Test of Hypothesis about Population Mean

1. A trucking company claims that the average weight of a fully loaded moving van is $\mathbf{1 2 , 0 0 0} \mathbf{l b}$. The highway patrol decides to check this claim. A random sample of $\mathbf{3 0}$ moving vans shows that the average weight is $12,300 \mathrm{lb}$. with a standard deviation of 800 lb . Construct a hypothesis test to determine whether the average weight of a moving van is more than $12,000 \mathrm{lb}$. Use a 5% level of significance.
$\mathrm{H}_{0}: \quad \mu=12,000$
$\mathrm{H}_{\mathrm{a}}: \quad \mu>12,000$
Critical value: $\mathbf{t o}=\mathbf{1 . 6 9 9}$

Test Statistic: $\mathrm{t}=2.054$
P value $=0.0245$
Decision: Reject H_{0}

Conclusion: At 5\% level of significance, we have sufficient evidence to conclude that average weight of a moving van is greater than $12,000 \mathrm{lb}$.
2. A cigarette company claims that their cigarettes contain an average of only 10 mg of tar. A random sample of 100 cigarettes shows the average tar content to be 11 mg with standard deviation 4.5 mg . Construct a hypothesis test to determine whether the average tar content of cigarettes is different from 10 mg . Use a 1% level of significance.

Но: $\mu=10 \mathrm{mg}$
На: $\mu \neq 10 \mathrm{mg}$

Critical value: $\mathbf{t o}= \pm \mathbf{2 . 2 6 3}$

Test Statistic: $\mathrm{t}=2.222$
P value $=0.0285$

Decision: Fail to Reject H_{0}
Conclusion: At $\mathbf{1 \%}$ level of significance, we have insufficient evidence to conclude that average amount of tar is different from 10 mg .

Test of Hypothesis about Population Proportion

1. Increasing numbers of businesses are offering child-care benefits for their workers. However, one union claims that more than $\mathbf{8 0 \%}$ of firms still do not offer any child-care benefits. A random sample of 500 companies is selected, and only 80 of them offer child-care benefits. Test the union claim at $\alpha=0.05$.

Hypothesized Parameter value: $\quad p_{0}=\mathbf{8 0} \quad$ Number of Successes $X=500-\mathbf{8 0}=\mathbf{4 2 0}$
$\mathrm{H}_{0}: \mathbf{P}=.80$
$\mathrm{H}_{\mathrm{a}}: \mathrm{P}>.80$
Point-estimator: $\hat{p}=\frac{x}{n}=\frac{420}{500}=.84$
T.S.: $\quad Z=\frac{\hat{p}-p_{0}}{\sqrt{\frac{p_{0} q_{0}}{n}}}=\frac{.84-.80}{\sqrt{\frac{.8 \times .2}{500}}}=\mathbf{2 . 2 4}$

RR: Reject $\mathbf{H}_{\mathbf{0}}$ if $\mathbf{Z}>\mathbf{1 . 6 4 5}$

P-value $=P(Z>2.24)=0.5-0.4875=0.0125 \quad P$-val $<\alpha \quad \rightarrow \quad$ Decision: Reject Ho

Conclusion:

At $\boldsymbol{\alpha}=0.05$ there is sufficient evidence to conclude that more than $\mathbf{8 0 \%}$ of firms still do not offer any childcare benefits.
2. A coin is tossed 1000 times and 540 heads appear. At $\alpha=0.03$, test the claim that this is a biased coin.

Hypothesized Parameter value: $p_{0}=.50 \quad$ Number of Successes $X=540$
$H_{0}: P=.50$
$\mathrm{H}_{\mathrm{a}}: \mathbf{P} \neq .50$
Point-estimator: $\hat{p}=\frac{\boldsymbol{x}}{\boldsymbol{n}}=\frac{\mathbf{5 4 0}}{\mathbf{1 0 0 0}}=.54 \quad$ T.S.: $Z=\frac{\hat{p}-p_{0}}{\sqrt{\frac{p_{0} q_{0}}{n}}}=\frac{.54-.50}{\sqrt{\frac{.5 \times .5}{1000}}}=\mathbf{2 . 5 3}$
RR: Reject \mathbf{H}_{0} if $\mathbf{Z}>\mathbf{2 . 1 7}$ or $\mathbf{Z}<\mathbf{- 2 . 1 7}$
P-value $=2 \times P(Z>2.53)=0.0114 \quad P$-val $<\alpha \quad \rightarrow \quad$ Decision: Reject Ho

Conclusion: At $\alpha=0.03$ there is sufficient evidence to conclude that coin is biased.

