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Abstract

We investigate a hyperbolic PDE, modeling wave propagation in viscoelastic media, under the influence 
of a linear memory term of Boltzmann type, and a nonlinear damping modeling friction, as well as an 
energy-amplifying supercritical nonlinear source:

{
utt − k(0)�u − ∫∞

0 k′(s)�u(t − s)ds + |ut |m−1ut = |u|p−1u, in � × (0, T ),

u(x, t) = u0(x, t), in � × (−∞,0],

where � is a bounded domain in R3 with a Dirichlét boundary condition. The relaxation kernel k is mono-
tone decreasing and k(∞) = 1. We study blow-up of solutions when the source is stronger than dissipations, 
i.e., p > max{m, 

√
k(0) }, under two different scenarios: first, the total energy is negative, and the second, 

the total energy is positive with sufficiently large quadratic energy. This manuscript is a follow-up work of 
the paper [30] in which Hadamard well-posedness of this equation has been established in the finite energy 
space. The model under consideration features a supercritical source and a linear memory that accounts 
for the full past history as time goes to −∞, which is distinct from other relevant models studied in the 
literature which usually involve subcritical sources and a finite-time memory.
© 2016 Elsevier Inc. All rights reserved.

* Corresponding author.
E-mail addresses: yanqiu.guo@fiu.edu (Y. Guo), mrammaha1@unl.edu (M.A. Rammaha), 

sakuntasathien_s@silpakorn.edu (S. Sakuntasathien).
http://dx.doi.org/10.1016/j.jde.2016.10.037
0022-0396/© 2016 Elsevier Inc. All rights reserved.

http://www.sciencedirect.com
http://dx.doi.org/10.1016/j.jde.2016.10.037
http://www.elsevier.com/locate/jde
mailto:yanqiu.guo@fiu.edu
mailto:mrammaha1@unl.edu
mailto:sakuntasathien_s@silpakorn.edu
http://dx.doi.org/10.1016/j.jde.2016.10.037
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jde.2016.10.037&domain=pdf


Y. Guo et al. / J. Differential Equations 262 (2017) 1956–1979 1957
MSC: 35L10; 35L20; 35L70; 35B44

Keywords: Viscoelasticity; Memory; Integro-differential; Damping; Source; Blow-up

1. Introduction

1.1. The model and literature overview

Viscoelastic materials demonstrate properties between those of elastic materials and viscous 
fluid. In the nineteenth century, Boltzmann [14] realized that the behavior of these materials 
should be modeled through constitutive relations that involve long but fading memory. In par-
ticular, Boltzmann initiated the classical linear theory of viscoelasticity. As a consequence of 
the widespread use of polymers and other modern materials which exhibit stress relaxation, the 
theory of viscoelasticity has provided important applications in materials science and engineer-
ing. Please see [19] (and references therein) for the fundamental modeling development of linear 
viscoelasticity. We also refer the reader to the monographs [25,49] for surveys regarding the 
mathematical aspect of the theory of viscoelasticity. In addition, the literature is quite rich in 
various results on well-posedness and asymptotic stability of hyperbolic PDEs and conservation 
laws with memory terms of Boltzmann type, see for instance [17,18,20–24,26,29,34,39] and the 
references therein.

In this manuscript, we investigate the following nonlinear hyperbolic equation of viscoelas-
ticity:

⎧⎪⎨
⎪⎩

utt − k(0)�u − ∫∞
0 k′(s)�u(t − s)ds + |ut |m−1ut = |u|p−1u, in � × (0, T )

u(x, t) = 0, on � × (−∞, T )

u(x, t) = u0(x, t), in � × (−∞,0],
(1.1)

where the unknown u(x, t) is an R-valued function defined on � × (−∞, T ), and � ⊂ R
3 is 

a bounded domain (open and connected) with smooth boundary �. Our results extend easily to 
bounded domains in Rn, by accounting for the corresponding Sobolev embedding, and accord-
ingly adjusting the conditions imposed on the parameters. The system (1.1) models the wave 
propagation in viscoelastic material under the influence of frictional type of damping as well 
as energy-amplifying sources. Here, |ut |m−1ut (m ≥ 1) represents a nonlinear damping which 
dissipates energy and drives the system toward stability, while |u|p−1u (1 ≤ p < 6) represents 
a nonlinear source of supercritical growth rate which models an external force that amplifies 
energy and drives the system to possible instability. The memory integral 

∫∞
0 k′(s)�u(t − s)ds

of the Boltzmann type quantifies the viscous resistance and provides a weak form of energy dis-
sipation by assuming that the relaxation kernel satisfies: k′(s) < 0 for all s > 0 and k(∞) = 1. 
It also accounts for the full past history as time goes to −∞, as opposed to the finite-memory 
models where the history is taken only over the interval [0, t].

Nonlinear wave equations under the influence of damping and sources have been attracting 
considerable attention in the research field of analysis of nonlinear PDEs. In [28], Georgiev and 
Todorova considered a nonlinear wave equation with damping and sources:

utt − �u + |ut |m−1ut = |u|p−1u, in � × (0, T ), (1.2)
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under a Dirichlét boundary condition, where 1 < p ≤ 3 in 3D. They showed that equation (1.2) is 
globally well-posed in the finite energy space H 1

0 (�) ×L2(�) in the case 1 < p ≤ m. In addition, 
a blow-up result was obtained in [28] provided the initial energy is sufficiently negative and 
1 < m < p. The related wave equations with nonlinear boundary damping–source interactions 
have been studied in [52] by Vitillaro, and in [16] by Cavalcanti, Domingos Cavalcanti and 
Lasiecka. Also we would like to mention the work [6–8] by Barbu, Lasiecka and Rammaha, 
where they investigated wave equations with degenerate damping and source terms, where the 
prototype equation of this class is

utt − �u + |u|k|ut |m−1ut = |u|p−1u, in � × (0, T ), (1.3)

with u = 0 on the boundary. In (1.3) the degenerate damping |u|k|ut |m−1ut models friction mod-
ulated by strain. Well-posedness of various types of solutions, such as generalized solutions, 
weak solutions and strong solutions, to the system (1.3) has been established with certain as-
sumptions on parameters k, m, p, and moreover, solutions are global if p ≤ k + m, and blow 
up if p > k + m and initial energy is negative (see [6–8]). We also refer the reader to the pa-
pers [44,45] for a study of a system of wave equations with coupled degenerate damping and 
coupled nonlinear sources. For more works on nonlinear wave and hyperbolic equations with 
damping–source interactions, we mention [1–3,15,27,36,37,35,40,41,43,46] and the references 
therein.

