
Mathematical Economics Final, December 13, 2013

1. Let f(x, y) = x + xy + x2. Is f concave or convex on R2
++?

Answer: We compute the Hessian. Df = (1 + y + 2x, x), so

H = D2f =

(

2 1

1 0

)

.

Here H11 = 2 > 0 and detH = −1 < 0. Since H11 > 0, it cannot negative definite, and since

detH < 0, it cannot be positive definite. The matrix H violates both sign patterns, and it follows it

is indefinite. The function f is neither concave nor convex.

2. A consumer has utility function u(x, y) = x + y. The consumer consumes non-negative quantities

of both goods, subject to two budget constraints: 3x + 2y ≤ 6 and 2x + 3y ≤ 6. Find (x∗, y∗) that

maximizes utility subject to the above four constraints. Be sure to check the constraint qualification.

Answer: This sort of problem can arise when one of the goods is rationed via ration coupons,

and there is a market for ration coupons where the relative price for coupons is different than for

goods. We first consider constraint qualification. There are four constraints: 3x + 2y − 6 ≤ 0,

2x + 3y− 6 ≤ 0, −x ≤ 0, and −y ≤ 0. The matrix of derivatives of the constraints is:













3 2

2 3

−1 0

0 −1













.

Constraint qualification will be satisfied as long as at most 2 constraints bind. Examining the

constraints shows that at most 2 can bind (see the diagram).

2x + 3y = 6

3x + 2y = 6

x1

x2

O
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The Lagrangian is L = x + y− λ(3x + 2y− 6) − µ(2x + 3y− 6) + νxx + νyy. The first-order

conditions are 1 − 3λ− 2µ + νx = 0 and 1 − 2λ− 3µ + νy = 0. There are 4 cases to consider.

1) x, y > 0. Complementary slackness implies νx = νy = 0. Solving the first-order condition

yields λ = µ = 1/5. The corresponding constraints both bind by complementary slackness,

yielding 3x + 2y = 6 and 2x + 3y = 6. The correspoding critical point is (x, y) = (6/5,6/5).

2) x = 0, y > 0. Here νy = 0 by complementary slackness. The two budget constraints reduce

to 2y ≤ 6 and 3y ≤ 6. The first cannot bind, so its multiplier (λ) is zero. The first-order conditions

become 1 + νx = 2µ and 1 = 3µ. Since µ = 1/3, νx < 0, which is impossible at a maximum.

3) x > 0, y = 0. Here νx = 0 and the budget constraints become 3x ≤ 6 and 2x ≤ 6. The

second cannot bind, so µ = 0. The first-order conditions become 1 = 3λ and 1 + νy = 2λ. This

implies νy < 0, which is impossible at a maximum.

4) x = y = 0. Here λ = µ = 0 by complementary slackness leaving the equations 1 + νx = 0

and 1 + νy = 0. Since νx, νy ≥ 0 at a maximum, this too is impossible.

In sum, there is only one critical point, (x, y) = (6/5,6/5), so we don’t need to worry about

second-order conditions.

3. Let A =

(

3 −1

−1 3

)

. Find exp(tA).

Answer: The characteristic equation is λ2 − 6λ+ 8 = 0, yielding eigenvalues σ(A) = {2,4}. The

corresponding eigenvectors are v2 = (1,1)T and v4 = (1,−1)T . Let P = [v2, v4]. We have

P =

(

1 1

1 −1

)

and P−1 =
1

2

(

1 1

1 −1

)

.

This implies D =

(

2 0

0 4

)

= P−1AP. Then
√
A = P

√
DP−1. Since

exp(tD) =

(

e2t 0

0 e4t

)

, exp(tA) =
1

2

(

e2t + e4t e2t − e4t

e2t − e4t e2t + e4t

)

.

4. Consider the difference equation xt+2 − 9xt = 8.

a) Find all steady state solutions to the difference equation above.

b) Find the solution to above equation with x0 = 0, x1 = 2.

c) Does the solution in (b) converge to the steady state?

Answer:

a) Setting xt = x̄, we find −8x̄ = 1, and the only steady state solution is x̄ = −1.
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b) We know that the general solution is xt = −1 + zt where zt satisifes the homogeneous

equation zt+2 − 9zt = 0. Substituting zt = λt we find λ2 − 9 = 0, so λ = ±3. This implies

the general solution has the form xt = −1 + α3t + β(−3)t. The initial conditions imply

0 = −1 + α + β and 2 = −1α− 3β. Solving, we obtain α = 1 and β = 0, so the solution

xt = −1 + 3t satisfies the difference equation and the inital conditions.

c) The solution xt = −1 + 3t does not converge anywhere.

5. On R2
+, let u(x1, x2) =

√

x1 + 4
√

x2. Suppose p ≫ 0 and m > 0. Maximize u subject to the

constraints xℓ ≥ 0 and p ·x ≤ m to find the Marshallian demand function x(p,m). Don’t forget

to check constraint qualification and concavity of the objective (or an appropriate second-order

condition).

Answer: We consider constraint qualification first. The matrix of derivatives of the constraints is:







p1 p2

−1 0

0 −1






.

At most two of the constraints can bind. Since any two rows of this matrix are linearly independent,

constraint qualification will be satisfied regardless of which constraints bind. We also note that the

objective u is strictly concave because its Hessian

H =

(

− 4

x
3/2
1

0

0 − 1

x
3/2
2

)

is negative definite (H1 < 0 and detH > 0).

The Lagrangian is L =
√

x1 +
√

x2 − λ(p1x1 + p2x2 − m) + µ1x1 + µ2x2, yielding first-order

conditions 1/2
√

x1 + µ1 = λp1 and 2/
√

x2 + µ2 = λp2. These cannot be satisfied if x1 = 0 or

x2 = 0. Thus x1, x2 > 0 and µ1 = µ2 = 0 by complemetary slackness.

Eliminating λ, we find
√

x2/4
√

x1 = p1/p2. Squaring and rearranging yields x2 = (16p2
1/p

2
2)x1.

We substitute in the budget constraint to find

p1x1 +
16p2

1

p2
x1 = m.

Thus

x1 =

(

p2

p1

)

m

p2 + 16p1
and x2 = 16

(

p1

p2

)

m

p2 + 16p1
.


