Chapter 4 Discrete Random variables

A is a variable that assumes numerical values associated with the random outcomes
of an experiment, where only one numerical value is assigned to each sample point.

Examplel: define random variable x = the # of heads observed when tossing two coins,

X can be :
Random vaiable sample points
X = {TT}

X = {HT, TH}
X = {HH}

Example2: define random variable X= the number of boys in a family with three children.

X can be :
Random variable sample ponts
X = __,(noboy) {GGG}
X = ___,(one boy) {BGG, GBG, GGB}
X = __,(two boyy {BBG, BGB, GBB}
X = __, (three bo) {BBB}

Example3. define random variable X = the sum of the two dice when tossing two dice,

X can be
You can list the corresponding sample points to each value of X.

4.1 Two Types of Random Variables

e Random variables that can assume a number of values are called

e Random variables that can assume values corresponding to of the points contained in an
are called




The following are examples of discrete random variables:
1. The number of seizures an epileptic patient has in a given week: x = 0,1,2,. ..

2. The number of voters in a sample of 500 who favor impeachment of the president:
x=0,1,2,...,500

3. The number of students applying to medical schools this year: x = 0, 1,2, ...
4. The change received for paying a bill: x = 1¢,2¢,3¢.... , §1,...

5. The number of customers waiting to be served in a restaurant at a particular time:

x=0,1,2,...
Note that several of the examples of discrete random variables begin with the words
The number of .. .. This wording is very common, since the discrete random variables

most frequently observed are counts. The following are examples of continuous random
variables:

1. The length of time (in seconds) between arrivals at a hospital clinic: (0 = x = o0
(infinity)

2. The length of time (in minutes) it takes a student to complete a one-hour exam:
0=x = 60

3. The amount (in ounces) of carbonated beverage loaded into a 12-ounce can in a
can-filling operation: 0 = x = 12

4. The depth (in feet) at which a successful oil-drilling venture first strikes oil:
0 = x = c¢,where ¢is the maximum depth obtainable

5. The weight (in pounds) of a food item bought in a supermarket: 0 = x = 500

[ Note: Theoretically, there is no upper limit on x, but it is unlikely that it would ex-
ceed 500 pounds.]

4.2 Probability Distribution for Discrete Random Variables

e The of a discrete random variable is a : , or that
specifies the probability associated with each possible value that the random variable can
assume.

Examplel: define random variable x = the # of heads observed when tossing two coins,
describe the probability distribution for X.

XcanbeO,1, 2.

Random vaiable sample ponts
X =0, (no heads) {TT}
X =1, (one head) {HT, TH}
X =2, (two heds) {HH}

e Probability distribution can be given by graph:

plx) plx)
112 = 12
114 = 1/4
X x
0 I 2 0 1 2
a. Point representation of p(x) b. Histogram representation of p(x)



e Probability distribution can be given by table:

e Probability distribution can be given by formula:

Example2: define random variable X= the number of boys in a family with three children,
describe the probability distribution for X.

XcanbeO,1, 2, 3.

Random variable sample points
X =0 (no boy) {GGG}
X =1 (one boy) {BGG, GBG, GGB}
X =2 (two boy3 {BBG, BGB, GBB}
X =3 three boyy {BBB}

o Probability distribution given by table:

X
P(X=X)

e Probability distribution given by Graph:

e Probability distribution given by formula:



e Two requirements must be satisfied by all probability distributions for discrete random
variable:

Example: The following is the probability distribution of random variable X.

X 10 20 30 40

P(x) 15 20 ? 25

1. What are the possible values for the random variable X?
2. What is the probability of x = 30?

3. What is the probability that x is at most 30?

4. What is the probability that x is greater than 20?

5. What is the probability that x = 25?

4.3 Expected values of discrete random variables

® Mean or Expected value of a discrete R.V,,

Examplel: The following is the probability distribution of random variable X.

X 10 20 30 40

P(X) 15 20 0.40 25

Find the mean (expected value) of random variable Xx.