Our work in this article follows the recent trend in studying nonlinear wave equations with 
supercritical sources. We say a typical source term |u|p−1u is supercritical if 3 < p < 6 (in 
3D), and under such scenario, the mapping u 	→ |u|p−1u is not a locally Lipschitz mapping from 
H 1

0 (�) into L2(�), and therefore, the classical fixed-point technique used in [28] is not directly 
applicable to establish the well-posedness in finite energy space. A breakthrough was made in a 
series of papers [9–11] by Bociu and Lasiecka in studying a nonlinear wave equation with damp-
ing and supercritical sources acting in the interior of the domain and on the boundary, where 
a delicate analysis within the framework of the theory of semi-groups and monotone operators 
[4,50] was used to establish local well-posedness of weak solutions. Please refer to the papers [5,
12,13,31–33,42,47,48] for more work on various hyperbolic PDEs under the influence of super-
critical nonlinearities. In particular, the local well-posedness of the viscoelastic wave equation 
(1.1) with supercritical sources and damping was established in [30] by adopting the approach 
from [11,31], and in addition, the extension to global solutions was studied in the case that the 
damping dominates the source. This manuscript is a follow-up work of [30], and we investigate 
the conditions under which the system (1.1) blows up in finite time. We note here that equation 
(1.1) is equipped with two types of dissipation: the linear memory − 

∫∞
0 k′(s)�u(t − s)ds with 

k′(s) < 0 as well as the frictional damping |ut |m−1ut , but only one source term |u|p−1u, there-
fore, it would be quite interesting to explore the mechanism of how the source surpasses the two 
dissipations leading to a blow-up of the system.

We would like to emphasize that our study of the blow-up of (1.1) is under two different 
situations: negative initial energy as well as the positive initial energy. Also, it is important to 
notice that, in our model (1.1), the source is supercritical and the linear memory accounts for 
the full past history as time goes to −∞, which is distinct from other relevant models studied in 
the literature which usually consider only subcritical sources (1 ≤ p ≤ 3 in 3D) and a finite-time 
memory. In the proof of our results, we carefully justify all the formal calculations, and so our 
work is fully rigorous. As a matter of fact, the analysis is quite involved and subtle, and in 
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particular in the case of positive initial energy, due to the presence of the memory term in the 
equation, it is nontrivial to find an assumption on the upper bound of the initial energy.

1.2. Review of well-posedness results in [30]

In this subsection, we shall review the well-posedness results for (1.1) obtained in our previous 
paper [30] coauthored with Titi and Toundykov. Throughout the paper, we use the notation

R
+ = [0,∞) and R

− = (−∞,0].

For the purpose of defining the proper function space for the initial data, we set

μ(s) = −k′(s).

Thus μ : R+ −→ R
+, and in Assumption 1.1 below precise assumptions on μ will be imposed. 

We assume that the initial datum is a function u0(x, t) defined for negative times t ∈ R
− and in 

particular u0(x, t) : � ×R
− → R belongs to a weighted Hilbert space L2

μ(R−, H 1
0 (�)), i.e.,

‖u0‖2
L2

μ(R−,H 1
0 (�))

=
∞∫

0

∫
�

|∇u0(x,−t)|2dxμ(t)dt < ∞,

and ∂tu0 ∈ L2
μ(R−, L2(�)), that is,

‖∂tu0‖2
L2

μ(R−,L2(�))
=

∞∫
0

∫
�

|∂tu0(x,−t)|2dxμ(t)dt < ∞.

Also, the standard Ls(�)-norm will be denoted by:

‖u‖s = ‖u‖Ls(�) .

The following assumptions will be imposed throughout the manuscript.

Assumption 1.1.

• m ≥ 1, 1 ≤ p < 6, p m+1
m

< 6;
• k ∈ C2(R+) such that k′(s) < 0 for all s > 0 and k(∞) = 1;
• μ(s) = −k′(s) such that μ ∈ C1(R+) ∩L1(R+) and μ′(s) ≤ 0 for all s > 0, and μ(∞) = 0;
• u0(x, t) ∈ L2

μ(R−, H 1
0 (�)), ∂tu0(x, t) ∈ L2

μ(R−, L2(�)) such that u0 : R− → H 1
0 (�) and 

∂tu0(x, t) : R− → L2(�) are weakly continuous at t = 0. In addition, for all t ≤ 0, 
u0(x, t) = 0 on �.

We begin with giving the definition of a weak solution of (1.1).
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Definition 1.2. A function u(x, t) is said to be a weak solution of (1.1) defined on the time interval 
(−∞, T ] provided u ∈ C([0, T ]; H 1

0 (�)) such that ut ∈ C([0, T ]; L2(�)) ∩ Lm+1(� × (0, T ))

with:

• u(x, t) = u0(x, t) ∈ L2
μ(R−, H 1

0 (�)) for t ≤ 0;
• The following variational identity holds for all t ∈ [0, T ] and all test functions φ ∈ F :

∫
�

ut (t)φ(t)dx −
∫
�

ut (0)φ(0)dx −
t∫

0

∫
�

ut (τ )φt (τ )dxdτ

+ k(0)

t∫
0

∫
�

∇u(τ) · ∇φ(τ)dxdτ +
t∫

0

∞∫
0

∫
�

∇u(τ − s) · ∇φ(τ)dxk′(s)dsdτ

+
t∫

0

∫
�

|ut (τ )|m−1ut (τ )φ(τ)dxdτ =
t∫

0

∫
�

|u(τ)|p−1u(τ)φ(τ)dxdτ, (1.4)

where

F =
{
φ : φ ∈ C([0, T ];H 1

0 (�)) ∩ Lm+1(� × (0, T )) with φt ∈ C([0, T ];L2(�))
}
.

For the reader’s convenience we summarize the main results obtained in [30] which are rele-
vant to the work in this paper.

Theorem 1.3 (Short-time existence and uniqueness [30]). Assume the validity of the Assump-
tion 1.1, then there exists a local (in time) weak solution u to (1.1) defined on the time interval 
(−∞, T ] for some T > 0 depending on the initial quadratic energy E (0). Furthermore, the fol-
lowing energy identity holds:

E (t) +
t∫

0

∫
�

|ut |m+1dxdτ − 1

2

t∫
0

∞∫
0

‖∇w(τ, s)‖2
2 μ′(s)dsdτ

= E (0) +
t∫

0

∫
�

|u|p−1uutdxdτ, (1.5)

where the history function w(x, τ, s) and the quadratic energy E (t) are respectively defined by:

{
w(x, τ, s) = u(x, τ ) − u(x, τ − s),

E (t) = 1
2

(‖ut (t)‖2
2 + ‖∇u(t)‖2

2 + ∫∞
0 ‖∇w(t, s)‖2

2 μ(s)ds
)
.

(1.6)

If in addition we assume u0(0) ∈ L
3(p−1)

2 (�), then weak solutions of (1.1) are unique.
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Remark 1.4. If we assume that u(t) ∈ Lp+1(�) for t belonging to the lifespan (−∞, T ] of the 
local solution (or instead assume p ≤ 5), then the total energy E(t) of the system (1.1) is defined 
by

E(t) = E (t) − 1

p + 1
‖u(t)‖p+1

p+1

= 1

2

⎛
⎝‖ut (t)‖2

2 + ‖∇u(t)‖2
2 +

∞∫
0

‖∇w(t, s)‖2
2 μ(s)ds

⎞
⎠− 1

p + 1
‖u(t)‖p+1

p+1. (1.7)

It is readily seen that, in terms of the total energy E(t), the energy identity (1.5) can be written 
as

E(t) +
t∫

0

∫
�

|ut |m+1dxdτ − 1

2

t∫
0

∞∫
0

‖∇w(τ, s)‖2
2 μ′(s)dsdτ = E(0). (1.8)

The next result states that weak solutions of (1.1) depend continuously on the initial data.

