Test of Hypothesis about Population Mean

1. A trucking company claims that the average weight of a fully loaded moving van is 12,000 lb. The highway patrol decides to check this claim. A random sample of 30 moving vans shows that the average weight is 12,300 lb. with a standard deviation of 800 lb. Construct a hypothesis test to determine whether the average weight of a moving van is more than 12,000 lb. Use a 5% level of significance.

H_o: $\mu = 12,000$ H_a: $\mu > 12,000$

Critical value: to = 1.699

Test Statistic: t = 2.054

P value = 0.0245

Decision: Reject H_0

Conclusion: At 5% level of significance, we have sufficient evidence to conclude that average weight of a moving van is greater than 12,000 lb.

2. A cigarette company claims that their cigarettes contain an average of only 10 mg of tar. A random sample of 100 cigarettes shows the average tar content to be 11 mg with standard deviation 4.5 mg. Construct a hypothesis test to determine whether the average tar content of cigarettes is different from 10 mg. Use a 1% level of significance.

Ho: $\mu = 10 \text{ mg}$ Ha: $\mu \neq 10 \text{ mg}$

Critical value: $to = \pm 2.263$

Test Statistic: t = 2.222

P value = 0.0285

Decision: Fail to Reject H_0

Conclusion: At 1% level of significance, we have insufficient evidence to conclude that average amount of tar is different from 10 mg.

Test of Hypothesis about Population Proportion

1. Increasing numbers of businesses are offering child-care benefits for their workers. However, one union claims that more than 80% of firms still do not offer any child-care benefits. A random sample of 500 companies is selected, and only 80 of them offer child-care benefits. Test the union claim at $\alpha = 0.05$.

Hypothesized Parameter value:
$$p_0 = .80$$
Number of Successes X = 500 - 80 = 420

H_0: P = .80
H_a: P > .80

Point -estimator: $\hat{p} = \frac{x}{n} = \frac{420}{500} = .84$
T.S.: $Z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0 q_0}{n}}} = \frac{.84 - .80}{\sqrt{\frac{.8 \times .2}{500}}} = 2.24$

RR: Reject H₀ if Z > 1.645

P-value = P (Z > 2.24) = 0.5 - 0.4875 = 0.0125
P-val < α → Decision: Reject H₀

Conclusion:

At α = 0.05 there is sufficient evidence to conclude that more than 80% of firms still do not offer any childcare benefits.

2. A coin is tossed 1000 times and 540 heads appear. At $\alpha = 0.03$, test the claim that this is a biased coin.

Hypothesized Parameter value: p₀ = .50 Number of Successes X = 540

H₀: P = .50 H_a: P \neq .50 Point -estimator: $\hat{p} = \frac{x}{n} = \frac{540}{1000} = .54$ T.S.: $Z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0 q_0}{n}}} = \frac{.54 - .50}{\sqrt{\frac{.5 \times .5}{1000}}} = 2.53$ RR: Reject H₀ if Z > 2.17 or Z < -2.17

P-value = 2 × P (Z > 2.53) = 0.0114 P-val < α → Decision: Reject Ho

Conclusion: At α = 0.03 there is sufficient evidence to conclude that coin is biased.