Example2: A local bakery has determined a probability distribution for the number of cheesecakes it
sells in a given day. The distribution is as follows:

Number soldinaday | 0 5 10 15 20
Prob (Number sold) | 021 015 0.06 0.07 0:51

1. Find the number of cheesecakes that this local bakery expects to sell in a day.



2. What is the probability that the number of cheesecakes it sells in a given day is at least 10?

Example3: A dice game involves rolling three dice and betting on one of the six numbers that are on the
dice. The game costs $8 to play, and you win if the number you bet appears on any of the dice. The
distribution for the outcomes of the game (including the profit) is shown below:

Number of dice with your number Profit Probability
0 -$8 125/216
1 $8 75/216
2 $10 15/216
3 $24 1216

Find your expected profit from playing this game.

Example 4: At a raffle, 1500 tickets are sold at $2 each for three prizes of $500, $300 and $200. You buy
one ticket. What is the expected value of your gain?

Problem Suppose you work for an insurance company and yvou sell a $10.000 one-year term
insurance policy at an annual premium of $290. Actuarial tables show that the probability of
death during the next vear for a person of vour customer’s age, sex, health, etc., is 001, What
15 the expected gain (amount of money made by the company) for a policy of this type'?

® The variance of a random variable:

® The standard deviation of a random variable:




Chebyshev's Rule and Empirical Rule for a Discrete Random Variable

Let x be a discrete random variable with probability distribution p{x), mean g, and
standard deviation o Then, depending on the shape of p(x), the following probability
statements can be made:

Chebyshev’s Rule Empirical Rule
Applies o any Applies to probability
probability distribution  distributions that are mound
(see Figure 4.5a) shaped and symmetric (see
Figure 4.5b)

Pl = o =< x = p+ ) =10 = H8

Pip— 20 < x < p+ 2o) = 3 = 95

Plp—30 < x < p + 3a0) = 8 = 1.00

Examplel: define random variable x = the # of heads observed when tossing two coins,
The probability distribution is given in the following table.

X P(X =x)
0 0.25
1 0.50
2 0.25

1. Find the expected number of heads (mean number of heads) we wish to observe.

2. Find the standard deviation of the number of heads.

3. Find the probability that the number of heads fall in two standard deviations within the mean.



Problem Medical research has shown that a certain type of chemotherapy is successful
70% of the time when used to treat skin cancer, Suppose five skin cancer patients are
treated with this type of chemotherapy, and let x equal the number of successful cures
out of the five. The probability distribution for the number x of successful cures out of
five is given in the following table:

x 0 1 2 3 4 5
pix) 002 029 132 309 360 168
a. Find p = E(x). Interpret the result.
b. Find ¢ = V E[(x — u)’]. Interpret the result.

¢. Graph p(x). Locate p and the interval u + 2 on the graph. Use either Chebyshev’s
rule or the empirical rule to approximate the probability that x falls into this interval.
Compare vour result with the actual probability.

d. Would you expect to observe fewer than two successful cures out of five?

e. What is the probability there would be at least three successful cures out of five patients?



4.4 The Binomial Distribution

® Characteristics of a binomial random variable:

1. Experiment consists of trials.

2. There are only possible outcomes for each trial (S: success or F: failure).

3. The probability of success p remains the from trial to trial. (q=1-p)
The trials are :

5. The binomial random variable x is the in n trials.

Examplel. A die is tossed ten times. A success is number 2 observed. Let x be the number of times that
2 is observed out of 10 trials. Is x a binomial random variable?
Check the 5 characteristics of a binomial random variable:

Example2. The professor claims that there is an 80% chance that a student in this class will pass a test.
Suppose 3 students are randomly selected from this class, define X is the number of students will pass
the test out of three students, Is X a binomial random variable?

Example3. Three cards are drawn without replacement from a standard deck of 52 cards. A success is
getting a diamond. Let x be the number to get the diamond. Is x a binomial random variable?

To find the probability of achieving x successes out of n trials, use binomial probability distribution
formula.