Theorem 1.5 (Continuous dependence on initial data [30]). In addition to the Assumption 1.1, 

assume that u0(0) ∈ L
3(p−1)

2 (�). If un
0 ∈ L2

μ(R−, H 1
0 (�)) is a sequence of initial data such that 

un
0 −→ u0 in L2

μ(R−, H 1
0 (�)) with un

0(0) −→ u0(0) in H 1
0 (�) and in L

3(p−1)
2 (�), d

dt
un

0(0) −→
d
dt

u0(0) in L2(�), then the corresponding weak solutions un and u of (1.1) satisfy

un −→ u in C([0, T ];H 1
0 (�)) and (un)t −→ ut in C([0, T ];L2(�)).

The following result states: if the damping dominates the source term, then the solution is 
global.

Theorem 1.6 (Global existence [30]). In addition to Assumption 1.1, further assume u0(0) ∈
Lp+1(�). If m ≥ p, then the weak solution of (1.1) is global.

1.3. Main results

The main results of the paper consist of two theorems concerning the finite-time blow-up of 
the system (1.1). We prove these results for negative and positive initial energy when the source 
term is more dominant than the frictional damping as well as the dissipation from the delay.

Our first blow-up result deals with the case when the initial total energy E(0) is negative. 
Specifically, we have the following theorem.

Theorem 1.7 (Blow-up of solutions with negative initial energy). Assume the validity of the 
Assumption 1.1 and E(0) < 0. If p > max{m, 

√
k(0) }, then the weak solution u of (1.1) blows 

up in finite time. More precisely, lim supt→T −
max

‖∇u(t)‖2 = ∞, for some Tmax ∈ (0, ∞).
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Remark 1.8. Although the well-posedness results, Theorems 1.3 and 1.5, allow the growth rate 
p of the source term to take any value in [1, 6), nevertheless the assumptions in Theorem 1.7
force the restriction p < 5. Indeed, if we combine the assumptions p > m and p m+1

m
< 6 from 

Assumption 1.1, we find that 6 > p(1 + 1
m

) > p(1 + 1
p
) = p + 1, which implies that p < 5.

Our second blow-up result is concerned with the case that the initial total energy is non-
negative. For a given p ∈ (1, 5], let γ > 0 be the best constant for the Sobolev inequality 
‖u‖p+1 ≤ γ ‖∇u‖2 for all u ∈ H 1

0 (�), i.e.,

γ −1 = inf
{
‖∇u‖2 : u ∈ H 1

0 (�),‖u‖p+1 = 1
}

. (1.9)

Then, we have the following result.

Theorem 1.9 (Blow-up of solutions with positive initial energy). In addition to the validity of 
the Assumption 1.1, we assume that p > max{m, 

√
k(0) }. Further assume that E (0) > y0 :=

1
2γ

− 2(p+1)
p−1 and

0 ≤ E(0) < M := (
√

k(0) + 1)
2

p−1 (2γ 2)
− p+1

p−1

(
p − √

k(0)

p + 1

)
. (1.10)

Then, the weak solution u of the system (1.1) blows up in finite time. More precisely, 
lim supt→T −

max
‖∇u(t)‖2 = ∞, for some Tmax ∈ (0, ∞).

The remainder of the manuscript is organized as follows. Section 2 is devoted to the proof of 
Theorem 1.7, where we show blow-up of the weak solution to (1.1) when the initial total energy is 
negative and the source dominates the frictional damping and the dissipation due to the memory 
term. In Section 3, we present the proof of Theorem 1.9 which contains a finite-time blow-up 
result in the case of positive initial total energy and with sufficiently large quadratic energy.

2. Proof of Theorem 1.7

This section is devoted to proving the blow-up of weak solutions to the viscoelastic wave 
equation (1.1) when the total energy is negative. In particular, we shall present a rigorous proof 
of Theorem 1.7, which states that, if the initial energy E(0) is negative and the source dominates 
dissipation in the system, i.e., p > max{m, 

√
k(0) }, then the weak solution of (1.1) blows up in 

finite time.

Proof. Let u be a weak solution of the system (1.1) in the sense of Definition 1.2. We define the 
life span Tmax of the solution u to be the supremum of all T > 0 such that u is a solution of (1.1)
on (−∞, T ]. We aim to show that Tmax is necessarily finite, that is, u blows up in finite time.

The main idea of the proof is due to [28] (see also [35,36]). One major contribution of the 
paper [28] was the choice of a special Liapunov’s function for the purpose of proving the blow-up 
result. Indeed, we put G(t) = −E(t) and N(t) = 1

2‖u(t)‖2
2. We aim to show

Y(t) = G(t)1−α + εN ′(t) (2.1)

blows up in finite time, for some α ∈ (0, 1) and ε > 0, which will be selected later.
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We calculate

Y ′(t) = (1 − α)G(t)−αG′(t) + εN ′′(t).

By the definition of weak solutions, i.e., Definition 1.2, we find the regularity of weak solutions: 
u ∈ C([0, T ]; H 1

0 (�)) such that ut ∈ C([0, T ]; L2(�)) ∩ Lm+1(� × (0, T )) for 0 < T < Tmax . 
Clearly one has

N ′(t) =
∫
�

uutdx.

Also, formally we have N ′′(t) = d
dt

∫
�

uutdx = ‖ut‖2
2 + ∫

�
uuttdx. However, because of the 

lack of the regularity of utt , such formal calculation is not legitimate. In order to bypass this 
obstacle, we resort to the variational identity (1.4) and we would like to use u as a test function 
in place of φ in (1.4) in order to obtain an identity for N ′(t). To proceed in this direction, we 
shall check whether u belongs to the admissible set F of test functions φ. By the regularities 
of weak solutions, we know that u ∈ C([0, T ]; H 1

0 (�)) and ut ∈ C([0, T ]; L2(�)) for 0 < T <

Tmax, and this immediately implies that u ∈ Lm+1(� × (0, T )) since H 1
0 (�) ↪→ Lm+1(�) due 

to m < p < 5 by Remark 1.8. Hence, the solution u enjoys the regularity restrictions imposed 
on the test functions in F , as stated in Definition 1.2. As a result, we may replace φ by u in the 
variational identity (1.4) to obtain

