Chapter 10 Analysis of variance (ANOVA)

10.1 Elements of a designed experiment

1. The _____(dependent variable) is the variable of interest to be measured in the experiment.

2. ______ are those variables whose **effect** on the response is of interest to the experimenter.

3. _____are the values of the factor utilized in the experiment.

4. The______ are the **factor-level combinations** utilized.

7. A __________ is one for which the analyst simply **observes** the treatments and the response on a sample of experimental units.

Example 1: Extinct New Zealand birds. Refer to the evolutionary ecology research (July 2003) study of extinction in the New Zealand bird population. Ex1.18. Recall that biologists measured the body mass (in gram) and habitat types (aquatic, ground terrestrial, or aerial terrestrial) for each bird species. One objective is to compare the body mass means of birds with the three different habitat types.

1. response variable:_____;

2. experiment unit:_____;

3. factor: _____;

4. treatment:______.

Example 2: An experiment was conducted to explore the effect of vitamin B12 on the weight gain of pigs. 40 similar piglets were randomly divided into 5 groups. 5 levels of vitamin B12 (0, 5, 10, 15, and 20 mgs./pound of corn meal ration) were randomly assigned to the 5 groups. At the end of the exp. period, each piglet weight gain in pounds was recorded.

1. response variable:_____,

- experiment unit:____;
- 3. factor:_____;
- 4. treatment: ______.

Example 3: What are the treatments for a designed experiment with **two factors**, one qualitative with two levels (A and B) and one quantitative with five levels(50, 60, 70, 80, and 90)? Treatments (Factor-level combinations):

10.2 The completely randomized design (CRD)

Two ways lead to a completely randomized design:

1. randomly assign ______to the _____;

2. randomly select ______ of E.U.s for each______.

Data layout: (one-way table)

Treatment(k)									
1 2 k									

Objective of a CRD:______.

 $H_0: \mu_1 = \mu_2 = \dots = \mu_k \qquad (\qquad \qquad)$ $H_a: \mu_i \neq \mu_i \text{ for some } i \neq j (\qquad \qquad)$

Test statistic?

Basic idea for testing: If the differences between _____are significantly greater than the amount of _____, then we conclude at least two treatment means are different.

• The variation between the treatment means is measured by:

CM = _____

• The total variation is measured by:

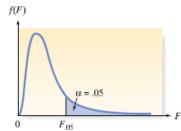
:

:

 $\sum x_i^2$: sum of observation squares (square each observation, then sum up)

• The variation within the treatment is measured by:

_____:


Note:

Degree of freedom:

To make the two measurements of variability comparable, we use

m	ean square	e for treatmen	t :			
m	ean square	e for error:				
Te	est statisti	c:				
Re	ejection re	egion:				
Co	onclusion.					
*	Critical va			degree of freedom lenominator (MSE). (
1 2.	s	e rties of F-dist kewed; ler the curve eq vith two degree	uals			
Fir	nd some F-c	critical values.				
Su	Immary A	NOVA table 1	for CRD:			
Sc	ource	df	SS	MS	F	
• 1.			for each			
2.				distributio	ns;	
3.	The k pop	ulation variance	es are	·		
If	the assump	otions are not s	atisfied, use nong	parametric methods.		

TABLE IX Percentage Points of the *F*-distribution, $\alpha = .05$

$\overline{\ }$	ν_1			NUM	IERATOR I	DEGREES C)F FREEDO	M		
ν_2	$\overline{\ }$	1	2	3	4	5	6	7	8	9
	1	161.4	199.5	215.7	224.6	230.2	234.0	236.8	238.9	240.5
	2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38
	3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81
	4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00
	5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77
	6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10
	7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68
	8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39
2	9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18
õ	10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02
8	11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90
SE	12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80
Ξ	13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71
ō	14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65
DENOMINATOR DEGREES OF FREEDOM	15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59
2	16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54
5	17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49
Ð	18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46
2	19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42
2	20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39
N N	21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37
Ę	22	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34
õ	23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32
	24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30
р	25	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28
	26	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.77
	27	4.21	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.25
	28	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24
	29	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.22
	30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21
	40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12
	60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04
	120	3.92	3.07	2.68	2.45	2.29	2.17	2.09	2.02	1.96
	8	3.84	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.88

(continued)

Source: From M. Merrington and C. M. Thompson, "Tables of Percentage Points of the Inverted Beta (F)-Distribution," Biometrika, 1943, 33, 73-88.

