Example: Suppose we want to find the relationship between the show sizes of women and their height. We randomly selected 5 women and recorded their shoe sizes and heights.

Shoe Size	Height in.
5	59
6.5	62
7	62
7.5	63
9	70

Step1

Hypothesize a model to relate the height(y) and shoe size(x): straight line probabilistic model $\quad y=\beta_{0}+\beta_{1}+\varepsilon$
Or same thing as saying $E(y)=\beta_{0}+\beta_{1}$
Since we expect the error to be 0

Step2

MINITAB RESULTS

```
Regression Analysis: Height versus ShoeSize
The regression equation is
Height = 46.0 + 2.42 ShoeSize
Predictor Coef SE Coef T P
Constant 46.014 2.593 17.74 0.000
ShoeSize 2.4206 0.3577 6.77 0.007
S=1.17011 R-Sq=93.9% R-Sq(adj)=91.8%
Analysis of Variance
Source DF SS MS F P
Regression 1 62.693 62.693 45.79 0.007
Residual Error 3 4.107 1.369
Total 4 66.800
Predicted Values for New Observations
New
Obs Fit SE Fit 95% Cl 95% PI
    1 65.379 0.614 (63.423,67.334) (61.173,69.584)
Values of Predictors for New Observations
New
Obs ShoeSize
    1 8.00
```

$\hat{\beta}_{1}=2.42$, implies that the estimated mean height(y) increases by 2.42 inches for each additional size of shoe. (Valid only over range of $\mathrm{x}: 5$ to 9.5)
$\hat{\beta}_{0}=46.0$, implies that a shoe size of 0 has an estimated mean height (y) of 46 inches. (no practical interpretation)

The least square line:

$$
\hat{y}=46.0+2.42 x
$$

Step3

Assume Assumptions of Error are satisfied.

We can find the estimated standard error of the regression model, the estimator of σ,

$s=1.17011$

Interpretation:

\rightarrow We expect approximately 95% of the observed height(y) values to lie within 2.34022 of the least square line.

Regression Analysis: Height versus ShoeSize
The regression equation is
Height $=46.0+2.42$ ShoeSize

Predictor Coef SE Coef T P
Constant $46.014 \quad 2.593 \quad 17.740 .000$
ShoeSize $2.4206 \quad 0.3577 \quad 6.77 \quad 0.007$
$\mathbf{S}=\mathbf{1 . 1 7 0 1 1} \mathrm{R}-\mathrm{Sq}=93.9 \% \quad \mathrm{R}-\mathrm{Sq}(\mathrm{adj})=91.8 \%$

Analysis of Variance
Source DF SS MS F P
Regression $\quad 162.69362 .69345 .790 .007$
Residual Error 34.1071 .369
Total 466.800

Predicted Values for New Observations

New
Obs Fit SE Fit $95 \% \mathrm{Cl} \quad 95 \% \mathrm{Pl}$
$165.3790 .614(63.423,67.334)(61.173,69.584)$

Values of Predictors for New Observations

New

Obs ShoeSize
28.00

Step4

Check usefulness of the hypothesized model.

I) Test for Model Utility: Simple Linear regression

Since we hypothesize from the graph that they are positive linearly related, then just check this hypothesis.

$$
\begin{aligned}
& H_{o}: \beta_{1} \leq 0 \\
& H_{A}: \beta_{1}>0
\end{aligned}
$$

Test Statistics: $\mathrm{t}=6.77$ with $\mathrm{df}=3$
Rejection Region: $\boldsymbol{t > 2 . 3 5 3}$
Decision: Reject Ho at $\alpha=0.05$

Conclusion: There is enough evidence to conclude that the height and shoe size are positively correlated (height increases as shoe size increases).

Regression Analysis: Height versus ShoeSize

II) $95 \% \mathrm{CI}$ for β_{1}

$$
\hat{\beta}_{1} \pm t_{\alpha / 2} S_{\beta_{1}}=2.42 \pm 3.182(0.3577)
$$

(1.28,3.56)
\rightarrow We are with 95% confidence that the true mean increase in the height per additional shoe size is between 1.28 and 3.56 inches.

III) Coefficient of determination

$$
r^{2}=0.939
$$

$\rightarrow 93.9 \%$ of the sample variation in height(y) is explained by the shoe size (x)

IV) Coefficient of correlation

$$
r=+\sqrt{r^{2}}=\sqrt{0.939}
$$

$\rightarrow r=0.969$
\rightarrow The height tend to increase as the shoe size increases, strong positive linear relation

All signs in step 4 pointed out a strong linear relationship between the height(y) and the shoe size(x).
\rightarrow Proceed step 5

Step5

- Suppose we want to predict the height of women if the shoe size is 8

$$
\begin{aligned}
& \hat{y}=46.0+2.42(8) \\
& \hat{y}=65.36
\end{aligned}
$$

\rightarrow The predicted height value for a woman with shoe size is 65.36 inches.

- Find and interpret the 95% Confidence Interval for the mean height when the shoe size is 8 .

From the Minitab, we get $(63.423,67.334)$
\rightarrow We are 95% confident that the average estimated height for all possible subject with shoe size 8 is between 63.423 and 67.334 inches

- Find and interpret the 95% Prediction Interval for the mean height when the shoe size is 8 .

From the Minitab, we get $(61.173,69.584)$)
\rightarrow We predict with 95% confidence that the height for a women with shoe size 8 to fall between 61.173 and 69.584 inches

Regression Analysis: Height versus ShoeSize
The regression equation is Height $=46.0+2.42$ ShoeSize

Predictor	Coef	SE Coef	T	P
Constant	46.014	2.593	17.74	0.000
ShoeSize	2.4206	0.3577	6.77	0.007

$S=1.17011 \quad R-S q=93.9 \% \quad R-S q(a d j)=91.8 \%$

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	1	62.693	62.693	45.79	0.007
Residual Error	3	4.107	1.369		
Total	4	66.800			

Predicted Values for New Observations
New

Obs	Fit	SE Fit	95% CI	95% PI
1	65.379	0.614	$\mathbf{(6 3 . 4 2 3 , 6 7 . 3 3 4)}$	$\mathbf{(6 1 . 1 7 3 , 6 9 . 5 8 4)}$

Values of Predictors for New Observations

New
Obs ShoeSize
18.00