N ′(t) =
∫
�

ut (0)u(0)dx +
t∫

0

‖ut (τ )‖2
2dτ

− k(0)

t∫
0

‖∇u(τ)‖2
2dτ −

t∫
0

∞∫
0

∫
�

∇u(τ − s) · ∇u(τ)dxk′(s)dsdτ

−
t∫

0

∫
�

|ut (τ )|m−1ut (τ )u(τ )dxdτ +
t∫

0

‖u(τ)‖p+1
p+1dτ

=
∫
�

ut (0)u(0)dx +
t∫

0

‖ut (τ )‖2
2dτ

−
t∫

0

‖∇u(τ)‖2
2dτ +

t∫
0

∞∫
0

∫
�

∇w(τ, s) · ∇u(τ)dxk′(s)dsdτ

−
t∫

0

∫
�

|ut (τ )|m−1ut (τ )u(τ )dxdτ +
t∫

0

‖u(τ)‖p+1
p+1dτ, (2.2)

for all t ∈ [0, Tmax), where we have used w(x, t, s) = u(x, t) −u(t − s) as well as the assumption 
k(∞) = 1.
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In order to differentiate N ′(t), we shall verify that N ′(t) is absolutely continuous on 
any closed subsegment of [0, Tmax). By the assumptions k′(s) < 0, μ(s) = −k′(s) > 0 and 
k(∞) = 1, one has

t∫
0

∣∣∣∣∣∣
∞∫

0

∫
�

∇w(τ, s) · ∇u(τ)dxk′(s)ds

∣∣∣∣∣∣dτ

≤
t∫

0

∞∫
0

‖∇w(τ, s)‖2
2μ(s)dsdτ −

t∫
0

∞∫
0

‖∇u(τ)‖2
2k

′(s)dsdτ

≤ 2

t∫
0

E (τ )dτ + (k(0) − 1)

t∫
0

‖∇u(τ)‖2
2dτ < ∞, (2.3)

for all t ∈ [0, Tmax), where we have used the fact that u ∈ C([0, t]; H 1
0 (�)) and E (t) is continu-

ous due to the energy identity (1.5). Also, by Hölder’s and Young’s inequalities, one has

t∫
0

∣∣∣∣∣∣
∫
�

|ut (τ )|m−1ut (τ )u(τ )dx

∣∣∣∣∣∣dτ ≤
t∫

0

‖ut‖m
m+1‖u‖m+1dτ

≤ C

t∫
0

‖ut‖m+1
m+1dτ + C

t∫
0

‖u‖m+1
m+1dτ < ∞,

for all t ∈ [0, Tmax), since ut ∈ Lm+1(� × (0, t)) and u ∈ C([0, t]; H 1
0 (�)) as well as the em-

bedding H 1(�) ↪→ Lm+1(�) due to the fact m < p < 5 from Remark 1.8. Therefore, N ′(t) is 
absolutely continuous on any closed subsegment of [0, Tmax). Thus, we may differentiate again 
in (2.2) to obtain:

N ′′(t) = ‖ut‖2
2 − ‖∇u‖2

2 +
∞∫

0

k′(s)
∫
�

∇u(t) · ∇w(t, s)dxds

−
∫
�

|ut |m−1utudx + ‖u‖p+1
p+1, for all t ∈ [0, Tmax). (2.4)

The next step is to find an appropriate lower bound of right-hand side of (2.4). Indeed, by 
using the Cauchy–Schwarz and Young’s inequalities, and the assumption μ(s) = −k′(s) > 0, 
one has

∣∣∣∣∣∣
∞∫

k′(s)
∫

∇u(t) · ∇w(t, s)dxds

∣∣∣∣∣∣

0 �
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≤
∞∫

0

(−k′(s))
(

1

4δ
‖∇u(t)‖2

2 + δ‖∇w(t, s)‖2
2

)
ds

≤ k(0) − 1

4δ
‖∇u‖2

2 + δ

∞∫
0

‖∇w(t, s)‖2
2μ(s)ds, (2.5)

for some δ > 0 whose value will be selected later. Also, by applying Hölder’s and Young’s 
inequalities, and using the assumption that the source is stronger than the damping, i.e., p > m, 
we obtain

∣∣∣∣∣∣
∫
�

u|ut |m−1utdx

∣∣∣∣∣∣≤
∫
�

|u||ut |mdx ≤ ‖u‖m+1‖ut‖m
m+1 ≤ C‖u‖p+1‖ut‖m

m+1. (2.6)

Since G(t) = −E(t) and μ′(s) ≤ 0, (1.8) implies

G′(t) = ‖ut‖m+1
m+1 − 1

2

∞∫
0

‖∇w(t, s)‖2
2 μ′(s)ds ≥ ‖ut‖m+1

m+1 ≥ 0. (2.7)

Thus, G(t) is nondecreasing for t ∈ [0, Tmax). Moreover, by (1.7),

G(t) = −E(t) = −E (t) + 1

p + 1
‖u(t)‖p+1

p+1 ≤ 1

p + 1
‖u(t)‖p+1

p+1. (2.8)

Now, by applying (2.8) to inequality (2.6) and invoking the assumption p > m, we deduce 
that

∣∣∣∣∣∣
∫
�

u|ut |m−1utdx

∣∣∣∣∣∣≤ C‖u‖1− p+1
m+1

p+1

(
‖u‖

p+1
m+1
p+1‖ut‖m

m+1

)

≤ CG(t)
1

p+1 − 1
m+1

(
‖u‖

p+1
m+1
p+1‖ut‖m

m+1

)

≤ λG(t)
1

p+1 − 1
m+1 ‖u‖p+1

p+1 + CλG(t)
1

p+1 − 1
m+1 ‖ut‖m+1

m+1, (2.9)

where we have used the Young’s inequality and the value of the positive number λ will be deter-
mined later. By selecting

0 < α <
1

m + 1
− 1

p + 1

and using (2.7), we obtain
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∣∣∣∣∣∣
∫
�

u|ut |m−1utdx

∣∣∣∣∣∣≤ λG(t)
1

p+1 − 1
m+1 ‖u‖p+1

p+1 + CλG(t)
1

p+1 − 1
m+1 +α

G(t)−α‖ut‖m+1
m+1

≤ λG(0)
1

p+1 − 1
m+1 ‖u‖p+1

p+1 + CλG(0)
1

p+1 − 1
m+1 +α

G(t)−αG′(t). (2.10)

By employing (2.5) and (2.10), we obtain from (2.4) that

N ′′(t) ≥ ‖ut‖2
2 −

(
k(0) − 1

4δ
+ 1

)
‖∇u‖2

2 − δ

∞∫
0

‖∇w(t, s)‖2
2 μ(s)ds

+ (1 − λG(0)
1

p+1 − 1
m+1 )‖u‖p+1

p+1 − CλG(0)
1

p+1 − 1
m+1 +α

G(t)−αG′(t), (2.11)

for t ∈ [0, Tmax). Since G(t) = −E(t), we obtain from (1.7) that

∞∫
0

‖∇w(t, s)‖2
2 μ(s)ds = −2G(t) − ‖ut (t)‖2

2 − ‖∇u‖2
2 + 2

p + 1
‖u(t)‖p+1

p+1. (2.12)

By substituting (2.12) into (2.11), one has

N ′′(t) ≥ (1 + δ)‖ut‖2
2 + 2δG(t) +

(
δ − k(0) − 1

4δ
− 1

)
‖∇u‖2

2

+
(

1 − 2δ

p + 1
− λG(0)

1
p+1 − 1

m+1

)
‖u‖p+1

p+1 − CλG(0)
1

p+1 − 1
m+1 +α

G(t)−αG′(t), (2.13)

for t ∈ [0, Tmax). We intend to select δ > 0 such that

δ − k(0) − 1

4δ
− 1 ≥ 0 and 1 − 2δ

p + 1
> 0.