<i>v</i> ₁			1	NUMERA	FOR DEGI	REES OF F	REEDOM			
V2	10	12	15	20	24	30	40	60	120	×
1	241.9	243.9	245.9	248.0	249.1	250.1	251.1	252.2	253.3	254.3
2	19.40	19.41	19.43	19.45	19.45	19.46	19.47	19.48	19.49	19.50
3	8.79	8.74	8.70	8.66	8.64	8.62	8.59	8.57	8.55	8.53
4	5.96	5.91	5.86	5.80	5.77	5.75	5.72	5.69	5.66	5.63
5	4.74	4.68	4.62	4.56	4.53	4.50	4.46	4.43	4.40	4.36
6	4.06	4.00	3.94	3.87	3.84	3.81	3.77	3.74	3.70	3.67
7	3.64	3.57	3.51	3.44	3.41	3.38	3.34	3.30	3.27	3.23
8	3.35	3.28	3.22	3.15	3.12	3.08	3.04	3.01	2.97	2.93
9	3.14	3.07	3.01	2.94	2.90	2.86	2.83	2.79	2.75	2.71
Z 10	2.98	2.91	2.85	2.77	2.74	2.70	2.66	2.62	2.58	2.54
2 11	2.85	2.79	2.72	2.65	2.61	2.57	2.53	2.49	2.45	2.40
12	2.75	2.69	2.62	2.54	2.51	2.47	2.43	2.38	2.34	2.30
10 11 12 13 14 15 16 17 18 19 20 12 22 23 24 25 24 25	2.67	2.60	2.53	2.46	2.42	2.38	2.34	2.30	2.25	2.21
14	2.60	2.53	2.46	2.39	2.35	2.31	2.27	2.22	2.18	2.13
° 15	2.54	2.48	2.40	2.33	2.29	2.25	2.20	2.16	2.11	2.07
E 16	2.49	2.42	2.35	2.28	2.24	2.19	2.15	2.11	2.06	2.01
H 17	2.45	2.38	2.31	2.23	2.19	2.15	2.10	2.06	2.01	1.96
18	2.41	2.34	2.27	2.19	2.15	2.11	2.06	2.02	1.97	1.92
2 19	2.38	2.31	2.23	2.16	2.11	2.07	2.03	1.98	1.93	1.88
Ö 20	2.35	2.28	2.20	2.12	2.08	2.04	1.99	1.95	1.90	1.84
21	2.32	2.25	2.18	2.10	2.05	2.01	1.96	1.92	1.87	1.81
Z 22	2.30	2.23	2.15	2.07	2.03	1.98	1.94	1.89	1.84	1.78
8 23	2.27	2.20	2.13	2.05	2.01	1.96	1.91	1.86	1.81	1.76
Ž 24	2.25	2.18	2.11	2.03	1.98	1.94	1.89	1.84	1.79	1.73
	2.24	2.16	2.09	2.01	1.96	1.92	1.87	1.82	1.77	1.71
26	2.22	2.15	2.07	1.99	1.95	1.90	1.85	1.80	1.75	1.69
27	2.20	2.13	2.06	1.97	1.93	1.88	1.84	1.79	1.73	1.67
28	2.19	2.12	2.04	1.96	1.91	1.87	1.82	1.77	1.71	1.65
29	2.18	2.10	2.03	1.94	1.90	1.85	1.81	1.75	1.70	1.64
30	2.16	2.09	2.01	1.93	1.89	1.84	1.79	1.74	1.68	1.62
40	2.08	2.00	1.92	1.84	1.79	1.74	1.69	1.64	1.58	1.51
60	1.99	1.92	1.84	1.75	1.70	1.65	1.59	1.53	1.47	1.39
120	1.91	1.83	1.75	1.66	1.61	1.55	1.50	1.43	1.35	1.25
~	1.83	1.75	1.67	1.57	1.52	1.46	1.39	1.32	1.22	1.00

TABLE IX Continued

ANOVA analysis procedure for completely randomized design (CRD):

- 1. Assumptions,
- 2. Summarize ANOVA table.
- 3. Conduct test of hypothesis to compare the k treatment means.

Examples of Completely Randomized Design:

Example 1, Teaching method: There were 15 students with similar IQ scores. Three different teaching methods were randomly assigned to these students, so for each method there were 5 students. After one year, these 15 students took the same test, the test scores were recorded. Do the data provide evidence that the mean test score are different among these three methods? Use $\alpha = 0.05$.

Method 1	Method 2	Method 3
78	68	65
81	93	79
69	94	90
82	87	81
75	83	75

E. U.:	;		
Treatments:		; (k =)	
Response variable:		(n =)	

SPSS output for Teaching Methods:

	Descriptives test												
			C4 J	64.3	95% Confidence Interval for Mean								
	N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum					
1	5	77.00	5.244	2.345	70.49	83.51	69	82					
2	5	<mark>85.00</mark>	10.512	4.701	71.95	98.05	68	94					
3	5	<mark>78.00</mark>	9.110	4.074	66.69	89.31	65	90					
Total	15	80.00	8.759	2.261	75.15	84.85	65	94					

ANOVA test								
Sum of Squares df Mean Square F Sig								
Between Groups	190.000	2	95.000	<mark>1.290</mark>	.311			
Within Groups	884.000	12	73.667					
Total	1074.000	14						

Note: The table below is also SPSS output which gives ANOVA information.

Tests of Between-Subjects Effects

Dependent Variable	score		-		
Source	Type III Sum of			_	
	Squares	df	Mean Square	F	Sig.
Corrected Model	190.000 ^a	2	95.000	1.290	.311
Intercept	96000.000	1	96000.000	1303.167	.000
method	<mark>190.000</mark>	2	<mark>95.000</mark>	<mark>1.290</mark>	<mark>.311</mark>
Error	<mark>884.000</mark>	<mark>12</mark>	<mark>73.667</mark>		
Total	97074.000	15			
Corrected Total	1074.000	<mark>14</mark>			

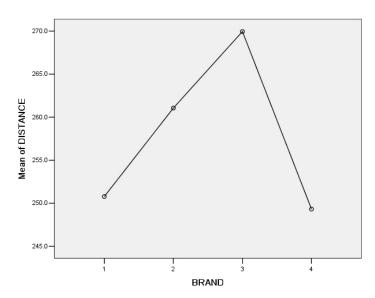
a. R Squared = .177 (Adjusted R Squared = .040)

Example2, GOLFCRD,

USGA wants to compare the mean distances associated with four different brands of golf balls. A completely randomized design is used, with golfer Iron Byron, using a driver to hit a random sample of 10 balls of each brand in a random sequence. The distance is recorded for each hit.

Brand 1	Brand 2	Brand 3	Brand 4
251.2	263.2	269.7	251.6
245.1	262.9	263.2	248.6
248.0	265.0	277.5	249.4
251.1	254.5	267.4	242.0
260.5	264.3	270.5	246.5
250.0	257.0	265.5	251.3
253.9	262.8	270.7	261.8
244.6	264.4	272.9	249.0
254.6	260.6	275.6	247.1
248.8	255.9	266.5	245.9

Do the data provide evidence that the mean distances are different among these four brands? Use $\alpha = 0.10$.


