p−1uutdxdτ, for all t ∈ [0, T ]. (2.83)

Thanks to (2.82) and (2.83), we let n → ∞ in (2.80) to obtain the energy identity

1
2
(
∥ut(t)∥2

2 + ∥∇u(t)∥2
2
)

+
t∫

0

∫

T3

|ut|m+1dxdτ

= 1
2
(
∥ut(0)∥2

2 + ∥∇u(0)∥2
2
)

+
t∫

0

∫

T3

|u|p−1uutdxdτ, for all t ∈ [0, T ]. (2.84)

Since 
∫ t
0
∫
T3 |u|p−1uutdxdτ = 1

p+1

(
∥u(t)∥p+1

p+1 − ∥u(0)∥p+1
p+1

)
, the energy identity (2.84) can be written in 

the form of (1.5) stated in Theorem 1.2.
In addition, from (2.84) and performing the same calculation as in (2.6)-(2.12), we can derive

E (t) + 1
2

t∫

0

∥ut(τ)∥m+1
m+1dτ ≤ (E (0) + t) eCt, for all t ∈ [0, T ], (2.85)

where E (t) = 1
2
(
∥∇u(t)∥2

2 + ∥ut(t)∥2
2
)

+ 1
m+1 ∥u(t)∥m+1

m+1, and the constant C in (2.85) is independent of T .

2.7. Extension to global solutions

Given initial data u0 ∈ H1(T 3) ∩Lm+1(T 3) and u1 ∈ L2(T 3), using the Galerkin method, we have proved 
the existence of a weak solution (u, ut) for (1.2)-(1.3) on [0, T ]. By Remark 2.2, T can be arbitrarily large for 
Case A (i.e., 1 ≤ p < 5

6 (m + 1)), thus the solution can be extended to a global solution on [0, ∞). However, 
for Case B (i.e., m = p = 5), T is small depending only on E (0), then in this case we extend the local 
solution to a global solution by using a standard continuation argument given below. Indeed, we assume to 
the contrary that there exists Tmax < ∞ for which this local solution on [0, T ] can not be extended beyond 
Tmax. Notice, the energy bound (2.85) holds for all t ∈ [0, Tmax), namely,

E (t) + 1
2

t∫

0

∥ut(τ)∥m+1
m+1dτ ≤ M := (E (0) + Tmax) eCTmax , for all t ∈ [0, Tmax). (2.86)

Recall T depends only on E (0) ≤ M . Then consider the same initial value problem with initial data at t = T

given by (u(T ), ut(T )), and since E (T ) ≤ M due to (2.86), there exists a solution on [T, 2T ]. Together with 
the solution on [0, T ], this defines a solution on [0, 2T ]. After finitely many times iterations, the solution 
is extended beyond Tmax < ∞, which leads to a contradiction. This completes the proof for the global 
existence of weak solutions.

3. Uniqueness of weak solutions and continuous dependence on initial data

This section is devoted to proving Theorem 1.3, namely, the uniqueness of weak solutions as well as the 
continuous dependence on initial data. We present the proof for the continuous dependence on initial data. 
The uniqueness of weak solutions follows immediately.
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Suppose (u0, u1) ∈
(
H1(T 3) ∩ Lm+1(T 3)

)
× L2(T 3). Let (un

0 , u
n
1 ) be a sequence of periodic functions 

in 
(
H1(T 3) ∩ Lm+1(T 3)

)
× L2(T 3) such that limn→∞ ∥un

0 − u0∥H1 = 0, limn→∞ ∥un
0 − u0∥m+1 = 0, and 

limn→∞ ∥un
1 − u1∥2 = 0. In the previous section, we have proved the existence of global weak solutions for 

system (1.2)-(1.3). Thus, for any T > 0, there exists a weak solution (u, u′) for system (1.2)-(1.3) on [0, T ]
with initial data (u0, u1). Also, for each n ∈ N, there exists a weak solution (un, u′

n) for (1.2)-(1.3) on [0, T ]
with initial data (un

0 , u
n
1 ). We aim to show that (un, u′

n) converges to (u, u′) in the sense of (1.7).
By (1.6) in Theorem 1.2, we have

1
2
(
∥∇un(t)∥2

2 + ∥u′
n(t)∥2

2
)

+ 1
m + 1 ∥un(t)∥m+1

m+1 + 1
2

t∫

0

∥u′
n(τ)∥m+1

m+1dτ

≤
(1

2(∥∇un
0∥2

2 + ∥un
1∥2

2) + 1
m + 1∥u

n
0∥m+1

m+1 + t

)
eCt, for all t ∈ [0, T ]. (3.1)