These two restrictions imply that

√
k(0) + 1

2
≤ δ <

p + 1

2
,

which is valid since p >
√

k(0) by the assumption of the theorem. In the following we choose

δ =
√

k(0) + 1

2
,

and select λ > 0 such that

λG(0)
1

p+1 − 1
m+1 = 1

2
− δ

p + 1
= p − √

k(0)

2(p + 1)
,

then inequality (2.13) can be reduced to
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N ′′(t) ≥ 1

2

(√
k(0) + 3

)
‖ut‖2

2 +
(√

k(0) + 1
)

G(t)

+ p − √
k(0)

2(p + 1)
‖u‖p+1

p+1 − CλG(0)
1

p+1 − 1
m+1 +α

G(t)−αG′(t),

for all t ∈ [0, Tmax). Now, since Y ′(t) = (1 − α)G(t)−αG′(t) + εN ′′(t), if we select ε > 0 small 
enough so that

εCλG(0)
1

p+1 − 1
m+1 +α ≤ 1 − α,

then one has

Y ′(t) ≥ ε

2

(√
k(0) + 3

)
‖ut‖2

2 + ε
(√

k(0) + 1
)

G(t) + ε
[
p − √

k(0)
]

2(p + 1)
‖u‖p+1

p+1, (2.14)

for t ∈ [0, Tmax).
Recall that G(0) = −E(0) > 0, and since G(t) is nondecreasing by (2.7), it follows that 

G(t) > 0 for t ∈ [0, Tmax). Thanks to (2.14), we have Y ′(t) > 0, i.e., Y(t) is monotone increasing 
for t ∈ [0, Tmax). Note that Y(0) = G(0)1−α + εN ′(0). In case N ′(0) < 0, in order to make sure 
that Y(0) > 0, we shall impose an extra restriction on ε:

0 < ε ≤ −G(0)1−α

2N ′(0)
.

As a result,

Y(t) ≥ Y(0) ≥ 1

2
G(0)1−α > 0 for all t ∈ [0, Tmax). (2.15)

Recall the assumption p > m ≥ 1 and our choice of α, namely, 0 < α < 1
m+1 − 1

p+1 . Thus, 

α < 1
2 , and in particular, 1 < 1

1−α
< 2. We aim to show that

Y ′(t) ≥ ε1+σ C(k(0),p)Y (t)
1

1−α , for t ∈ [0, Tmax), (2.16)

where σ = 1 − 2
(1−2α)(p+1)

. If (2.16) is valid, then we will have Y(t) blows up in finite time, due 

to the fact that Y(0) > 0 and 1
1−α

> 1.

Since Y(t) = G(t)1−α + εN ′(t), if we let ε ≤ 1, it follows that

Y(t)
1

1−α ≤ C
(
G(t) + |N ′(t)| 1

1−α

)
, for t ∈ [0, Tmax). (2.17)

Since N ′(t) = ∫
�

uutdx, then by the Cauchy–Schwarz and Young’s inequalities, we have

|N ′(t)| 1
1−α ≤ ‖ut‖

1
1−α

2 ‖u‖
1

1−α

2 ≤ C‖ut‖
1

1−α

2 ‖u‖
1

1−α

p+1 ≤ C

(
‖ut‖2

2 + ‖u‖
2

1−2α

p+1

)
. (2.18)

Notice that
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‖u‖
2

1−2α

p+1 =
(
‖u‖p+1

p+1

) 2
(1−2α)(p+1) =

(
‖u‖p+1

p+1

) 2
(1−2α)(p+1)

−1 ‖u‖p+1
p+1. (2.19)

Now we impose an extra restriction on α:

0 < α <
p − 1

2(p + 1)
,

then σ = 1 − 2
(1−2α)(p+1)

> 0. By virtue of (2.8) and the fact that G(t) is nondecreasing for 
t ∈ [0, Tmax), and letting 0 < ε ≤ G(0), it follows from (2.19) that

‖u‖
2

1−2α

p+1 =
(
‖u‖p+1

p+1

)−σ ‖u‖p+1
p+1 ≤ CG(t)−σ ‖u‖p+1

p+1 ≤ CG(0)−σ ‖u‖p+1
p+1 ≤ Cε−σ ‖u‖p+1

p+1.

By substituting the above inequality into (2.18), one has

|N ′(t)| 1
1−α ≤ C

(
‖ut‖2

2 + ε−σ ‖u‖p+1
p+1

)
, for t ∈ [0, Tmax). (2.20)

Since ε ≤ 1 and σ > 0, then

|N ′(t)| 1
1−α ≤ Cε−σ

(
‖ut‖2

2 + ‖u‖p+1
p+1

)
, for t ∈ [0, Tmax),

and along with (2.17), it follows that

Y(t)
1

1−α ≤ Cε−σ
(
G(t) + ‖ut‖2

2 + ‖u‖p+1
p+1

)
, for t ∈ [0, Tmax). (2.21)

By virtue of (2.14) and (2.21), we obtain the desired inequality (2.16), which implies that Tmax

is necessarily finite, i.e., the system (1.1) blows up in finite time. In particular,

Tmax <
1 − α

α
ε−(1+σ)C(k(0),p)Y (0)−

α
1−α ≤ 1 − α

α
ε−(1+σ)C(k(0),p)G(0)−α,

where the last inequality is due to (2.15).
Since Tmax is the maximum life span of the solution in the finite energy space H 1(�) ×L2(�)

and we have shown that Tmax < ∞, then it must be the case that

lim sup
t→T −

max

E (t) = ∞. (2.22)

To see this, assume to the contrary that there exists C0 > 0 such that E (t) ≤ C0 for all t ∈
[0, Tmax). Then by Theorem 1.3 and Definition 1.2, there exists a unique weak solution u(t)

on (−∞, T0] with the regularity that u ∈ C([0, T0]; H 1
0 (�)) and ut ∈ C([0, T0]; L2(�)) where 

T0 > 0 depends on C0 such that Tmax is not an integer multiple of T0. Thus, there exists a natural 
number n0 such that n0T0 < Tmax < (n0 + 1)T0, and by iterating the conclusion of Theorem 1.3
for n0 + 1 times, the system (1.1) admits a unique weak solution u(t) on (−∞, (n0 + 1)T0], 
which contradicts the fact that Tmax is the maximum lifespan of the weak solution for (1.1).

By using (1.7) and (1.8), we obtain
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1

p + 1
‖u(t)‖p+1

p+1 = E (t) − E(t) ≥ E (t) − E(0),

and along with (2.22), we obtain that

lim sup
t→T −

max

‖u(t)‖p+1 = ∞. (2.23)

Finally, thanks to the Sobolev inequality ‖u(t)‖p+1 ≤ γ ‖∇u(t)‖2 (p < 5 from Remark 1.8), we 
conclude from (2.23) that

lim sup
t→T −

max

‖∇u(t)‖2 = ∞,

completing the proof. �
3. Proof of Theorem 1.9

This section is devoted to proving Theorem 1.9, which is a finite-time blow-up result for (1.1)
under the scenario that the initial total energy E(0) is nonnegative. In particular, it states that if 
the initial total energy 0 ≤ E(0) < M where M > 0 is defined in (1.10), and the initial quadratic 
energy E (0) > y0 where y0 is defined in (3.2), then the weak solution of (1.1) blows up in finite 
time, provided the source dominates dissipation in the sense that p > max{m, 

√
k(0) }.