E. U.: _____;

E. U	,	
Treatments:	; (k =;)
Response variable:	(n =)

	Descriptives DISTANCE											
					95% Confidence Interval for Mean							
	N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Iviiiiiiuiii					
1	10	<mark>250.780</mark>	4.7352	1.4974	247.393	254.167	244.6	260.5				
2	10	261.060	3.8661	1.2226	258.294	263.826	254.5	265.0				
3	10	<mark>269.950</mark>	4.5009	1.4233	266.730	273.170	263.2	277.5				
4	10	<mark>249.320</mark>	5.2032	1.6454	245.598	253.042	242.0	261.8				
Total	40	257.778	9.5497	1.5099	254.723	260.832	242.0	277.5				

SPSS output for GOLFCRD:

ANOVA DISTANCE							
	Sum of Squares df Mean Square F Sig						
Between Groups	2794.389	3	931.463	<mark>43.989</mark>	.000		
Within Groups	762.301	<mark>36</mark>	21.175				
Total	<mark>3556.690</mark>	<mark>39</mark>					

Tests of Between-Subjects Effects

Dependent Variable: DISTANCE

	Type III Sum				
Source	of Squares	df	Mean Square	F	Sig.
Corrected Model	2794.389(a)	3	931.463	43.989	.000
Intercept	2657969.580	1	2657969.580	125523.782	.000
BRAND	<mark>2794.389</mark>	<mark>3</mark>	<mark>931.463</mark>	<mark>43.989</mark>	<mark>.000</mark>
Error	<mark>762.301</mark>	<mark>36</mark>	<mark>21.175</mark>		
Total	2661526.270	40			
Corrected Total	3556.690	<mark>39</mark>			

a R Squared = .786 (Adjusted R Squared = .768)

Example 3, SCOPOLAMINE,

A completely random design was employed to examine the effect of drug scopolamine on memory. A total of 28 people were involved in this experiment. **Group 1**(12 people) were given an injection of scopolamine, **group 2**(8 people) were given an injection of placebo, **group 3**(8 people) were not given any drug. Four hours later, **the number of word pairs recalled** was recorded.

Group 1 (Scopolamine)	5, 8, 8, 6, 6, 6, 6, 8, 6, 4, 5, 6
Group 2 (Placebo)	8, 10, 12, 10, 9, 7, 9, 10
Group 3 (No drug)	8, 9, 11, 12, 11, 10, 12, 12

Is there evidence at $\alpha = 0.05$ to conclude that the mean number of word pairs recalled differs among the three treatment groups?

E. U.: _____; Treatments: _____; (k = ____) Response variable: _____, (n = ____)

	Descriptives RECALL								
					95% Confidence Interval for Mean				
	N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum	
1	12	<mark>6.17</mark>	1.267	.366	5.36	6.97	4	8	
2	8	<mark>9.38</mark>	1.506	.532	8.12	10.63	7	12	
3	8	<mark>10.63</mark>	1.506	.532	9.37	11.88	8	12	
Total	28	8.36	2.407	.455	7.42	9.29	4	12	

SPSS output for Example 3, SCOPOLAMINE

ANOVA RECALL						
Sum of Squares df Mean Square F Sig.						
Between Groups	107.012	2	<mark>53.506</mark>	<mark>27.069</mark>	.00(
Within Groups	<mark>49.417</mark>	25	<mark>1.977</mark>			
Total	<mark>156.429</mark>	27			-	

Tests of Between-Subjects Effects

Dependent Variable:RECALL							
Source	Type III Sum of						
	Squares	df	Mean Square	F	Sig.		
Corrected Model	107.012 ^a	2	53.506	27.069	.000		
Intercept	2054.083	1	2054.083	1039.165	.000		
GROUP	<mark>107.012</mark>	2	<mark>53.506</mark>	27.069	.000		
Error	<mark>49.417</mark>	25	<mark>1.977</mark>				
Total	2 <u>112.000</u>	28					
Corrected Total	<mark>156.429</mark>	27					

a. R Squared = .684 (Adjusted R Squared = .659)

Source	df	SS	MS	F
Diet	2			
Error		52.3		
Total	25	156.7		

Exercise: Below is an incomplete ANOVA table for CRD.

- 1. Complete ANOVA table.
- 2. How many treatments are involved in this experiment?
- 3. How much is the MSE?
- 4. Write down the rejection region for hypothesis test of treatment means.

10.3 Multiple Comparisons of Means

- _____ can be used to find out which pair treatments are significantly different based on confidence interval of $(\mu_i \mu_j)$, when ANOVA F-test for comparing treatment means leads to______.
- **How many** pair-wise comparisons (μ_i, μ_i) of k treatment means:

if k = 3, c =___;

- if k = 4, c = _____
- Three main procedures are used to do multiple comparisons (ensure that the overall confidence level associated with all the comparisons remains at or above the specified $100(1-\alpha)$ % level. α :_______rate)

Method critical difference treatment sample size type of comparisons C.I. of $(\mu_i - \mu_j)$ $w = q_{\alpha,(k,v)} \frac{s}{\sqrt{n_t}}$ pairwise $B_{ij} = t_{\alpha/(2c)} S \sqrt{\frac{1}{n_i} + \frac{1}{n_j}}$ pairwise $S_{ij} = \sqrt{(k-1)(F_{\alpha})(MSE)(\frac{1}{n_i} + \frac{1}{n_j})}$ general contrasts

Note: Scheffe's C.I.s are ______than the other two methods.

• How to make decision: If confidence interval of the difference $(\mu_i - \mu_j)$ _____,

it implies there is ______between the two treatment means.