Example to find the probability of a binomial random variable:
Examplel. The professor claims that there is an 80% chance that a student in this class will pass a test.

Suppose 3 students are randomly selected from this class, what is the probability that 2 of these 3
students will pass the test?

The probability that 2 of these 3 students will pass the test is :

Problem The Heart Association claims that only
10% of TS adults over 30 years of age mect the Pres-
ident's Physical Fitness Commission's minimum re-
quircments.  Suppose  four  adults  are  randomly
selected and each is given the Miness test.

Use the formula for a binomial random variable to find

the probabality distribution of x, where x is the number of adults who pass the fitness
test. Graph the distribution.



Mean, Variance, and Standard Deviation for a Binomial Random Variable

Mean: i = np
Variance: o = npg

Standard deviation: ¢ = "‘v’fnﬂq

Examplel. Let x represent the number of correct guesses on 5 multiple choice questions where each

question has 4 answer options and only one is correct.

a. Find the probability distribution for random variable X.

X 0 1

3

4

P(x)
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b. Find the probability that the # of correct guesses at least 3? (Would it be likely to pass a five-question
quiz by blind guessing?)

c. Find the mean and standard deviation for the number of correct guesses.

When trials n is large, using formula calculating binomial probability becomes tedious. We can use
(Table I1, P785-788).

The following is a part of this table.
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Examplel, Let x represents the number of correct guesses on 10 multiple choice questions where each
question has 5 answer options and only one is correct. Use binomial probability table,

1. find the probability that a person gets at most 2 questions correctly by guessing.

2. find the probability that a person gets at least 6 questions correctly by guessing.

3. find the probability that a person gets 6 questions correctly by guessing

= i’ Problem Suppose a poll of 20 voters is taken in a
! ‘.a"t & large city. The purpose is to determine x. the number
4 who favor a certain candidate for mavor. Suppose
that 60% of all the city’s voters favor the candidate.

i E] TY H ALL a. Find the mean and standard deviation of x.
' b. Use Table II of Appendix A to find the probabil-
ity that x = 10,

e. Use Table II to find the probability that x = 12.

d. Use Table 11 to find the probability that x = 11.
e. Graph the probability distribution of x, and locate the interval & + 2o on the graph.
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Example3, The probability that an individual is left-handed is 0.10. In a class there are 15 students.

1. Find the mean and standard deviation of the number of left-handed students in this class.

2. Find the probability that exactly 5 students are left-handed in the class.

3. Find the probability that no more than (at most) 6 students are left-handed?

4. Find the probability that at least two students are left-handed?
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4.5 The Poisson Distribution

The probability distribution is used to describe the number of rare events that will
occur in a specific period of time or in a specific area or volume. (specific unit)

Typical examples of random variables for which the Poisson probability distribution provides a good
model are as follows:

1. The number of industrial accidents per month at a manufacturing plant;

2. The number of customer arrivals per unit time at a supermarket checkout counter;

3. The number of death claims received per day by an insurance company;

4. The number of errors per 100 invoices in the accounting records of a company;

Characteristics of a Poisson random variable

1. The experiment consists of a certain event occurs during a given unit of
time or in a given area or volume or other unit of measurement.

2. The probability that an event occurs in a given unit of time, area, or volume is for all the
units.

3. The number of events that occur in one unit of time, area, or volume is of the number
that occur in any other mutually exclusive unit.

4. The (or expected) number of events in each unit is denoted by the Greek letter___.

Probability Distribution for a Poisson Random Variable

Let x = the number of events that occur in the unit, then the probability that x events will occur during
the unit is given by:

Note: e~ 2.7183,
A: of events during given unit of time, area, volume, etc.