Also, one has

1
2
(
∥∇u(t)∥2

2 + ∥u′(t)∥2
2
)

+ 1
m + 1 ∥u(t)∥m+1

m+1 + 1
2

t∫

0

∥u′(τ)∥m+1
m+1dτ

≤
(1

2(∥∇u0∥2
2 + ∥u1∥2

2) + 1
m + 1∥u0∥m+1

m+1 + t

)
eCt, for all t ∈ [0, T ]. (3.2)

Notice ∥u∥2
H1 = ∥∇u∥2

2 +∥u∥2
2 ≤ ∥∇u∥2

2 +C∥u∥m+1
m+1 +1 for m ≥ 1. Then, since limn→∞ ∥un

0 −u0∥H1 = 0, 
limn→∞ ∥un

0 − u0∥m+1 = 0 and limn→∞ ∥un
1 − u1∥2 = 0, and on account of (3.1)-(3.2), there exists K > 0

such that

∥un(t)∥2
H1 + ∥u′

n(t)∥2
2 + ∥un(t)∥m+1

m+1 +
t∫

0

∥u′
n(τ)∥m+1

m+1dτ

+ ∥u(t)∥2
H1 + ∥u′(t)∥2

2 + ∥u(t)∥m+1
m+1 +

t∫

0

∥u′(τ)∥m+1
m+1dτ ≤ K, (3.3)

for all t ∈ [0, T ], for all n ∈ N.
Denote yn = un − u. Then, for all t ∈ [0, T ],

1
2
(
∥∇yn(t)∥2

2 + ∥y′n(t)∥2
2
)

+
t∫

0

∫

T3

(|u′
n|m−1u′

n − |u′|m−1u′)y′ndxdτ

= 1
2
(
∥∇yn(0)∥2

2 + ∥y′n(0)∥2
2
)

+
t∫

0

∫

T3

(|un|p−1un − |u|p−1u)y′ndxdτ. (3.4)

In fact, (3.4) can be established rigorously by employing the regularization procedure used in the proof of 
the energy identity in subsection 2.6.

Since

1
m + 1

(
∥yn(t)∥m+1

m+1 − ∥yn(0)∥m+1
m+1

)
=

t∫

0

∫

T3

|yn(τ)|m−1yn(τ)y′n(τ)dxdτ,
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then (3.4) can be written as

1
2
(
∥∇yn(t)∥2

2 + ∥y′n(t)∥2
2
)

+ 1
m + 1∥yn(t)∥m+1

m+1 +
t∫

0

∫

T3

(|u′
n|m−1u′

n − |u′|m−1u′)y′ndxdτ

= 1
2
(
∥∇yn(0)∥2

2 + ∥y′n(0)∥2
2
)

+ 1
m + 1∥yn(0)∥m+1

m+1

+
t∫

0

∫

T3

(|un|p−1un − |u|p−1u)y′ndxdτ +
t∫

0

∫

T3

|yn|m−1yny
′
ndxdτ. (3.5)

Note, there exists a constant c0 > 0 such that (|a|m−1a − |b|m−1b)(a − b) ≥ c0|a − b|m+1 for all a, b ∈ R. 
Then, since yn = un − u, we have

t∫

0

∫

T3

(|u′
n|m−1u′

n − |u′|m−1u′)y′ndxdτ ≥ c0

t∫

0

∫

T3

|y′n|m+1dxdτ. (3.6)

Also, by the Hölder’s inequality and Young’s inequality, one has

t∫

0

∫

T3

|yn|m−1yny
′
ndxdτ ≤ c0

t∫

0

∫

T3

|y′n|m+1dxdτ + C

t∫

0

∫

T3

|yn|m+1dxdτ. (3.7)

Applying (3.6)-(3.7) to equality (3.5) yields

1
2
(
∥∇yn(t)∥2

2 + ∥y′n(t)∥2
2
)

+ 1
m + 1∥yn(t)∥m+1

m+1

= 1
2
(
∥∇yn(0)∥2

2 + ∥y′n(0)∥2
2
)

+ 1
m + 1∥yn(0)∥m+1

m+1

+
t∫

0

∫

T3

(|un|p−1un − |u|p−1u)y′ndxdτ + C

t∫

0

∥yn(τ)∥m+1
m+1dτ. (3.8)

In the following, we estimate the integral 
∫ t
0
∫
T3(|un|p−1un − |u|p−1u)y′ndxdτ .

