Homework Assignment #3

10.27 Show that the midpoint of $\ell(\mathbf{x}, \mathbf{y})$ occurs where $t = \frac{1}{2}$. In other words, if $\mathbf{z} = \frac{1}{2}\mathbf{x} + \frac{1}{2}\mathbf{y}$, show that $\|\mathbf{x} - \mathbf{z}\| = \|\mathbf{y} - \mathbf{z}\|$.

Answer: Here $\|\mathbf{x} - \mathbf{z}\| = \|\frac{1}{2}\mathbf{x} - \frac{1}{2}\mathbf{y}\|$ and $\|\mathbf{y} - \mathbf{z}\| = \|\frac{1}{2}\mathbf{y} - \frac{1}{2}\mathbf{x}\|$. Since the norm is absolutely homogeneous of degree 1, the two expressions are equal.

10.31 Transform each of the following nonparametrized equations into form (10):

a)
$$2x_2 = 3x_1 + 5;$$
 b) $x_2 = -x_1 + 7;$ c) $x_1 = 6.$

Answer:

- a) $\mathbf{x} = (0, 5/2) + t(1/3, 1/2).$
- b) $\mathbf{x} = (7,0) + t(-1,1).$
- c) $\mathbf{x} = (6,0) + t(0,1).$

11.3 Determine whether or not each of the following collections of vectors in \mathbb{R}^4 are linearly independent.

a)
$$\begin{pmatrix} 1\\0\\1\\0 \end{pmatrix}$$
, $\begin{pmatrix} 1\\0\\0\\1 \end{pmatrix}$, $\begin{pmatrix} 0\\0\\1\\1 \end{pmatrix}$; b) $\begin{pmatrix} 1\\0\\1\\0 \end{pmatrix}$, $\begin{pmatrix} 1\\0\\-1\\0 \end{pmatrix}$, $\begin{pmatrix} 1\\0\\0\\0\\0 \end{pmatrix}$.

Answer:

- a) Let the vectors be \mathbf{u}_1 , \mathbf{u}_2 , and \mathbf{u}_3 . We will have $x_1\mathbf{u}_1 + x_2\mathbf{u}_2 + x_3\mathbf{u}_3 = \mathbf{0}$ if and only if $x_1 + x_2 = 0$, $x_1 + x_3 = 0$, $x_2 + x_3 = 0$. The first two equations imply $x_2 = x_3$, so the third tells us $x_2 = x_3 = 0$. Then subsitute in the first to find $x_1 = 0$. Since the x's must be zero, the vectors are linearly independent.
- b) Let the vectors be \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 . Then $\mathbf{v}_1 + \mathbf{v}_2 2\mathbf{v}_3 = \mathbf{0}$, which means the vectors are linearly dependent.

;

11.14 Which of the following are bases of \mathbb{R}^3 ?

a)
$$\begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\2\\1 \end{pmatrix}; b) \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\2\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\1 \end{pmatrix}; c) \begin{pmatrix} 6\\3\\9 \end{pmatrix}, \begin{pmatrix} 5\\2\\8 \end{pmatrix}, \begin{pmatrix} 4\\1\\7 \end{pmatrix}$$

d) $\begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\2\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\0 \end{pmatrix}; e) \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\2\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}.$

Answer:

- a) No, not a basis. The set does not span. There need to be 3 basis vectors in \mathbb{R}^3 .
- b) No, not a basis. The vectors are not linearly independent as $2\mathbf{v}_1 \mathbf{v}_2 = \mathbf{v}_3$.
- c) No, not a basis. The matrix A formed by the column vectors has det A = 0, so it is not invertible. The vectors neither span, nor are linearly independent.
- d) Yes, it is a basis. There are 3 vectors and the matrix A formed by the column vectors has det A = -1, so it is invertible.

e) No, not a basis. The set is not linearly independent since $\mathbf{v}_1 + \mathbf{v}_4 = \mathbf{v}_2$. There need to be 3 basis vectors in \mathbb{R}^3 .

12.6 Prove that if $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ are sequences with limits x and y, respectively, then the sequence $\{x_n - y_n\}_{n=1}^{\infty}$ converges to the limit x - y.

Answer: Consider

$$|(x_n - y_n) - (x - y)| = |(x_n - x) - (y_n - y)|$$

$$\leq |x_n - x| + |y_n - y|.$$

Let $\epsilon > 0$. Choose N_1 such that $|x_n - x| < \epsilon/2$ for $n > N_1$. Then choose $N_2 \ge N_1$ with $|y_n - y| < \epsilon/2$ for $n > N_2$. It follows that for $n > N_2 \ge N_1$,

$$|(x_n - y_n) - (x - y)| < \epsilon/2 + \epsilon/2 = \epsilon,$$

establishing convergence.