In order to have a better understanding of the assumptions of Theorem 1.9, we shall provide 
the following discussions before proving the theorem. Recall that, for given p ∈ (1, 5], we set 
γ > 0 to be the best constant for the Sobolev inequality ‖u‖p+1 ≤ γ ‖∇u‖2 for all u ∈ H 1

0 (�), 
i.e., γ −1 = inf

{‖∇u‖2 : u ∈ H 1
0 (�),‖u‖p+1 = 1

}
. Let us define the function F : R+ →R by

F(y) = y − 1

p + 1
(2γ 2y)

p+1
2 . (3.1)

We remark that the expression of F originates from the right-hand side of the inequality (3.10)
below. Since p+1

2 > 1, it follows that the function F(y) obtains its maximum in [0, ∞) at y = y0, 
where

y0 := 1

2
γ

− 2(p+1)
p−1 , (3.2)

and the maximum value d of F(y) is

d := F(y0) =
(

1

2
− 1

p + 1

)
γ

− 2(p+1)
p−1 . (3.3)

Remark 3.1. The constant d defined in (3.3) coincides with the mountain pass level (also the 
depth of the potential well [38]), i.e., we claim

d = inf
u∈H 1(�)\{0}

sup
λ≥0

J (λu), (3.4)

0
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where we define J (u) = 1
2 ‖∇u‖2

2 − 1
p+1 ‖u‖p+1

p+1. In order to verify (3.4), we calculate

∂λJ (λu) = λ‖∇u‖2
2 − λp ‖u‖p+1

p+1 , p > 1.

It follows that the maximum value of J (λu) for λ ≥ 0 occurs at λ0 > 0 such that ‖∇u‖2
2 =

λ
p−1
0 ‖u‖p+1

p+1, for u �= 0. As a result,

inf
u∈H 1

0 (�)\{0}
sup
λ≥0

J (λu) = inf
u∈H 1

0 (�)\{0}
J (λ0u)

= inf
u∈H 1

0 (�)\{0}

{
1

2
λ2

0 ‖∇u‖2
2 − 1

p + 1
λ

p+1
0 ‖u‖p+1

p+1

}

=
(

1

2
− 1

p + 1

)
inf

u∈H 1
0 (�)\{0}

( ‖∇u‖2

‖u‖p+1

) 2(p+1)
p−1

=
(

1

2
− 1

p + 1

)
γ

− 2(p+1)
p−1 = d

where we have used (1.9) and (3.3).

Next, we put

y∗ := (
√

k(0) + 1)
2

p−1 (2γ 2)
− p+1

p−1 . (3.5)

By the assumption k(∞) = 1 and k′(s) < 0 for all s > 0, we know that k(0) > 1, and thus, due 
to (3.5) and (3.2), one has

y∗ >
1

2
γ

− 2(p+1)
p−1 = y0. (3.6)

Also, we define the constant M by

M := F(y∗)

= y∗
(

p − √
k(0)

p + 1

)
= (

√
k(0) + 1)

2
p−1 (2γ 2)

− p+1
p−1

(
p − √

k(0)

p + 1

)
> 0, (3.7)

provided p >
√

k(0). Recall that in Theorem 1.9 we assume that the initial total energy 
E(0) < M .

We have mentioned that the function F(y) reaches its maximum at y = y0, and is monotone
decreasing when y > y0, therefore, we see that

0 < M = F(y∗) < F(y0) = d, (3.8)

due to (3.6) and (3.3), i.e., M is less than the depth of the potential well. Clearly, M → d− as 
k(0) → 1+ by (3.7) and (3.3), which can be interpreted as that, if the linear memory term is 
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formally diminished in (1.1), then M (which is the upper bound of initial energy) gets close to 
the mountain pass level d .

Now we are ready to prove Theorem 1.9.

Proof. The proof draws from some ideas in [28,37,51]. Let us define the life span Tmax of the 
solution u to be the supremum of all T > 0 such that u is a solution of (1.1) on (−∞, T ]. We 
aim to show that Tmax is necessarily finite, that is, u blows up in finite time.

By (1.7) and (1.9) we have

E(t) = E (t) − 1

p + 1
‖u(t)‖p+1

p+1 ≥ E (t) − 1

p + 1
γ p+1‖∇u(t)‖p+1

2 , (3.9)

for t ∈ [0, Tmax). Since E (t) = 1
2

(‖ut (t)‖2
2 + ‖∇u(t)‖2

2 + ∫∞
0 ‖∇w(t, s)‖2

2 μ(s)ds
)
, one has

‖∇u(t)‖2 ≤ (2E (t))
1
2 , for t ∈ [0, Tmax),

and thus the inequality (3.9) implies

E(t) ≥ E (t) − 1

p + 1
[2γ 2E (t)] p+1

2 , for t ∈ [0, Tmax). (3.10)

Notice that, by using the function F(y) defined in (3.1), then inequality (3.10) takes the concise 
form

E(t) ≥ F(E (t)), for t ∈ [0, Tmax). (3.11)

Recall that the continuous function F(y) attains its maximum value at y = y0, so it is monotone 
decreasing when y > y0. Since we assume the initial energy 0 ≤ E(0) < M = F(y∗), there exists 
a unique number y1 such that

F(y1) = E(0), with y1 > y∗ > y0 > 0. (3.12)

Therefore, by using (1.8) and (3.11), we have

M > F(y1) = E(0) ≥ E(t) ≥ F(E (t)), for t ∈ [0, Tmax). (3.13)

Since F(y) is continuous and decreasing when y > y0 and E (t) is also continuous, then by using 
the assumption that E (0) > y0, it follows from (3.13) that

E (t) ≥ y1, for t ∈ [0, Tmax). (3.14)

Consequently, by (3.13), (3.14), (3.7) and (3.1), one has

1

p + 1
‖u(t)‖p+1

p+1 = E (t) − E(t) ≥ y1 − F(y1) = 1

p + 1
(2γ 2y1)

p+1
2 ,

which can be reduced to
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‖u(t)‖p+1
p+1 ≥ (2γ 2y1)

p+1
2 , for t ∈ [0, Tmax). (3.15)

Now we set G(t) = M − E(t) > 0 and N(t) = 1
2‖u(t)‖2

2 for t ∈ [0, Tmax). We aim to show 
that

Y(t) = G(t)1−α + εN ′(t) (3.16)

blows up in finite time, for some α ∈ (0, 1) and ε > 0, which will be selected later. By differen-
tiating both sides of (3.16) and using (2.4), one has

Y ′(t) = (1 − α)G(t)−αG′(t) + ε
(

‖ut‖2
2 − ‖∇u‖2

2 +
∞∫

0

k′(s)
∫
�

∇u(t) · ∇w(t, s)dxds

−
∫
�

|ut |m−1utudx + ‖u‖p+1
p+1

)
. (3.17)

By using (3.14) and (3.7) we obtain

G(t) = M − E(t) = M − E (t) + 1

p + 1
‖u(t)‖p+1

p+1

≤ y∗
(

p − √
k(0)

p + 1

)
− y1 + 1

p + 1
‖u(t)‖p+1

p+1

= (y∗ − y1) − y∗
(√

k(0) + 1

p + 1

)
+ 1

p + 1
‖u(t)‖p+1

p+1

< −y∗
(√

k(0) + 1

p + 1

)
+ 1

p + 1
‖u(t)‖p+1

p+1,

since y1 > y∗. The last inequality can be expressed as

‖u(t)‖p+1
p+1 > (p + 1)G(t) + y∗(

√
k(0) + 1). (3.18)

Also, since G(t) = M − E(t) then by the energy identity (1.8), we have

G′(t) = −E′(t) = ‖ut‖m+1
m+1 − 1

2

∞∫
0

‖∇w(t, s)‖2
2μ

′(s)ds ≥ ‖ut‖m+1
m+1, (3.19)

where we have used the assumption μ′(s) ≤ 0. Note that (3.19) shows that G(t) is nondecreasing 
for t ∈ [0, Tmax).

