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A quick summary of this chapter is that

1. A necessary condition for x0 to be an interior optimal point of the function f(x)
is that Df(x0) = 0. This equation is called the first order necessary condition.1

2. Appropriate conditions on the second derivative together with the first order
necessary condition are sufficient for an optimum

17.1 Maxima and Minima

We will use the terms max, maximizer, and maximum point more or less interchangeably.
The same is true of min, minimizer, and minimum point. They refer to points where a
function takes its maximum or minimum value. If it is unlikely to cause confusion, we
may identify the maximum or minimum point with the maximum or minimum value
of the function, both of which can be called the max or min.

Types of Maxima (and Minima). Let f : U → R be a real-valued function with domain
U ⊂ R

m.
• A point x∗ ∈ U is a max or global max of f over U if f(x∗) ≥ f(x) for all x ∈ U.
• A point x∗ ∈ U is a strict max or strict global max of f over U if f(x∗) > f(x) for all

x 6= x∗ with x ∈ U.
• A point x∗ ∈ U is a local max or relative max of f if there is a ball Bε(x∗) so that

f(x∗) ≥ f(x) for all x ∈ Bε(x∗).
• A point x∗ ∈ U is a strict local max or strict relative max of f if there is a ball Bε(x∗)

so that f(x∗) > f(x) for all x 6= x∗ with x ∈ Bε(x∗).
Similar terminology applies to minimum points.

If the graph of a function has several hills, the tops of hill represent local maxima.
The top of the highest hill is a global maximum.

1 WhenDf = 0 involves more than one equation, we sometimes refer to first order necessary conditions.
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17.2 First Order Conditions

As with functions from R to R, our main technique for finding optima will start by
rounding up the usual suspects. In the case of optimization, the usual suspects are the
critical points, points x∗ where Df(x∗) = 0. Critical points are not guaranteed to be
optimal, but all of the optimal points will be critical points. For interior optimal points,
it is necessary that they be critical points, but this is not sufficient to show they are in
fact optima. See the following example.

◮ Example 17.2.1: Non-Optimal Critical Point. Define f : R → R by f(x) = x3. Then
f′(x) = 3x2, so x = 0 is the only critical point. It is neither a max nor a min because for
any x > 0, f(x) > 0 = f(0) and for any x < 0, f(x) < 0. ◭

Theorem 17.2.2 establishes that all interior optima are critical points.

Theorem 17.2.2. Let f : U → R be a C
1 function defined on an subset U ⊂ R

m. If x∗ is
a local max or local min of f in U and an interior point of U, then Df(x∗) = 0. That is,

∂f

∂xi
(x∗) = 0 for i = 1, . . . ,m.

Proof. Consider the difference quotient. We will consider the case of a maximizer
x∗. Then f(x∗ + hei) ≤ f(x∗) for all h 6= 0 and i = 1, . . . ,m. It follows that

f(x∗ + hei) − f(x∗)

h
≤ 0 when h > 0

f(x∗ + hei) − f(x∗)

h
≥ 0 when h < 0.

Taking the limit as h → 0, we find

0 ≤
∂f

∂xi
(x∗) ≤ 0.

This holds for all i = 1, . . . ,m, so

∂f

∂xi
(x∗) = 0 for i = 1, . . . ,m.

There are weaker versions of this theorem that apply at boundary points. For some
intuition about this, consider an interval [a, b] ⊂ R. A differentiable function with a
local max at a will have f′(a) ≤ 0 while a local max at b will have f′(b) ≥ 0. Strict local
maxima will have f′(a) < 0 and f′(b) > 0.
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17.3 Toward the Second Order Conditions

We can use the Theorem 17.2.2 to identify possible optimal points. We need more
information to determine whether such points are optima.

We turn to Taylor’s formula for help in that effort. Let x∗ be a critical point, then
there is a point y in ℓ(x, x∗) with

f(x) = f(x∗) + Df(x∗)(x− x∗) +
1

2
(x− x∗)T

[

D2f(y)
]

(x− x∗)

= f(x∗) +
1

2
(x− x∗)T

[

D2f(y)
]

(x− x∗) (17.3.1)

because Df(x∗) = 0.
We can rewrite this as

f(x) − f(x∗) =
1

2
(x− x∗)T

[

D2f(y)
]

(x− x∗) (17.3.2)

The left-hand side of equation (17.3.2) will always be non-positive if the critical point
x∗ is a maximum and non-negative if x∗ is a mimimum. If the optimum is strict, that
changes to negative for a strict minimum and positive for a strict maximum.

Unless it is zero, the behavior of the second derivative will determine whether a
critical point is a maximum or minimum.

If the second derivative is zero, we need to check higher order terms, if possible. To
get a little feel for that, if both first and second derivatives are zero, a non-zero third
derivative ensures that an interior critical point is neither max nor min. If the third
derivative is zero, we then check the fourth derivative to see if it is positive or negative
definite. If it is zero, we continue to the fifth derivative, etc.