Table 111 (P789-793), the entries represent Poisson probabilities
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TABLE Il

Poissan Probabilities
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Table Il (continued)

k
A 10 11 12 13 14 15 16 17 18 19
7.2 887 937 967 984 993 997 999 .999 1.000
7.4 871 926 961 980 991 996 998 999 1.000
7.6 854 915 954 976 989 995 998 999 1.000
7.8 835 902 945 971 986 993 997 .999 1.000
8.0 816 888 936 966 983 992 996 998 999 1.000
8.5 763 849 909 949 973 986 993 997 999 999
9.0 706 803 876 926 959 978 989 995 998 999
9.5 645 752 836 898 940 967 982 991 996 998
10.0 583 697 792 864 917 951 973 986 993 997
20 21 / 22
8.5 1.000
9.0 1.000
9.5 999 1.000
10.0 998 999 1.000
0 1 2 3 ‘L 4 5 6 7 8 9
10.5 .000 000 .002 .007 021 050 102 179 279 397
110 000 000 001 005 015 038 079 143 232 341
11.5 000 000 001 .003 011 028 060 114 191 289
12,0 .000 000 .001 .002 008 020 046 090 155 242
12.5 .000 000 .000 .002 005 015 035 070 125 201
|
13.0 .000 000 .000 .001 004 011 026 054 100 166
13.5 000 000 000 .001 003 .008 019 041 079 135
14.0 000 000 .000 .000 002 006 014 032 062 109
14.5 .000 000 .000 .000 001 .004 010 024 048 088
15.0 .000 000 .000 .000 001 .003 008 018 037 070
10 1 12 13 14 15 16 17 18 19
10.5 521 639 742 825 888 932 960 978 988 994
11.0 460 579 .689 781 854 907 944 968 982 991
11.5 402 520 .633 733 815 878 924 054 974 986
12.0 347 462 576 682 772 844 .899 937 963 979
12.5 297 406 519 628 725 .806 869 916 948 969
13.0 252 353 463 573 675 764 835 .890 930 957
13.5 211 304 409 518 623 718 798 861 908 942
14.0 176 260 358 464 570 669 7156 827 883 923
14.5 145 220 311 413 518 619 11 790 853 901
15.0 118 185 2608 363 466 568 664 749 819 875
20 21 22 23 24 25 26 27 28 29
10.5 997 .999 999 1.000
11.0 995 998 999 1.000
11.5 992 .996 998 999 1.000
12.0 988 994 987 999 999 1.000
12.5 083 991 995 998 999 999 1.000
13.0 975 086 992 996 998 999 1.000
13.5 965 980 989 994 997 998 999 1.000
14.0 952 971 983 991 995 997 999 999 1.000
14,5 936 960 976 986 992 996 998 999 999 1.000
15.0 917 947 967 981 989 994 997 998 999 1.000
(Probability that no more than or k events will occur during the unit time)

The Mean, Variance, and Standard Deviation for the Poisson distribution:



Examplel: Suppose the number x of a company’s employees who are absent on Mondays has a Poisson
probability distribution. Assume that the average number of Monday absentees is 2.6.

a. Find the mean and standard deviation of x, the number of employees absent on Monday.

b. Find the probability that fewer than two employees are absent on a given Monday.

c. Find the probability that exactly three employees are absent on a given Monday.

d. Use Table 111 to find the probability that more than three employees are absent on a given Monday.

Example2. Suppose variable x, the number of cars waiting at a stop sign during 6:00pm—7:00pm has a
Poisson probability distribution with average number 15 cars.

a. Find the probability that there are 10 cars waiting at this stop sign at a given 6:00pm-7:00pm period.

b. Find the probability that there are no more than 10 cars waiting at this stop sign at a given
6:00pm-7:00pm period.

c¢. find the mean and standard deviation of x.
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Learning Objective of Chapter 4:

1. Understand random variables: discrete and continuous

2. Describe a probability distribution (possible value of R.V. and corresponding probabilities)

3. Two requirements of probability distribution of a discrete random variable

4. Given a probability distribution of a R.V., Calculate the probabilities, find the mean (expected value) and
standard deviation of the discrete random variable

5. Identify Binomial random variable, Calculate the probabilities (using formula and table), find the mean
(expected value) and standard deviation of a Binomial random variable

6. Given a Poisson random variable, Calculate the probabilities (using formula and table), find the mean
(expected value) and standard deviation of a Poisson random variable
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