If confidence interval of the difference $(\mu_i - \mu_j)$ _____,

it implies there is ______between the two treatment means.

• How to express the result:

1. put the treatment means in ______order.

2. put a bar over those p	pairs of treatment r	neans which are Not	t significantly different.	(Confidence
interval for the differenc	e)		

T	leaching Method:						
	Method 1	Method 2	Method 3				
	78	68	65				
	81	93	79				
	69	94	90				
	82	87	81				
	75	83	75				

Recall sec.10.2 Examples, Example1, Teaching Method:

Q: Do multiple comparisons of means of the teaching method data.

Questions: 1. Which teaching method(s) leads to the highest test score?

- 2. How many pair-wise comparisons of means (μ_i, μ_j) are there?
- 3. List those pairs of means which are sig. different.
- 4. List those pairs of means which are not sig. different.

		Multiple C Dependent Bonfe	-	t		
(I) method	(J) method	Mean Difference (I-J)	Std. Error	Sig.	95% Confide Lower Bound	nce Interval Upper Bound
	2	-8.000	5.428	.499	-23.09	7.09
1	3	-1.000	5.428	1.000	<mark>-16.09</mark>	14.09
•	1	8.000	5.428	.499	-7.09	23.09
2 3	3	7.000	5.428	.665	<mark>-8.09</mark>	22.09
3	1	1.000	5.428	1.000	-14.09	16.09
	2	-7.000	5.428	.665	-22.09	8.09

Post	Hoc	Tests
------	-----	-------

Brand 1	Brand 2	Brand 3	Brand 4
251.2	263.2	269.7	251.6
245.1	262.9	263.2	248.6
248.0	265.0	277.5	249.4
251.1	254.5	267.4	242.0
260.5	264.3	270.5	246.5
250.0	257.0	265.5	251.3
253.9	262.8	270.7	261.8
244.6	264.4	272.9	249.0
254.6	260.6	275.6	247.1
248.8	255.9	266.5	245.9

Example2, GOLFCRD:

Recall sec.10.2, the conclusion of hypothesis test for comparing treatment means is to reject H0, so there is sufficient evidence that **at least two** of the four brands are different. ----we can do multiple comparisons of means to explore which pairs brands are sig. different.

1. Use Bonferroni's multiple comparisons procedure to rank treatment means with an overall confidence level of 95% to find out which pairs of brands are sig. different, and which pairs are not.

Question: 1. Which brand(s) is with the highest mean distance? Which brand(s) is with the smallest mean distance?

- 2. How many pair-wise comparisons of means (μ_i, μ_j) are there?
- 3. List those pairs of means which are sig. different.
- 4. List those pairs of means which are not sig. different.

2. Use 95% confidence interval to estimate the mean distance traveled for balls manufactured by the brand with the highest rank.

	Descriptives DISTANCE								
			C4 J	64.3	95% Confidence Interval for Mean				
	N	<mark>Mean</mark>	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum	
1	10	<mark>250.780</mark>	4.7352	1.4974	247.393	254.167	244.6	260.5	
2	10	<mark>261.060</mark>	3.8661	1.2226	258.294	263.826	254.5	265.0	
3	10	<mark>269.950</mark>	4.5009	1.4233	266.730	273.170	263.2	277.5	
4	10	249.320	5.2032	1.6454	245.598	253.042	242.0	261.8	
Total	40	257.778	9.5497	1.5099	254.723	260.832	242.0	277.5	

Multiple comparison SPSS output for GOLFCRD using Bonferroni's Method:

Post Hoc Tests

Multiple Comparisons Dependent Variable: DISTANCE <mark>Bonferroni</mark>						
(I) brand1 (J) brand1 Mean Difference (I-J) Std. Error Sig. 95% Confider						
(I) brand1	(J) Drandi	Mean Difference (1-J)	Sta. Error	Sig.	Lower Bound	Upper Bound
	2	-10.2800(*)	2.0579	.000	<mark>-16.026</mark>	<mark>-4.534</mark>
1	3	-19.1700(*)	2.0579	.000	<mark>-24.916</mark>	<mark>-13.424</mark>
	4	1.4600	2.0579	1.000	<mark>-4.286</mark>	7.206
	1	10.2800(*)	2.0579	.000	4.534	16.026
2	3	-8.8900(*)	2.0579	.001	<mark>-14.636</mark>	<mark>-3.144</mark>
	4	11.7400(*)	2.0579	.000	<mark>5.994</mark>	17.486
	1	19.1700(*)	2.0579	.000	13.424	24.916
3	2	8.8900(*)	2.0579	.001	3.144	14.636
	4	20.6300(*)	2.0579	.000	14.884	<mark>26.376</mark>
	1	-1.4600	2.0579	1.000	-7.206	4.286
4	2	-11.7400(*)	2.0579	.000	-17.486	-5.994
	3	-20.6300(*)	2.0579	.000	-26.376	-14.884
* The mean	difference is	significant at the .05 lev	el.		•	•

Example 3, SCOPOLAMINE,

Group 1 (Scopolamine)	5, 8, 8, 6, 6, 6, 6, 8, 6, 4, 5, 6
Group 2 (Placebo)	8, 10, 12, 10, 9, 7, 9, 10
Group 3 (No drug)	8, 9, 11, 12, 11, 10, 12, 12

Recall sec. 10.2, the conclusion of hypothesis test for comparing treatment means is to reject H0, so there is sufficient evidence that **at least two** of the three groups are different. ----we can do multiple comparisons of means to explore which pairs groups are sig. different.

Q: Use Bonferroni's multiple comparisons procedure to rank treatment means with an overall confidence level of 95% to find out which pairs of groups are sig. different, and which pairs are not.

