Example: Suppose we want to find the relationship between the show sizes of women and their height. We randomly selected 5 women and recorded their shoe sizes and heights.

Shoe Size	Height in.
5	59
6.5	62
7	62
7.5	63
9	70

Step1

Hypothesize a model to relate the height(y) and shoe size(x): straight line probabilistic model $y = \beta_0 + \beta_1 + \varepsilon$ Or same thing as saying $E(y) = \beta_0 + \beta_1$ Since we expect the error to be 0

MINITAB RESULTS

Regression Analysis: Height versus ShoeSize

The regression equation is Height = 46.0 + 2.42 ShoeSize

 Predictor
 Coef
 SE
 Coef
 T
 P

 Constant
 46.014
 2.593
 17.74
 0.000

 ShoeSize
 2.4206
 0.3577
 6.77
 0.007

S = 1.17011 R-Sq = 93.9% R-Sq(adj) = 91.8%

Analysis of Variance

 Source
 DF
 SS
 MS
 F
 P

 Regression
 1
 62.693
 62.693
 45.79
 0.007

 Residual Error
 3
 4.107
 1.369

 Total
 4
 66.800

Predicted Values for New Observations

New

Obs Fit SE Fit 95% CI 95% PI 1 65.379 0.614 (63.423, 67.334) (61.173, 69.584)

Values of Predictors for New Observations

New Obs ShoeSize 1 8.00

 $\hat{\beta}_1 = 2.42$, implies that the estimated mean height(y) increases by 2.42 inches for each additional size of shoe. (Valid only over range of x : 5 to 9.5)

 $\hat{\beta}_0 = 46.0$, implies that a shoe size of 0 has an estimated mean height (y) of 46 inches. (no practical interpretation)

The least square line: $\hat{y} = 46.0 + 2.42x$

Assume Assumptions of Error are satisfied.

We can find the estimated standard error of the regression model, the estimator of $\,\sigma$,

s = 1.17011

Interpretation:

 \rightarrow We expect approximately 95% of the observed height(y) values to lie within 2.34022 of the least square line.

Regression Analysis: Height versus ShoeSize

The regression equation is Height = 46.0 + 2.42 ShoeSize

 Predictor
 Coef
 SE
 Coef
 T
 P

 Constant
 46.014
 2.593
 17.74
 0.000

 ShoeSize
 2.4206
 0.3577
 6.77
 0.007

S = 1.17011 R-Sq = 93.9% R-Sq(adj) = 91.8%

Analysis of Variance

 Source
 DF
 SS
 MS
 F
 P

 Regression
 1
 62.693
 62.693
 45.79
 0.007

 Residual Error
 3
 4.107
 1.369
 1.369

 Total
 4
 66.800
 1.369
 1.369

Predicted Values for New Observations

New

Obs Fit SE Fit 95% CI 95% PI 1 65.379 0.614 (63.423, 67.334) (61.173, 69.584)

Values of Predictors for New Observations

New Obs ShoeSize 2 8.00

Check usefulness of the hypothesized model.

I) Test for Model Utility: Simple Linear regression

Since we hypothesize from the graph that they are positive linearly related, then just check this hypothesis.

 $H_o: \beta_1 \le 0$ $H_A: \beta_1 > 0$

Test Statistics: t=6.77 with df=3

Rejection Region: t>2.353

<u>Decision</u>: Reject Ho at α =0.05

<u>Conclusion</u>: There is enough evidence to conclude that the height and shoe size are positively correlated (height increases as shoe size increases).

Regression Analysis: Height versus ShoeSize

The regression equation is Height = 46.0 + 2.42 ShoeSize
Predictor Coef SE Coef T P Constant 46.014 2.593 17.74 0.000 ShoeSize 2.4206 0.3577 <mark>6.77</mark> 0.007
S = 1.17011 R-Sq = 93.9% R-Sq(adj) = 91.8%
Analysis of Variance
Source DF SS MS F P Regression 1 62.693 62.693 45.79 0.007 Residual Error 3 4.107 1.369 Total 4 66.800
Predicted Values for New Observations
New Obs Fit SE Fit 95% CI 95% PI 1 65.379 0.614 (63.423, 67.334) (61.173, 69.584)
Values of Predictors for New Observations
New Obs ShoeSize 1 8.00

II) 95% CI for β_1

 $\hat{\beta}_1 \pm t_{\alpha/2} s_{\beta_1} = 2.42 \pm 3.182(0.3577)$ (1.28,3.56)

 \rightarrow We are with 95% confidence that the true mean increase in the height per additional shoe size is between 1.28 and 3.56 inches.

III) Coefficient of determination

 $r^2 = 0.939$

 \rightarrow 93.9% of the sample variation in height(y) is explained by the shoe size(x)

IV) Coefficient of correlation

 $r = +\sqrt{r^2} = \sqrt{0.939}$ $\Rightarrow r = 0.969$

→ The height tend to increase as the shoe size increases, strong positive linear relation

Regression Analysis: Height versus ShoeSize

The regression equation is Height = 46.0 + 2.42 ShoeSize Predictor Coef SE Coef т P
 Constant
 46.014
 2.593
 17.74
 0.000

 ShoeSize
 2.4206
 0.3577
 6.77
 0.007
 S = 1.17011 R-Sq = 93.9% R-Sq(adj) = 91.8% Analysis of Variance
 Source
 DF
 SS
 MS
 F
 P

 Regression
 1
 62.693
 62.693
 45.79
 0.007

 Residual Error
 3
 4.107
 1.369

 Total
 4
 66.800
 Predicted Values for New Observations New Dbs Fit SE Fit 95% CI 95% PI 1 65.379 0.614 (63.423, 67.334) (61.173, 69.584) Obs Values of Predictors for New Observations New Obs ShoeSize 1 8.00

All signs in step 4 pointed out a strong linear relationship between the height(y) and the shoe size(x). \rightarrow Proceed step 5

Suppose we want to predict the height of women if the shoe size is 8

$$\hat{y} = 46.0 + 2.42(8)$$

$$\hat{v} = 65.36$$

 \rightarrow The predicted height value for a woman with shoe size is 65.36 inches.

• Find and interpret the 95% Confidence Interval for the mean height when the shoe size is 8.

From the Minitab , we get (63.423, 67.334)

 \rightarrow We are 95% confident that the average estimated height for all possible subject with shoe size 8 is between 63.423 and 67.334 inches

• Find and interpret the 95% Prediction Interval for the mean height when the shoe size is 8.

From the Minitab , we get (61.173,69.584))

 \rightarrow We predict with 95% confidence that the height for a women with shoe size 8 to fall between 61.173 and 69.584 inches

Regression Analysis: Height versus ShoeSize

The regression equation is Height = 46.0 + 2.42 ShoeSize Predictor Coef SE Coef T P Constant 46.014 2.593 17.74 0.000 ShoeSize 2.4206 0.3577 6.77 0.007 S = 1.17011 R-Sq = 93.9% R-Sq(adj) = 91.8% Analysis of Variance Source DF SS MS F P Regression 1 62.693 62.693 45.79 0.007 Residual Error 3 4.107 1.369 Total 4 66.800 Predicted Values for New Observations

New				
Obs	Fit	SE Fit	95% CI	95% PI
1	<mark>65.379</mark>	0.614	(63.423, 67.334)	(61.173,69.584)

Values of Predictors for New Observations

New Obs <mark>ShoeSize</mark> 1 **8.00**