An example is f(x) = x4. This has a minimum at x = 0. Now f′(x) = 4x3, yielding
x = 0 as a critical point. However, f′′(0) = 0, so the second order conditions are not
helpful. The third derivative is f′′′(x) = 24x, which is again 0 at x = 0. Finally, the
fourth derivative is f(4)(x) = 2 > 0, indicating a minimum at x = 0.

On R
m, we can consider the tensors of the form

F(z) = D4f(x)(z⊗ z⊗ z⊗ z⊗ z),

which are positive definite if F(z) ≥ 0 and F(z) = 0 if and only if z = 0.
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17.4 Global Sufficient Conditions: Max and Min

We turn to the global sufficient conditions next because they exhibit the basic argument
in its purest form.

Suppose f is defined on U and x∗ is an interior critical point. To use equation (17.3.2),
we will need ℓ(x, x∗) ⊂ U for x ∈ U. The weakest condition that ensures this always
happens is that the domain U of f is star-shaped with respect to x∗. After all, U being
star-shaped with respect to x∗ requires precisely that ℓ(x, x∗) ⊂ U for all x ∈ U.

Of course, we also need x∗ in the interior of U to be sure that optima are critical
points, the basis for equation (17.3.2). With that in mind, we can now state a theorem
describing sufficient conditions for a maximum or minimum.

Theorem 17.4.1. Let f : U → R be a C
2 function defined on an subset U ⊂ R

m.
Suppose x∗ is a critical point of f in the interior of U and that U is star-shaped with
respect to x∗.

1. If the Hessian D2f(x) is negative semidefinite for every x ∈ U then x∗ maximizes
f over U.

2. If the Hessian D2f(x) is positive semidefinite for every x ∈ U then x∗ minimizes f
over U.

Proof. We start with equation (17.3.2):

f(x) − f(x∗) =
1

2
(x− x∗)T

[

D2f(y)
]

(x− x∗). (17.3.2)

where y ∈ ℓ(x∗, x). The line segment ℓ(x∗, x) ⊂ U because U is star-shaped with respect
to x∗. It follows that D2f(y) is negative semidefinite, so for all x ∈ U,

f(x) − f(x∗) =
1

2
(x− x∗)T

[

D2f(y)
]

(x− x∗)

≤ 0

showing that f(x) ≤ f(x∗) for every x ∈ U. The point x∗ maximizes f over U.
The proof of case (2) is the same, except that D2f(y) is positive semidefinite, making

f(x∗) ≤ f(x) for all x ∈ U.
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17.5 Global Sufficient Conditions: Strict Max and Min

For strict optima, we need definite Hessians, not semidefinite Hessians. The proofs of
cases (1) and (2) are barely modified from cases (1) and (2) in Theorem 17.4.1. Case
(3) is only sufficient in a negative sense. It shows that the critical point x∗ cannot be
either a max or min. Proving it takes some extra work. We need to use the fact that x∗

is an interior point to shrink down two vectors where the quadratic term of equation
(17.3.2) takes opposite signs. This yields two vectors that are actually in U where the
quadratic term takes opposite signs. We need them in U so that the corresponding y
where D2f is evaluated is also in U.

Theorem 17.5.1. Let f : U → R be a C
2 function defined on an subset U ⊂ R

m.
Suppose x∗ is a critical point of f in the interior of U and that U is star-shaped with
respect to x∗.

1. If the Hessian D2f(x) is negative definite for x ∈ U then x∗ strictly maximizes f

over U.
2. If the Hessian D2f(x) is positive definite for x ∈ U then x∗ strictly minimizes f

over U.
3. If the Hessian D2f(x∗) is indefinite then x∗ is neither a maximizer nor minimizer

of f over U.

You’ll notice that part (3) of the theorem doesn’t involve a global condition on the
Hessian. We only need to know the Hessian at x∗ to show that x∗ is neither a maximum
nor a minimum.

We call x∗ a saddlepoint of f if the Hessian D2f is indefinite at x∗. Saddlepoints
are neither local maxima nor minima. There are directions where f increases as you
move away from x∗ and there are directions where it decreases. If the function maps
R

2 → R, as is the case f(x) = x2
1 − x2

2, the graph is similar to a saddle shape in the
vicinity of x∗. In higher dimensions, the shapes can be more complex, but there will
still be two-dimensional slices where it looks locally like a saddle.
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17.6 Proof of Theorem 17.5.1

Theorem 17.5.1. Let f : U → R be a C
2 function defined on an subset U ⊂ R

m.
Suppose x∗ is a critical point of f in the interior of U and that U is star-shaped with
respect to x∗.

1. If the Hessian D2f(x) is negative definite for x ∈ U then x∗ strictly maximizes f

over U.
2. If the Hessian D2f(x) is positive definite for x ∈ U then x∗ strictly minimizes f

over U.
3. If the Hessian D2f(x∗) is indefinite then x∗ is neither a maximizer nor minimizer

of f over U.