Question: 1. Does Scopolamine have effect on people's memory?

- 2. How many pair-wise comparisons of means (μ_i, μ_j) are there?
- 3. List those pairs of means which are sig. different.
- 4. List those pairs of means which are not sig. different.

Multiple Comparisons Dependent Variable: RECALL <mark>Bonferroni</mark>						
(I) (J) Mean Difference Std. 95% Confidence I					nce Interval	
(I) GROUP	(J) GROUP	(I-J)	Stu. Error	Sig.	Lower Bound	Upper Bound
	2	-3.208(*)	.642	.000	<mark>-4.85</mark>	<mark>-1.56</mark>
1	3	-4.458(*)	.642	.000	<mark>-6.10</mark>	<mark>-2.81</mark>
2	1	3.208(*)	.642	.000	1.56	4.85
2	3	-1.250	.703	.263	<mark>-3.05</mark>	<mark>.55</mark>
3	1	4.458(*)	.642	.000	2.81	6.10
5	2	1.250	.703	.263	55	3.05

Post Hoc Tests

10.4 The randomized block design

• The Randomized block design:

- There are _____matched sets of experimental units, called _____.
 Each block consists of _____experimental units (where k is the number of treatments).
 Experimental units in each block should be as _____as possible.
- 2. One experimental unit from each block is randomly assigned to_____
- 3. Total responses n = _____

Data layout: (two-way table)

	Treatment(k)				
Block(b)	1	2	•••••	k	
1					
2					
b					

Example1: Drug effect. (when a drug effect is short-lived, no carryover effect; and the drug effect varies greatly from person to person) To study the effect of 3 different drugs, 6 people were used in the experiment. Each person took these three drugs at different time interval, then the reaction time were recorded.

Interest: the effect of _____(treatment)

Data	layout: (two-way table)	k =, b =	, n =
	subject	Drug A	Drug B	Drug C
	1	1.21	1.48	1.56
	2	1.63	1.85	2.01
	3	1.42	2.06	1.70
	4	2.43	1.98	2.64
	5	1.16	1.27	1.48
	6	1.94	2.44	2.81

Example2: Diet Effect: Five litter piglets were used to investigate the effect of three diets on the weight gain for piglets. Three piglets were selected from each litter, hopefully the piglets from the same litter should be similar, then three different diets were randomly assigned to the three piglets in each litter. After one month, the average daily weight gain in pounds for each piglet was recorded.

	est: the effect layout: two-v		_(treatment) =, b = _	. n =	
Duit	Litter	Diet A	, 0 Diet B	, n = Diet C	
	Litter 1	1.47	1.53	1.39	
	Litter 2	1.33	1.67	1.50	
	Litter 3	1.48	1.63	1.37	
	Litter 4	1.46	1.76	1.48	
	Litter 5	1.41	1.68	1.48	

Note:		
*Sum of Squares:		
CM = Correction for mean =		
Total sum of squares:	$\mathbf{SS}(\mathrm{Total}) = \sum x_i^2 - CM$	
Sum of squares for treatments (SST):		_
Sum of squares for blocks (SSB):		
Sum of squares for error (SSE):		
$(T_i: \text{ sum of observations for ith treatment} B$	\mathbf{B}_i : sum of observations for ith block)	

Source df SS MS F

- Conditions required for a valid ANOVA F-test in RBD:
- 1. The b block are <u>randomly selected</u> and all k treatments are <u>randomly assigned</u> to k E.U.s in each block;
- 2. The distributions of observations corresponding to all n=b*k block-treatment combinations are approx._____;
- 3. The b*k block-treatment distributions have ______variances.

If the assumptions are not satisfied, use nonparametric method.

- ANOVA analysis procedure for randomized block design (RBD):
- 1. Assumptions,

2. Summarize ANOVA table:

3. Conduct test of hypothesis to compare treatment means.

$H_0: \mu_1 = \mu_2 = \dots = \mu_k$ (All the	_are equal)
$H_a: \mu_i \neq \mu_j \text{ for some } i \neq j_{\text{(At least two})}$	_differ)
Test statistic:,	
Rejection region:	
4. If possible, conduct test of hypothesis to compare block	means.
$H_0: \mu_1 = \mu_2 = \dots = \mu_b$ (All the are e	equal)
$H_a: \mu_i \neq \mu_j$ for some $i \neq j$ (At least two difference	fer)
Test statistic:,	

Rejection region:______.

(Rejection of this null hypothesis gives <u>statistical support</u> to the utilization of the randomized block design.)

Examples of Randomized Block design:

Example1, OILRIGS,

A randomized block design was used to compare the average monthly number of rotary oil rigs running in the three states-California, Utah, and Alaska. Three months were randomly selected as blocks and the number of oil rigs running in each state in each month was recorded.

Conduct a test to determine if there is sufficient evidence to conclude that the mean number of oil rigs running differs among these three states. Use $\alpha = 0.05$.

Data.			
Month/year	California	Utah	Alaska
Nov. 2000	27	17	11
Oct. 2001	34	20	14
Nov. 2001	36	15	14

Data:

E. U.:	
Treatment:	, (k =)
Block:	(b =)
Response:	(n = b*k =)

SPSS output for Example1, OILRIGS,

Estimated Marginal Means

1. Grand Mean

Dependent Variable: numrigs

			ence Interval
Mean	Std. Error	Lower Bound	Upper Bound
<mark>20.889</mark>	.949	18.253	23.525

2. monthyr

Dependent Variable: numrigs

			95% Confidence Interval	
monthyr	Mean	Std. Error	Lower Bound	Upper Bound
Nov2000	<mark>18.333</mark>	1.644	13.768	22.899
Nov2001	<mark>21.667</mark>	1.644	17.101	26.232
Oct2001	<mark>22.667</mark>	1.644	18.101	27.232

