1. Consider the function \(f(t) = \begin{bmatrix} t^2 \\ -t \end{bmatrix} \).

 a) Compute the tangent vector of \(f \) at any \(t \).

 b) Give an equation for the tangent line at the point \(\begin{bmatrix} 4 \\ -2 \end{bmatrix} \).

 Answer:

 a) The tangent vector is given by the derivative \(\frac{df}{dt} = \begin{bmatrix} 2t \\ -1 \end{bmatrix} \).

 b) The point is \(f(2) \), so the tangent vector is \(\begin{bmatrix} 4 \\ -1 \end{bmatrix} \). There are several ways to write the tangent line. One is that

 \[
 L = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4 \\ -2 \end{bmatrix} + t \begin{bmatrix} 4 \\ -1 \end{bmatrix} \right\}.
 \]

 It can also be written by eliminating \(t \) from the equations. For that, \(y = -2 - t \), so \(t = -(2 + y) \). Substituting in \(x = 4 + 4t \) yields \(-4 = x + 4y \).

2. Let \(f: \mathbb{R}^2_+ \to \mathbb{R}_+ \) be defined by \(f(x, y) = x^{2/3}y^{1/3} \).

 a) Find the level curves of \(f \).

 b) Use the Implicit Function Theorem to show that \(y(x) \) defined by \(f(x, y(x)) = q \) for \(q > 0 \) defines a \(C^1 \) function \(y \).

 c) Using \(y \) as in part (b), compute \(\frac{dy}{dx} \).

 d) What happens if \(q = 0 \) in part (b). In particular, can you still compute \(\frac{dy}{dx} \)?

 Answer:

 a) The level curves are \(\{ (x, y) \in \mathbb{R}^2_+ : x^{2/3}y^{1/3} = q \} \) for \(q \geq 0 \).

 b) We examine whether \(\frac{\partial f}{\partial y} = (1/3)x^{2/3}y^{-2/3} \neq 0 \) for \(x, y \neq 0 \). This condition is satisfied since \(x^{2/3}y^{1/3} = q > 0 \). Because the partial derivative is non-zero, the Implicit Function Theorem tells us \(y(x) \) is a \(C^1 \) function.

 c) Using the Implicit Function Theorem, we find

 \[
 \frac{dy}{dx} = -\left(\frac{1}{3} \frac{x^{2/3}}{y^{2/3}} \right)^{-1} \times \left(\frac{2}{3} \frac{y^{1/3}}{x^{1/3}} \right) = -\frac{2y}{x}.
 \]
d) If $q = 0$, the level curve consists of both the non-negative x-axis and non-negative y-axis. When $x > 0$, $y(x) = 0$, and when $x = 0$, $y(x)$ can be any non-negative number. When $x > 0$, $dy/dx = 0$, and when $x = 0$, dy/dx is undefined.

3. Consider the problem of maximizing $3x + 4y$ subject to the constraint that $x^2 + y \leq 5$, $x \geq 0$ and $y \geq 0$.

 a) Without calculating it, prove this problem has a solution.

 b) Find the solution. Don’t forget to check constraint qualification.

Answer:

 a) Since the constraint set is compact (closed and bounded) and $3x + 4y$ is continuous, the Weierstrass Theorem guarantees there is a solution.

 b) It is obvious that all three constraints cannot simultaneously bind. We consider the matrix

 $\begin{bmatrix}
 2x & 1 \\
 -1 & 0 \\
 0 & -1
 \end{bmatrix}$.

 All rows are non-zero, and any two rows are linearly independent provided $x > 0$. When $x = 0$, we must include the second row when either other row will give us a linearly independent pair. This implies that constraint qualification holds.

 Now form the Lagrangian $\mathcal{L} = 3x + 4y - \lambda(x^2 + y - 5) + \mu_x x + \mu_y y$. The first-order conditions are

 $3 = 2\lambda x - \mu_x$, and

 $4 = \lambda - \mu_y$. \hspace{1cm} (1)

 Here $\lambda \geq 4 + \mu_y \geq 4 > 0$, so $x^2 + y = 5$ by complementary slackness. There are three cases to consider.

 If $x = 0$, then (1) becomes $3 = -\mu_x \leq 0$, which is impossible.

 If $y = 0$, then $x = \sqrt{5}$ and $\mu_x = 0$ by complementary slackness. It follows that $\lambda = 3/2\sqrt{5}$ by (1), which contradicts (2).

 The only possibility left is $x > 0$ and $y > 0$. Then $\mu_x = \mu_y = 0$ by complementary slackness. This implies $3 = 2\lambda x$ and $\lambda = 4$. Thus $x = 3/8$, so
\[y = 5 - (3/8)^2 = 311/64. \] As the only remaining option, (3/8, 311/64) must be the maximum.

4. Consider the quadratic form \(Q(x_1, x_2, x_3) = x_1^2 + 2x_1x_2 + x_2^2 + 3x_1x_3 - x_3^2 \) with constraint \(x_2 + x_3 = 0 \). Does this problem have a maximum, minimum, or saddlepoint at (0, 0, 0)? Explain why.

Answer: We form the bordered Hessian

\[
H = \begin{bmatrix}
0 & 0 & 1 & 1 \\
0 & 1 & 1 & 3/2 \\
1 & 1 & 1 & 0 \\
1 & 3/2 & 0 & -1 \\
\end{bmatrix}
\]

There are three variables \((n = 3)\) and one linear constraint \((m = 1)\), so we look at the last \(n - m = 2\) leading principal minors. They are \(H_3 = -1\) and \(H_4 = +1/4\). Since \(H_4(-1)^n = H_4(-1)^m = -1/4 < 0\), the quadratic form fails both the tests for positive definiteness and negative definiteness on the constraint set. As \(H_4\) is non-zero, we may conclude that \(H\) is indefinite on the constraint set and that \((0, 0, 0)\) is a saddlepoint.

Alternatively, consider the points \(x_1 = \epsilon(1, 2, -2)\) and \(x_2 = \epsilon(1, -2, 2)\). Both satisfy the constraint and \(Q(x_1) = -\epsilon^2\) and \(Q(x_2) = 3\epsilon^2\). This shows that \(Q\) takes both positive and negative values in any neighborhood of 0, so 0 is neither a constrained local max, nor constrained local min.