For 1 < p ≤ 3, by using Hölder’s inequality and the imbedding H1 ↪→ L6, we have

t∫

0

∫

T3

(|un|p−1un − |u|p−1u)y′ndxdτ ≤ C

t∫

0

∫

T3

|yn|(|un|p−1 + |u|p−1)|y′n|dxdτ

≤ C

t∫

0

∥yn∥6
(
∥un∥p−1

3(p−1) + ∥u∥p−1
3(p−1)

)
∥y′n∥2dτ ≤ C

t∫

0

∥yn∥6(∥un∥p−1
6 + ∥u∥p−1

6 )∥y′n∥2dτ

≤ C

t∫

0

(∥un∥p−1
H1 + ∥u∥p−1

H1 )(∥yn∥2
H1 + ∥y′n∥2

2)dτ ≤ C(K)
t∫

0

(∥yn∥2
H1 + ∥y′n∥2

2)dτ, (3.9)

for all t ∈ [0, T ] and n ∈ N, where the last inequality is owing to (3.3).
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Next we consider the “supercritical” case p > 3. Under such scenario, we apply integration by parts in 
time to convert y′n to yn in the integral 

∫ t
0
∫
T3(|un|p−1un− |u|p−1u)y′ndxdτ . This idea originates from [6] by 

Bociu and Lasiecka. Similar calculations have been performed in subsection 2.4.2 in the proof of existence 
of weak solutions. Indeed, |un|p−1un − |u|p−1u = (un − u)ξ = ynξ where |ξ| ≤ C(|un|p−1 + |u|p−1) and 
|ξ′| ≤ C(|un|p−2 + |u|p−2)(|u′

n| + |u′|). Hence, by using integration by parts, we obtain

t∫

0

∫

T3

(|un|p−1un − |u|p−1u)y′ndxdτ

=
t∫

0

∫

T3

ξyny
′
ndxdτ =

⎡

⎣1
2

∫

T3

ξy2
ndx

⎤

⎦
t

0

− 1
2

t∫

0

∫

T3

ξ′y2
ndxdτ

≤ C

∫

T3

(
|un(t)|p−1 + |u(t)|p−1) |yn(t)|2dx + C

∫

T3

(
|un(0)|p−1 + |u(0)|p−1) |yn(0)|2dx

+ C

t∫

0

∫

T3

(
|un|p−2 + |u|p−2) (|u′

n| + |u′|)y2
ndxdτ, for all t ∈ [0, T ]. (3.10)

We estimate each term on the right-hand side of (3.10) as follows.
From Remark 1.4, we know that Case I and Case II in the assumption of Theorem 1.3 can be combined 

as p ≤ min{2
3m + 5

3 , m}. Thus 3(p−1)
2 ≤ m + 1. Then, using Hölder’s inequality,

∫

T3

(|un(0)|p−1 + |u(0)|p−1)|yn(0)|2dx ≤
(
∥un(0)∥p−1

3(p−1)
2

+ ∥u(0)∥p−1
3(p−1)

2

)
∥yn(0)∥2

6

≤ C
(
∥un(0)∥p−1

m+1 + ∥u(0)∥p−1
m+1

)
∥yn(0)∥2

H1 ≤ C(K) ∥yn(0)∥2
H1 , (3.11)

due to (3.3).
Furthermore, since p ≤ 2

3m + 5
3 , then (p − 2) 3m+3

2m−1 ≤ m + 1. Therefore,

t∫

0

∫

T3

(|un|p−2 + |u|p−2)(|u′
n| + |u′|)y2

ndxdτ

≤ C

t∫

0

(
∥un∥p−2

(p−2) 3m+3
2m−1

+ ∥u∥p−2
(p−2) 3m+3

2m−1

) (
∥u′

n∥m+1 + ∥u′∥m+1
)
∥yn∥2

6 dτ

≤ C

t∫

0

(
∥un∥p−2

m+1 + ∥u∥p−2
m+1

) (
∥u′

n∥m+1 + ∥u′∥m+1
)
∥yn∥2

H1 dτ

≤ C(K)
t∫

0

(
∥u′

n∥m+1 + ∥u′∥m+1
)
∥yn∥2

H1 dτ, for all t ∈ [0, T ], (3.12)

where we use (3.3) to obtain the last inequality.
Finally, we consider 

∫
T3(|un(t)|p−1 + |u(t)|p−1)|yn(t)|2dx. We write out the estimate for 

∫
T3 |un(t)|p−1 ×

|yn(t)|2dx only. The estimate for 
∫
T3 |u(t)|p−1|yn(t)|2dx is similar. Notice
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∫