3. state

Dependent Variable: numrigs

			95% Confidence Interval		
state	Mean	Std. Error	Lower Bound	Upper Bound	
AL	<mark>13.000</mark>	1.644	8.435	17.565	
CAL	<mark>32.333</mark>	1.644	27.768	36.899	
UT	17.333	1.644	12.768	21.899	

Tests of Between-Subjects Effects

Dependent Variable: numrigs

	Type III Sum				-
Source	of Squares	df	Mean Square	F	Sig.
Corrected Model	648.444(a)	4	162.111	19.986	.007
Intercept	3927.111	1	3927.111	484.164	.000
monthyr	<mark>30.889</mark>	2	<mark>15.444</mark>	<mark>1.904</mark>	<mark>.262</mark>
state	<mark>617.556</mark>	2	<mark>308.778</mark>	<mark>38.068</mark>	<mark>.002</mark>
Error	<mark>32.444</mark>	4	<mark>8.111</mark>		
Total	4608.000	9			
Corrected Total	<mark>680.889</mark>	8			

a R Squared = .952 (Adjusted R Squared = .905)

Multiple Comparisons

Dependent Variable: numrigs

Bonferror	ni

Domento						
		Mean Difference			95% Confide	ence Interval
(I) state	(J) state	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
AL	CAL	-19.33*	2.325	.003	-28.54	-10.12
	UT	-4.33	2.325	.408	-13.54	4.88
CAL	AL	19.33*	2.325	.003	10.12	28.54
	UT	15.00*	2.325	.009	5.79	24.21
UT	AL	4.33	2.325	.408	-4.88	13.54
	CAL	-15.00*	2.325	.009	-24.21	-5.79

Based on observed means.

*. The mean difference is significant at the .05 level.

Example2, GOLFRBD,

To compare the mean distances associated with four different brands of golf balls. Use a random sample of 10 golfers with each golfer using a driver to hit four brand balls in a random sequence. Conduct a test of the research hypothesis that the brand mean distances differ. Use $\alpha = 0.05$.

Data:	(two-way	tab	le)

Golfer(Block)	Brand A	Brand B	Brand C	Brand D
1	202.4	203.2	223.7	203.6
2	242.0	248.7	259.8	240.7
3	220.4	227.3	240.0	207.4
4	230.0	243.1	247.7	226.9
5	191.6	211.4	218.7	200.1
6	247.7	253.0	268.1	244.0
7	214.8	214.8	233.9	195.8
8	245.4	243.6	257.8	227.9
9	224.0	231.5	238.2	215.7
10	252.2	255.2	265.4	245.2

E. U.:_____; Blocks:______ (b =___) Treatments:______, (k = __); Response variable: ______(n = b*k =____)

df

ANOVA table:

Source

SS

MS

F

SPSS output for Example2: GOLFRBD,

Tests of Between-Subjects Effects Dependent Variable: DISTANCE								
Source	Type III Sum of Squares	df	Mean Square	F	Sig.			
Corrected Model	15372.539(a)	12	1281.045	63.276	.000			
Intercept	2145032.910	1	2145032.910	105952.598	.000			
GOLFER	12073.882	9	<mark>1341.542</mark>	<mark>66.265</mark>	.000			
BRAND	3298.657	3	1099.552	<mark>54.312</mark>	.000			
Error	<mark>546.621</mark>	27	20.245					
Total	2160952.070	40						
Corrected Total	<mark>15919.160</mark>	<mark>39</mark>						
a R Squared = .966	a R Squared = .966 (Adjusted R Squared = .950)							

Estimated Marginal Means

BRAND Dependent Variable: DISTANCE						
BRAND	Mean	Std. Error	95% Confidence Interva			
DKAND	Mean	Sta. Error	Lower Bound	Upper Bound		
Α	227.050	1.423	224.131	229.969		
В	233.180	1.423	230.261	236.099		
С	245.330	1.423	242.411	248.249		
D	220.730	1.423	217.811	223.649		

Post Hoc Tests

BRAND

Multiple Comparisons Dependent Variable: DISTANCE Bonferroni							
			C I F	G .	95% Confide	idence Interval	
(I) BRAND	(J) BRAND	Mean Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound	
	B	-6.1300(*)	2.01222	.031	-11.8586	<mark>4014</mark>	
A	C	-18.2800(*)	2.01222	.000	-24.0086	-12.5514	
D	D	6.3200(*)	2.01222	.024	<mark>.5914</mark>	12.0486	
	Α	6.1300(*)	2.01222	.031	.4014	11.8586	
B	C	-12.1500(*)	2.01222	.000	-17.8786	<mark>-6.4214</mark>	
	D	12.4500(*)	2.01222	.000	6.7214	<mark>18.1786</mark>	
	Α	18.2800(*)	2.01222	.000	12.5514	24.0086	
C	В	12.1500(*)	2.01222	.000	6.4214	17.8786	
	D	24.6000(*)	2.01222	.000	<mark>18.8714</mark>	30.3286	
D	Α	-6.3200(*)	2.01222	.024	-12.0486	5914	
	В	-12.4500(*)	2.01222	.000	-18.1786	-6.7214	
	С	-24.6000(*)	2.01222	.000	-30.3286	-18.8714	

source	df	SS	MS	F
Drug(treatment)	2	329		
Patient(block)	9	1207		
Error				
Total	29	1591		

Exercise: Below is an incomplete ANOVA table for RBD.

- 1. Complete ANOVA table.
- 2. How many treatments are involved in this experiment?
- 3. How many blocks are involved in this experiment?
- 4. How much is the MSE?
- 5. How much is the F test statistic used to compare drug means?
- 6. How much is the F test statistic used to compare patient means?
- 7. Write down the rejection region for hypothesis test to compare drug means.
- 8. Write down the rejection region for hypothesis test to compare patient means.