By employing (3.18) as well as (3.19), we can carry out the same estimate used in (2.6), 
(2.9)–(2.10) to obtain∣∣∣∣∣∣

∫
u|ut |m−1utdx

∣∣∣∣∣∣≤ λG(0)
1

p+1 − 1
m+1 ‖u‖p+1

p+1 + CλG(0)
1

p+1 − 1
m+1 +αG(t)−αG′(t), (3.20)
�
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where as before, we choose 0 < α < 1
m+1 − 1

p+1 , and λ is a positive constant which will be 
selected later.

By applying the estimates (3.20) and (2.5) to the identity (3.17), we have

Y ′(t) ≥
[
1 − α − εCλG(0)

1
p+1 − 1

m+1 +α
]
G(t)−αG′(t)

+ ε
[
‖ut‖2

2 −
(

k(0) − 1

4δ
+ 1

)
‖∇u‖2

2 − δ

∞∫
0

‖∇w(t, s)‖2
2μ(s)ds

+ (1 − λG(0)
1

p+1 − 1
m+1 )‖u‖p+1

p+1

]
, for t ∈ [0, Tmax). (3.21)

By (1.7) we see that

∞∫
0

‖∇w(t, s)‖2
2 μ(s)ds = 2E(t) − ‖ut‖2

2 − ‖∇u‖2
2 + 2

p + 1
‖u‖p+1

p+1,

which can be substituted into (3.21) to obtain

Y ′(t) ≥
[
1 − α − εCλG(0)

1
p+1 − 1

m+1 +α
]
G(t)−αG′(t) + ε

[(
δ − k(0) − 1

4δ
− 1

)
‖∇u‖2

2

+ (1 + δ)‖ut‖2
2 +

(
1 − 2δ

p + 1
− λG(0)

1
p+1 − 1

m+1

)
‖u‖p+1

p+1 − 2δE(t)

]
, (3.22)

for t ∈ [0, Tmax). Now we choose

δ =
√

k(0) + 1

2
,

so that δ − k(0)−1
4δ

− 1 = 0, and thus the inequality (3.22) takes the form

Y ′(t) ≥
[
1 − α − εCλG(0)

1
p+1 − 1

m+1 +α
]
G(t)−αG′(t) + ε

[√
k(0) + 3

2
‖ut‖2

2

+
(

p − √
k(0)

p + 1
− λG(0)

1
p+1 − 1

m+1

)
‖u‖p+1

p+1 −
(√

k(0) + 1
)

E(t)

]
, (3.23)

for t ∈ [0, Tmax), where we require p >
√

k(0).
Next, we aim to show that

p − √
k(0)

p + 1
‖u‖p+1

p+1 −
(√

k(0) + 1
)

E(t) > c‖u‖p+1
p+1, for all t ∈ [0, Tmax),

for some c > 0. For the sake of convenience, we put
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C0 = (2γ 2y1)
p+1

2 . (3.24)

Then, it follows from (1.8), (3.12) and (3.1) that,

E(t) ≤ E(0) = F(y1) = y1 − 1

p + 1
(2γ 2y1)

p+1
2 = y1 − 1

p + 1
C0, (3.25)

for t ∈ [0, Tmax).
Now we split the term p−√

k(0)
p+1 ‖u‖p+1

p+1 into two positive parts:

p − √
k(0)

p + 1
‖u‖p+1

p+1 =
(

p − √
k(0)

p + 1
− C0 − (

√
k(0) + 1)y1

2C0

)
‖u‖p+1

p+1

+ C0 − (
√

k(0) + 1)y1

2C0
‖u‖p+1

p+1. (3.26)

The fact that the two terms on the right-hand side of (3.26) are both positive comes from the 

following straightforward calculations. Indeed, by (3.24) and the fact that y1 > y0 = 1
2γ

− 2(p+1)
p−1

as well as the assumption p >
√

k(0) > 1, we compute

p − √
k(0)

p + 1
− C0 − (

√
k(0) + 1)y1

2C0

= C0(p − 2
√

k(0) − 1) + (
√

k(0) + 1)y1(p + 1)

2C0(p + 1)

>

y1

[
(2γ 2)

p+1
2 y

p−1
2

0 (p − 2
√

k(0) − 1) + (
√

k(0) + 1)(p + 1)

]
2C0(p + 1)

= y1
[
3(p − √

k(0) ) + p
√

k(0) − 1
]

2C0(p + 1)
> 0. (3.27)

Also, thanks to (3.24) and the fact that y1 > y∗ = (
√

k(0) + 1)
2

p−1 (2γ 2)
− p+1

p−1 , we see that

C0 − (
√

k(0) + 1)y1 >
[
(2γ 2)

p+1
2 (y∗)

p−1
2 − (

√
k(0) + 1)

]
y1 = 0. (3.28)

Thus, we can define the positive constant c as

c := C0 − (
√

k(0) + 1)y1

2C0
> 0. (3.29)

Applying (3.27) and (3.29) along with the fact that ‖u(t)‖p+1
p+1 ≥ C0 for t ∈ [0, Tmax) from (3.15), 

we obtain from (3.26) that

p − √
k(0)‖u‖p+1

p+1 ≥
(

p − √
k(0) − C0 − (

√
k(0) + 1)y1

)
C0 + c‖u‖p+1

p+1. (3.30)

p + 1 p + 1 2C0



Y. Guo et al. / J. Differential Equations 262 (2017) 1956–1979 1975
By using (3.25) and (3.30), we calculate

p − √
k(0)

p + 1
‖u‖p+1

p+1 − (
√

k(0) + 1)E(t)

≥
(

p − √
k(0)

p + 1
− C0 − (

√
k(0) + 1)y1

2C0

)
C0 + c‖u‖p+1

p+1

− (
√

k(0) + 1)

(
y1 − 1

p + 1
C0

)

= C0 − (
√

k(0) + 1)y1

2
+ c‖u‖p+1

p+1

> c‖u‖p+1
p+1, (3.31)

where the last inequality follows from (3.28).
Applying (3.31) to (3.23) yields

Y ′(t) >
[
1 − α − εCλG(0)

1
p+1 − 1

m+1 +α
]
G(t)−αG′(t)

+ ε

[√
k(0) + 3

2
‖ut‖2

2 +
(
c − λG(0)

1
p+1 − 1

m+1

)
‖u‖p+1

p+1

]
. (3.32)