T3

|un(t)|p−1|yn(t)|2dx ≤ C

∫

T3

|un(t) − un(0)|p−1|yn(t)|2dx

+ C

∫

T3

|un(0) − u0|p−1|yn(t)|2dx + C

∫

T3

|u0|p−1|yn(t)|2dx. (3.13)

Since p ≤ 2
3m + 5

3 , then 3(p−1)
2(m+1) ≤ 1. Therefore,

∫

T3

|un(t) − un(0)|p−1|yn(t)|2dx =
∫

T3

∣∣∣∣∣∣

t∫

0

u′
n(τ)dτ

∣∣∣∣∣∣

p−1

|yn(t)|2dx

≤

⎛

⎜⎝
∫

T3

∣∣∣∣∣∣

t∫

0

u′
n(τ)dτ

∣∣∣∣∣∣

3(p−1)
2

dx

⎞

⎟⎠

2/3

∥yn(t)∥2
6

≤ Ct
m(p−1)
m+1

⎛

⎜⎝
∫

T3

⎛

⎝
t∫

0

|u′
n(τ)|m+1dτ

⎞

⎠

3(p−1)
2(m+1)

dx

⎞

⎟⎠

2/3

∥yn(t)∥2
H1

≤ Ct
m(p−1)
m+1

⎛

⎝
∫

T3

t∫

0

|u′
n(τ)|m+1dτdx

⎞

⎠
2/3

∥yn(t)∥2
H1 ≤ C(K)t

m(p−1)
m+1 ∥yn(t)∥2

H1 , (3.14)

for all t ∈ [0, T ], due to (3.3).
Next, we consider the integral 

∫
T3 |un(0) −u0|p−1|yn(t)|2dx. Recall un(0) = un

0 → u0 in Lm+1(T 3). Note, 
the assumption that p ≤ 2

3m + 5
3 implies 3(p−1)

2 ≤ m + 1. Then, by Hölder’s inequality, one has
∫

T3

|un(0) − u0|p−1|yn(t)|2dx =
∫

T3

|un
0 − u0|p−1|yn(t)|2dx ≤ ∥un

0 − u0∥p−1
3(p−1)

2
∥yn(t)∥2

6

≤ C∥un
0 − u0∥p−1

m+1∥yn(t)∥2
H1 ≤ ϵ∥yn(t)∥2

H1 , for all t ∈ [0, T ], (3.15)

for n sufficiently large.
It remains to estimate the integral 

∫
T3 |u0|p−1|yn(t)|2dx. We notice

∥yn(t)∥2
2 =

∫

T3

|yn(t)|2dx =
∫

T3

⎛

⎝
∣∣∣yn(0) +

t∫

0

y′n(τ)dτ
∣∣∣
2
⎞

⎠ dx

≤

⎛

⎝∥yn(0)∥2
2 + t

t∫

0

∥y′n(τ)∥2
2 dτ

⎞

⎠ , for all t ∈ [0, T ]. (3.16)

Recall 3(p−1)
2 ≤ m + 1. Then, since u0 ∈ Lm+1(T 3) ⊂ L

3(p−1)
2 (T 3), there exists a smooth periodic function 

ϕ such that ∥u0 −ϕ∥p−1
3(p−1)

2
≤ ϵ. Furthermore, since ϕ is smooth on T 3, there exists Cϵ > 0 with |ϕ(x)| ≤ Cϵ

for all x ∈ T 3. It follows that
∫

T3

|u0|p−1|yn(t)|2dx ≤ C

∫

T3

|u0 − ϕ|p−1|yn(t)|2dx + C

∫

T3

|ϕ|p−1|yn(t)|2dx
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≤ C∥u0 − ϕ∥p−1
3(p−1)

2
∥yn(t)∥2

6 + Cϵ∥yn(t)∥2
2

≤ Cϵ∥yn(t)∥2
H1 + Cϵ

⎛

⎝∥yn(0)∥2
2 + t

t∫

0

∥y′n(τ)∥2
2 dτ

⎞

⎠ , for all t ∈ [0, T ], (3.17)

by virtue of (3.16).
By substituting (3.14), (3.15) and (3.17) into (3.13), we obtain, for n sufficiently large,

∫

T3

|un(t)|p−1|yn(t)|2dx

≤
(
C(K)t

m(p−1)
m+1 + Cϵ

)
∥yn(t)∥2

H1 + Cϵ

⎛

⎝∥yn(0)∥2
2 + t

t∫

0

∥y′n(τ)∥2
2 dτ

⎞

⎠ , (3.18)

for all t ∈ [0, T ]. Using a similar calculation, 
∫
T3 |u(t)|p−1|yn(t)|2dx has the same bound as (3.18).