10.5 factorial Experiments

For single- factor experiment: The treatments are	of this single factor.
For more than one factor experiment: The treatments are	e the complete
(A)	-

Here we just talk about **two factor** experiment. (A and B, factor A has **a** levels, factor B has **b** levels) we call this $a \times b$ factorial experiment. (the # of treatments is_____)

Example1, A experiment is interested in studying the effect of display types (normal, normal plus, normal twice) and price levels (regular, reduced, cost) on unit sales for supermarkets.

_____factorial experiment. (the # of treatments is _____)

Example2, A experiment is designed to investigate the effect of the gender (male, female) of firefighters and the weight (light, heavy) on the length of time required for a firefighter to perform a particular firefighting task.

_____factorial experiment. (the # of treatments is _____)

If we utilize a CRD to conduct a factorial experiment with a*b treatments, we can use ANOVA Ftest to compare a*b combination treatment means. If the H_0 is rejected, we conclude some differences exist among the treatment means, it indicates that factor A and B somehow have effect on mean response, then we need to answer the following questions.

- 1. Do ______ affect the response, or _____?
- 2. If both, do they affect the response ______ or do they ______ to affect the response?

In order to determine the nature of the treatment effect, we need to break the **treatment variability** into **three** parts:______, _____, and

SS(Total) = ______ (n - 1) = _____

• ANOVA Table for a $a \times b$ factorial experiment:

Source df SS MS F

• Conditions required for a valid ANOVA F-test for $a \times b$ Factorial Experiment:	
1samples of experimental units are associated with each treatment;	
2. The response distribution for each factor-level combination (treatment) is;	
3. The response variance is for all treatments.	
• Procedure of ANOVA analysis for $a \times b$ Factorial Experiment (Ordered F-test):
Step 1, Testmeans	
(Question: Do factor A and factor B have effect on mean response?)	
)
((,
$H_a: \mu_i \neq \mu_j \text{ for some } i \neq j \text{ ()}$	
Test statistic:,	
Rejection region:	
If the conclusion leads to, there is sufficient evidence that Factor A an effect on mean response. <u>Go to step 2</u> to test if they interact significantly to a mean response.	ffect
If the conclusion leads to, STOP here and conclude	
·	
Star 2 Test	
Step 2, Testbetween A and B	
(Question: Do factor A and factor B interact significantly to affect mean response	?)
H ₀ : Factor A and Bto affect the mean response;	
H_a : Factor A and Bto affect the mean response;	
Test statistic:,	
,	
Rejection region:	
If the conclusion leads to, we conclude that	
•	
If the conclusion loads to it implies there is no interaction between f	ators
If the conclusion leads to, it implies there is no interaction between fa A and B. Go to step 3.	ctors

29

1: Test main effect of factor A (Question: Does factor A have sig. effect on mean response?)

Test statistic:_____,

Rejection region:_____.

Conclusion.

2: Test main effect of factor B (Question: Does factor B have sig. effect on mean response?)

 $H_a: \mu_i \neq \mu_j$ for some $i \neq j$ (At least two of the **b** treatment means differ)

Test statistic:_____,

Rejection region:______.

Conclusion.

Based on ordered F-test, give an overall conclusion to tell how factor A and B affect response.

 $a \times b$ Factorial Experiments Examples:

Example1: GOLFFAC1,

Suppose the USGA tests four different brands (A, B, C, D) of golf balls and two different clubs (driver, 5-iron) in a 2×4 factorial design. Each of the eight Brand-Club combinations (treatments) is randomly and independently assigned to four experimental units, each experimental unit consisting of a specific position in the sequence of hits by Iron Byron. The distance response is recorded for each of the 32 hits.

)

Data: a = , b = , n =

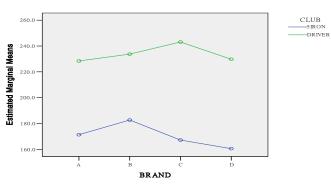
	Driver	Five-iron
Brand A	226.4, 232.6, 234.0, 220.7	163.8, 179.4, 168.6, 173.4
Brand B	238.3, 231.7, 227.7, 237.2	184.4, 180.6, 179.5, 186.2
Brand C	240.5, 246.9, 240.3, 244.7	179.0, 168.0, 165.2, 156.5
Brand D	219.8, 228.7, 232.9, 237.6	157.8, 161.8, 162.1, 160.3

Factors:

Treatments:

Response variable:

a. Conduct an analysis of variance on the data. Summarize the results in an AVOVA table.


b. Conduct the appropriate F-test at $\alpha = 0.10$ to determine how club and brand affect mean distance golf balls travel.

SPSS output for GOLFFAC1,

Between-Subjects Factors			
		N	
CLUB	5IRON	16	
CLUB	DRIVER	16	
	Α	8	
BRAND	В	8	
DRAND	С	8	
	D	8	

Tests of Between-Subjects Effects									
1	Dependent Variable: DISTANCE								
Source	rce Type III Sum of Squares df Mean Square								
Corrected Model	<mark>33659.809(a)</mark>	7	<mark>4808.544</mark>	<mark>140.354</mark>	.000				
Intercept	1306778.611	1	1306778.611	38142.983	.000				
CLUB	<mark>32093.111</mark>	1	32093.111	<mark>936.752</mark>	.000				
BRAND	<mark>800.736</mark>	3	<mark>266.912</mark>	<mark>7.791</mark>	.001				
CLUB * BRAND	<mark>765.961</mark>	3	255.320	<mark>7.452</mark>	.001				
Error	822.240	<mark>24</mark>	<mark>34.260</mark>						
Total	1341260.660	32							
Corrected Total	<mark>34482.049</mark>	<mark>31</mark>							
a R Squared = .976 (Adjusted R Squared = .969)									

Example 2, GOLFFAC2,

Suppose the USGA tests four different brands (E, F, G, H) of golf balls and two different clubs (driver, 5-iron) in a 2×4 factorial design. Each of the eight Brand-Club combinations (treatments) is randomly and independently assigned to four experimental units, each experimental unit consisting of a specific position in the sequence of hits by Iron Byron. The distance response is recorded for each of the 32 hits.