Now, we choose λ > 0 such that λG(0)
1

p+1 − 1
m+1 = c

2 and select ε > 0 sufficiently small so that 

εCλG(0)
1

p+1 − 1
m+1 +α ≤ 1 − α, we obtain from (3.32) that

Y ′(t) >
ε

2

[(√
k(0) + 3

)
‖ut (t)‖2

2 + c‖u(t)‖p+1
p+1

]
, for t ∈ [0, Tmax). (3.33)

Combining the estimates (3.33) and (3.18) yields that

Y ′(t) >
ε

2

[(√
k(0) + 3

)
‖ut (t)‖2

2 + c

2
‖u(t)‖p+1

p+1 + c

2
(p + 1)G(t)

]
> 0, (3.34)

for t ∈ [0, Tmax), where the last inequality is due to the fact G(t) = M − E(t) > 0.
Notice that Y(0) = G(0)1−α + εN ′(0), and if N ′(0) < 0, then we shall further impose the 

restriction 0 < ε ≤ −G(0)1−α

2N ′(0)
so that Y(0) ≥ 1

2G(0)1−α . Since Y(t) is increasing on [0, Tmax) by 
virtue of (3.34), it follows that

Y(t) ≥ Y(0) ≥ 1

2
G(0)1−α > 0, for t ∈ [0, Tmax). (3.35)

Also, by following the estimates (2.17)–(2.21) in the proof of Theorem 1.7, and by imposing 
the additional restrictions on α and ε, namely, 0 < α <

p−1
2(p+1)

and 0 < ε ≤ min{G(0), 1}, we 
obtain
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Y(t)
1

1−α ≤ Cε−σ
(
G(t) + ‖ut (t)‖2

2 + ‖u(t)‖p+1
p+1

)
, for t ∈ [0, Tmax), (3.36)

where σ = 1 − 2
(1−2α)(p+1)

> 0.
By taking into account inequalities (3.34) and (3.36), we see that

Y ′(t) ≥ ε1+σ C(k(0),p,E(0))Y(t)
1

1−α , for t ∈ [0, Tmax),

and since 1
1−α

> 1, we conclude that Tmax is necessarily finite. More precisely,

Tmax <
1 − α

α
ε−(1+σ)C(k(0),p,E(0))Y(0)−

α
1−α ≤ 1 − α

α
ε−(1+σ)C(k(0),p,E(0))G(0)−α,

where the last inequality comes from (3.35). Finally, by adopting the same argument as 
in the proof of Theorem 1.7, we conclude that lim supt→T −

max
‖∇u(t)‖2 = ∞ and

lim supt→T −
max

‖u(t)‖p+1 = ∞. �
We remark that, if the condition E (0) > y0 in Theorem 1.9 is replaced with a different as-

sumption ‖u0(0)‖p+1
p+1 > ‖∇u0(0)‖2

2, then the solution still blows up in finite time. Specifically, 
we have the following corollary of Theorem 1.9. Please refer to [3,12,33] for comparable re-
sults concerning blow-up of wave equations with nonlinear sources and damping (but without 
memory) by using a different approach which involves a contradiction argument.

Corollary 3.2. In addition to the validity of the Assumption 1.1, we assume that p >

max{m, 
√

k(0) }. Also, we suppose that ‖u0(0)‖p+1
p+1 > ‖∇u0(0)‖2

2, and

0 ≤ E(0) < M := (
√

k(0) + 1)
2

p−1 (2γ 2)
− p+1

p−1

(
p − √

k(0)

p + 1

)
.

Then the weak solution u of the system (1.1) blows up in finite time. More precisely, 
lim supt→T −

max
‖∇u(t)‖2 = ∞, for some Tmax ∈ (0, ∞).

Proof. It is sufficient to show that the condition ‖u0(0)‖p+1
p+1 > ‖∇u0(0)‖2

2 implies that 

E (0) > y0. To this end, let us recall that J (u) = 1
2 ‖∇u‖2

2 − 1
p+1 ‖u‖p+1

p+1, then the maximum 

value of J (λu0(0)) for λ ≥ 0 occurs at λ0 such that ‖∇u0(0)‖2
2 = λ

p−1
0 ‖u0(0)‖p+1

p+1. Also, since 

‖u0(0)‖p+1
p+1 > ‖∇u0(0)‖2

2, it follows that λ0 < 1. Consequently, by (3.4), we obtain

d ≤ sup
λ≥0

J (λu0(0)) = J (λ0u0(0)) = 1

2
λ2

0 ‖∇u0(0)‖2
2 − 1

p + 1
λ

p+1
0 ‖u0(0)‖p+1

p+1

= λ2
0

(
1

2
− 1

p + 1

)
‖∇u0(0)‖2

2

<

(
1

2
− 1

p + 1

)
‖∇u0(0)‖2

2 .

This shows that
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‖∇u0(0)‖2
2 >

2(p + 1)

p − 1
d = γ

− 2(p+1)
p−1 = 2y0,

where we have used (3.2) and (3.3). Thus, E (0) > y0. �
Remark 3.3. Since it has been shown that the condition ‖u0(0)‖p+1

p+1 > ‖∇u0(0)‖2
2 implies that 

E (0) > y0, one realizes that the assumptions of Theorem 1.9 are weaker than the assumptions of 
Corollary 3.2, which often appear in the literature (see for instance [3,12,32]). Also, the assump-
tion that E (0) > y0 contains all of the past history from −∞ to 0, which is a more appropriate 
assumption for a system with delay, compared to the condition that ‖u0(0)‖p+1

p+1 > ‖∇u0(0)‖2
2

which involves partial information of the initial datum only at t = 0. On the other hand, it is worth 
mentioning that, if the initial datum satisfies that 0 ≤ E(0) < M and ‖u0(0)‖p+1

p+1 > ‖∇u0(0)‖2
2, 

then ‖u(t)‖p+1
p+1 > ‖∇u(t)‖2

2 for all time t before the formation of singularity. Indeed, if there 

exists t1 > 0 such that ‖u(t1)‖p+1
p+1 = ‖∇u(t1)‖2

2, then

J (u(t1)) = 1

2
‖∇u(t1)‖2

2 − 1

p + 1
‖u(t1)‖p+1

p+1 =
(

1

2
− 1

p + 1

)
‖∇u(t1)‖2

2 .

It follows that

‖∇u(t1)‖2
2 ≤ 2(p + 1)

p − 1
J (u(t1)) ≤ 2(p + 1)

p − 1
E(t1) ≤ 2(p + 1)

p − 1
E(0).

Hence, by Sobolev inequality ‖u‖p+1 ≤ γ ‖∇u‖2, we obtain

‖u(t1)‖p+1
p+1 ≤ γ p+1

(
‖∇u(t1)‖2

2

) p−1
2 ‖∇u(t1)‖2

2

≤ γ p+1
(

2(p + 1)

p − 1
E(0)

) p−1
2 ‖∇u(t1)‖2

2

< ‖∇u(t1)‖2
2 (3.37)

where the last inequality follows from E(0) < M < d =
(

1
2 − 1

p+1

)
γ

− 2(p+1)
p−1 . However, (3.37)

contradicts the assumption that ‖u(t1)‖p+1
p+1 = ‖∇u(t1)‖2

2, and so, it must be the case that 

‖u(t)‖p+1
p+1 > ‖∇u(t)‖2

2, for all t ∈ [0, Tmax).
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