Now, applying the estimates (3.11), (3.12) and (3.18) to (3.10), it follows that

t∫

0

∫

T3

(|un|p−1un − |u|p−1u)y′ndxdτ ≤ C(K, ϵ)∥yn(0)∥2
H1 +

(
C(K)t

m(p−1)
m+1 + Cϵ

)
∥yn(t)∥2

H1

+ C(K)
t∫

0

(
∥u′

n(τ)∥m+1 + ∥u′(τ)∥m+1
)
∥yn(τ)∥2

H1dτ + Cϵt

t∫

0

∥y′n(τ)∥2
2dτ, (3.19)

for all t ∈ [0, T ] and for sufficiently large n, provided p > 3.
We have finished estimating the integral 

∫ t
0
∫
T3(|un|p−1un − |u|p−1u)y′ndxdτ for both of the subcritical 

case (1 ≤ p ≤ 3) and the supercritical case (p > 3). Then, since ∥yn∥2
H1 = ∥∇yn∥2

2 + ∥yn∥2
2, and using 

estimate (3.9), (3.16) and (3.19), we obtain from (3.8) that

1
2
(
∥yn(t)∥2

H1 + ∥y′n(t)∥2
2
)

+ 1
m + 1∥yn(t)∥m+1

m+1

≤ C(K, ϵ)∥yn(0)∥2
H1 + 1

2∥y
′
n(0)∥2

2 + 1
m + 1∥yn(0)∥m+1

m+1 +
(
C(K)t

m(p−1)
m+1 + Cϵ

)
∥yn(t)∥2

H1

+ C(K)
t∫

0

(
∥u′

n(τ)∥m+1 + ∥u′(τ)∥m+1 + 1
)
∥yn(τ)∥2

H1dτ

+ C(T,K, ϵ)
t∫

0

∥y′n(τ)∥2
2dτ + C

t∫

0

∥yn(τ)∥m+1
m+1dτ, (3.20)

for all t ∈ [0, T ].
Then, by choosing T0 ∈ (0, T ] and ϵ > 0 sufficiently small such that C(K)T

m(p−1)
m+1

0 + Cϵ ≤ 1
4 , we obtain 

from (3.20) that, for all t ∈ [0, T0],

1
4
(
∥yn(t)∥2

H1 + ∥y′n(t)∥2
2
)

+ 1
m + 1∥yn(t)∥m+1

m+1

≤ C(K, ϵ)∥yn(0)∥2
H1 + 1

2∥y
′
n(0)∥2

2 + 1
m + 1∥yn(0)∥m+1

m+1
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+ C(K)
t∫

0

(
∥u′

n(τ)∥m+1 + ∥u′(τ)∥m+1 + 1
)
∥yn(τ)∥2

H1dτ

+ C(T,K, ϵ)
t∫

0

∥y′n(τ)∥2
2dτ + C

t∫

0

∥yn(τ)∥m+1
m+1dτ. (3.21)

By virtue of (3.3), we can apply the Grönwall’s inequality to (3.21) to conclude

∥yn(t)∥2
H1 + ∥y′n(t)∥2

2 + ∥yn(t)∥m+1
m+1

≤ C(K,T, ϵ)
(
∥yn(0)∥2

H1 + ∥y′n(0)∥2
2 + ∥yn(0)∥m+1

m+1
)
, for all t ∈ [0, T0]. (3.22)

Since

lim
n→∞

(∥yn(0)∥2
H1 + ∥y′n(0)∥2

2 + ∥yn(0)∥m+1
m+1) = lim

n→∞
(∥un

0 − u0∥2
H1 + ∥un

1 − u1∥2
2 + ∥un

0 − u0∥m+1
m+1) = 0,

then (3.22) implies that limn→∞

[
supt∈[0,T0]

(
∥yn(t)∥2

H1 + ∥y′n(t)∥2
2 + ∥yn(t)∥m+1

m+1
)]

= 0. By iterating the 
above procedure for finitely many times, we obtain

lim
n→∞

[
sup

t∈[0,T ]

(
∥yn(t)∥2

H1 + ∥y′n(t)∥2
2 + ∥yn(t)∥m+1

m+1
)
]

= 0.

This completes the proof for the continuous dependence on initial data as well as the uniqueness of weak 
solutions.
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