Data: $a = 2$,	b = 4, n = 32	
	Driver	Five-iron
Brand E	238.6, 241.9, 236.6, 244.9	165.2, 156.9, 172.2, 163.2
Brand F	261.4, 261.3, 254.0, 259.9	179.2, 171.0, 178.0, 182.7
Brand G	264.7, 262.9, 253.5, 255.6	189.0, 191.2, 191.3, 180.5
Brand H	235.4, 239.8, 236.2, 237.5	171.4, 159.3, 156.6, 157.4
_		

Data -2 h - 420

Factors:

Treatments:

Response variable:

a. conduct an analysis of variance on the data. Summarize the results in an AVOVA table.

b. Conduct the appropriate ANOVA ordered F-test at $\alpha = 0.10$ to find out how club and brand affect mean distance.

SPSS output for Example 2, GOLFFAC2,

Warnings Post hoc tests are not performed for CLUB because there are fewer than three groups.

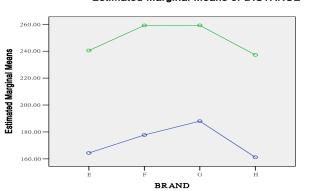
Between-Subjects Factors				
		N		
CLUB	5IRON	16		
CLUB	DRIVER	16		
	E	8		
BRAND	F	8		
DRAND	G	8		
	Н	8		

Tests of Between-Subjects Effects									
1	Dependent Variable: DISTANCE								
Source	Type III Sum of Squares	df	Mean Square	F	Sig.				
Corrected Model	49959.375(a)	7	7137.054	<mark>290.120</mark>	.000				
Intercept	1423532.828	1	1423532.828	57866.453	.000				
CLUB	<mark>46443.900</mark>	1	<mark>46443.900</mark>	1887.939	.000				
BRAND	<mark>3410.316</mark>	3	1136.772	46.210	.000				
CLUB * BRAND	<mark>105.158</mark>	3	<mark>35.053</mark>	1.425	<mark>.260</mark>				
Error	<mark>590.408</mark>	<mark>24</mark>	24.600						
Total	1474082.610	32							
Corrected Total 50549.782 31									
a R Squared = .988 (Adjusted R Squared = .985)									

Estimated Marginal Means

1. Grand Mean						
Dependent Variable: DISTANCE						
Mean	Std. Error	95% Confidence Interval				
Iviean	Stu. EITOI	Lower Bound	Upper Bound			
<mark>210.916</mark>	.877	209.106	212.725			

2. CLUB Dependent Variable: DISTANCE						
	Mean	95% Confidence Interva				ence Interval
CLUB	Mean	Std. Error	Lower Bound	Upper Bound		
5IRON	172.819	1.240	170.260	175.378		
DRIVER	249.013	1.240	246.453	251.572		


	3. BRAND Dependent Variable: DISTANCE						
95% Confidence Interval							
BRAND	Mean	Std. Error	Lower Bound	Upper Bound			
E	202.438	1.754	198.818	206.057			
F	218.438	1.754	214.818	222.057			
G	223.588	1.754	219.968	227.207			
H	199.200	1.754	195.581	202.819			

	4. CLUB * BRAND						
		Dependen	t Variable: D	DISTANCE			
CLUB	CLUB BRAND Mean Std. Error 95% Confidence Interval						
CLUB	DKAND	Wiean	Stu. EITO	Lower Bound	Upper Bound		
	Е	164.375	2.480	159.257	169.493		
5IRON	F	177.725	2.480	172.607	182.843		
SIKON	G	188.000	2.480	182.882	193.118		
	н	161.175	2.480	156.057	166.293		
	Е	240.500	2.480	235.382	245.618		
DRIVER	F	259.150	2.480	254.032	264.268		
DKIVEK	G	259.175	2.480	254.057	264.293		
	н	237.225	2.480	232.107	242.343		

Post Hoc Tests

BRAND

Multiple Comparisons Dependent Variable: DISTANCE						
Bonferroni						
(I) BRAND	(J) BRAND	Mean Difference (I-J)	Std. Error	Sig.	95% Confidence Interval	
					Lower Bound	Upper Bound
E	F	-16.0000(*)	2.47994	.000	-23.1300	<mark>-8.8700</mark>
	G	-21.1500(*)	2.47994	.000	-28.2800	-14.0200
	H	3.2375	2.47994	1.000	<mark>-3.8925</mark>	10.3675
F	E	16.0000(*)	2.47994	.000	8.8700	23.1300
	G	-5.1500	2.47994	.292	-12.2800	1.9800
	H	19.2375(*)	2.47994	.000	12.1075	<mark>26.367</mark> 5
G	E	21.1500(*)	2.47994	.000	14.0200	28.2800
	F	5.1500	2.47994	.292	-1.9800	12.2800
	H	24.3875(*)	2.47994	.000	17.2575	31.5175
Н	E	-3.2375	2.47994	1.000	-10.3675	3.8925
	F	-19.2375(*)	2.47994	.000	-26.3675	-12.1075
	G	-24.3875(*)	2.47994	.000	-31.5175	-17.2575
Based on obs	served means.				-	
* The mean of	difference is si	gnificant at the .05 level.				

CLUB 5IRON DRIVER