Mathematical Economics Midterm #2, November 6, 2003

- 1. Are the following sets open in \mathbb{R}^2 ? Closed? Neither? Explain.
 - a) $A = \{(x, y) : x^2 + y^2 = 1\}.$

Answer: Let $f(x, y) = x^2 + y^2$. Because f is a quadratic polynomial, it is continuous. Now $A = f^{-1}(\{1\})$ and so A is closed because it is the inverse image of a closed set. However, A is not open. To see this consider $B_{\varepsilon}(1,0)$. This contains points such as $(1, \varepsilon/2)$ that are not in the set A. Since no ball about $(1,0) \in A$ is contained in A, A is not open.

b) $B = \{(x, y) : x^2 + 2xy + 12y^2 \le 36\}.$

Answer: Let $f(x, y) = x^2 + 2xy + 12y^2$. Because f is a quadratic polynomial, it is continuous. Now $B = f^{-1}((-\infty, 36])$ and so B is closed because it is the inverse image of a closed set. However, B is not open. To see this consider $B_{\varepsilon}(6, 0)$. This contains points such as $(6, \varepsilon/2)$ that are not in the set B. Since no ball about $(6, 0) \in B$ is contained in B, B is not open.

- 2. Consider the sequence $x_n = (-1)^n + n^2/(n^3 + 2n + 1)$.
 - *a*) Does it converge? If so, what is its limit?

Answer: It does not converge. Note that $|x_n - x_{n+1}| \rightarrow 2$.

b) If it doesn't converge, does it have any convergent subsequences? If so, identify one of them and compute its limit.

Answer: Yes, it has convergent subsequences. Two obvious ones are the subsequence of even terms (with limit 1) and the subsequence of odd terms (with limit -1).

3. Consider the differential system

$$\frac{\mathrm{d}}{\mathrm{dt}} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3x + y \\ x + 3y \end{pmatrix}$$

with initial conditions x(0) = 2 and y(0) = 3.

a) Write the system in matrix form.

Answer:

$$\frac{\mathrm{d}}{\mathrm{dt}}\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} 3 & 1\\ 1 & 3 \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix}.$$

b) Find the eigenvalues of this system.

Answer: The eigenvalue equation is $0 = (3 - \lambda)(3 - \lambda) - 1 = \lambda^2 - 6\lambda + 8$. This has solutions $\lambda = 2$ and $\lambda = 4$.

c) Is this system stable?

Answer: No, both eigenvalues are positive so it is unstable.

d) Find the solution to this system.

Answer: Since the original matrix is symmetric, we can find orthonormal eigenvalues. One eigenvector corresponding to $\lambda = 4$ is (1, 1)' and an eigenvector corresponding to $\lambda = 2$ is (1, -1)'. In both cases we can normalize by dividing by $\sqrt{2}$ to obtain orthonormal eigenvectors.

This yields basis matrix:

$$B = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \text{ with } B^{-1} = B' = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}.$$

and then

$$\mathsf{B}^{-1}\mathsf{A}\mathsf{B} = \Lambda = \begin{pmatrix} 4 & 0\\ 0 & 2 \end{pmatrix}$$

The solution is

$$\mathbf{B}^{-1}e^{\mathbf{\Lambda}\mathbf{t}}\mathbf{B}\begin{pmatrix}2\\3\end{pmatrix} = \frac{1}{2}\begin{pmatrix}5e^{4\mathbf{t}}-e^{2\mathbf{t}}\\5e^{4\mathbf{t}}+e^{2\mathbf{t}}\end{pmatrix}.$$

- 4. Robinson Crusoe has utility function $u(x, y) = \ln x + xy + y^2$. Crusoe has a production possibilities set given by $\{(x, y) : x \ge 1, y \ge 0, x + 2y \le 4, 3x + y \le 9\}$.
 - *a*) Is the production possibility set a closed set? Is it a bounded set? Explain.
 Answer: Yes, the production possibility set is closed. It can be written as {(x, y) : x ≥ 1} ∩ {(x, y) : y ≥ 0} ∩ {(x, y) : x + 2y ≤ 4} ∩ {(x, y) : 3x + y ≤ 9}. Each of these 4 sets is the inverse image of a closed set under a linear function and is closed. Thus the intersection is also closed.

The production possibilities set is also bounded. To see this, note that $1 \le x \le 3$ and $0 \le y \le 2$. It follows that $||(x, y)||^2 \le 3^2 + 2^2 = 13$, so $||(x, y)|| \le \sqrt{13}$.

b) Show that Crusoe's problem of maximizing utility over his production set has a solution.

Answer: The production set is compact because it is closed and bounded. Because $x \ge 1$, the function $\ln x$ is continuous on the production set. The polynomial terms are also continuous, so the sum f is continuous. By the Weierstrass Theorem, this continuous function must have a maximum on the compact production possibilities set.

- 5. Let $f(x, y) = x^2/(x^2 + y^2)$ so that $f \colon \mathbb{R}^2 \setminus \{(0, 0)\} \to \mathbb{R}$.
 - *a*) What is the range of f?

Answer: Clearly $0 \le f(x, y) \le 1$. Both endpoints can occur: f(0, 1) = 0 and f(1, 0) = 1. The range is [0, 1].

b) Is f onto?

Answer: No, ranf $\neq \mathbb{R}^2$.

c) Is f one-to-one?

Answer: No, f(0, 1) = f(0, 1/2) = 0.

d) Is f continuous?

Answer: Yes. It is the quotient of continuous functions and the denominator is non-zero.

e) Compute df

Answer:

df =
$$\left(\frac{2xy^2}{(x^2+y^2)^2}, \frac{-2yx^2}{(x^2+y^2)^2}\right)$$
.