Proof. We again start with equation (17.3.2):

f(x) − f(x∗) =
1

2
(x− x∗)T

[

D2f(y)
]

(x− x∗). (17.3.2)

where y ∈ ℓ(x∗, x). The line segment ℓ(x∗, x) ⊂ U because U is star-shaped with respect
to x∗. It follows that D2f(y) is negative definite, so for all x ∈ U with x 6= x∗,

f(x) − f(x∗) =
1

2
(x− x∗)T

[

D2f(y)
]

(x− x∗)

< 0

showing that f(x) < f(x∗) for every x ∈ U other than x = x∗. This proves x∗ strictly
maximizes f over U.

The proof of case (2) is the same, except that D2f(y) is positive definite, making
f(x∗) < f(x) for all x ∈ U, so x∗ stricly minimizes f over U.

In case (3) H = D2f(x∗) is indefinite. Find unit vectors ui with uT

1 Hu1 < 0 and
uT

2 Hu2 > 0. The two mappings, y 7→ uT

i
D2f(y)ui are both continuous in y. Choose

ε > 0 small enough that Bε(x∗) ⊂ U and both values of the quadratic form have the
same sign at y ∈ Bε(x∗) as they do at x∗.

Then for δ < ε, let
xi = δui + x∗ ∈ Bε(x∗) ⊂ U.

It follows that f(x1) < f(x∗) and f(x2) > f(x∗), showing that x∗ is neither a maximum
nor a minimum.
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17.7 Global Optima and Hessian Minors

We can use the Definite and Semidefinite Matrices Theorems to restate Theorems
17.4.1 and 17.5.1.

Theorem 17.4.1 Restated. Let f : U → R be a C
2 function defined on an subset U ⊂

R
m. Suppose x∗ is a critical point of f in the interior of U and that U is star-shaped with

respect to x∗.

1. If for every x ∈ U, the even order principal minors of the Hessian D2f(x) are non-
negative and the odd order principal minor are non-positive, then x∗ maximizes f
over U.

2. If for every x ∈ U, every principal minor of the Hessian D2f(x) is non-negative,
then x∗ minimizes f over U.

Theorem 17.5.1 Restated. Let f : U → R be a C
2 function defined on an subset U ⊂

R
m. Suppose x∗ is a critical point of f in the interior of U and that U is star-shaped with

respect to x∗.

1. If for every x ∈ U, the leading principal minors of the Hessian H = D2f(x) obey

(−1)k detHk > 0 for all k = 1, . . . ,m

then x∗ strictly maximizes f over U.
2. If for every x ∈ U, the leading principal minors of the Hessian H = D2f(x) obey

detHk > 0 for all k = 1, . . . ,m

then x∗ strictly minimizes f over U.
3. If the Hessian D2f(x∗) has leading principal minors that are non-zero and violate

the sign patterns in parts (1) and (2), then x∗ is neither a maximizer nor minimizer
of f over U.
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17.8 Second Order Sufficient Conditions at a Critical Point

The next set of second order conditions includes the second order sufficient conditions,
points (1) and (2) in the theorem. In these cases, we are able to show that a critical
point x∗ is a local max or min.

Theorem 17.8.1. Let f : U → R be a C
2 function defined on an subset U ⊂ R

m.
Suppose x∗ is a critical point of f in the interior of U.

1. If the Hessian D2f(x∗) is negative definite then x∗ is a strict local maximizer of f.
2. If the Hessian D2f(x∗) is positive definite then x∗ is a strict local minimizer of f.

Proof. We start with equation (17.3.2):

f(x) − f(x∗) =
1

2
(x− x∗)T

[

D2f(y)
]

(x− x∗). (17.3.2)

where y ∈ ℓ(x∗, x).
By Corollary 16.13.1, the set of positive (negative) definite matrices is an open set.

Choose ε > 0 so that Bε(x∗) is contained in that open set. Then choose x ∈ Bε(x∗).
The line segment ℓ(x, x∗) ∈ Bε(x∗), so D2f(y) will be positive (negative) definite for
x ∈ Bε(x∗).

Then for x ∈ Bε(x∗) and y ∈ ℓ(x, x∗),

(x− x∗)T
[

D2f(y)
]

(x− x∗)

{
> 0 when D2f(x∗) is positive definite

< 0 when D2f(x∗) is negative definite.

Now we apply equation (17.3.2).
It follows that when D2f(x∗) is positive definite, for all x ∈ Bε(x∗) with x 6= x∗,

f(x) > f(x∗). The point x∗ is a local minimizer, proving item (2).
It also follows that when Df(x∗) is negative definite, for all x ∈ Bε(x∗) with x 6= x∗,

f(x) < f(x∗). The point x∗ is a local maximizer, proving item (1).
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17.9 Second Order Necessary Conditions

Although we will not directly cite Corollary 16.13.2, the fact that the semidefinite ma-
trices are a closed set plays a key role in proving the second order necessary conditions.
We use a limiting argument instead of the corollary. That limiting argument could also
be adapted to provide an alternative proof to Corollary 16.13.2.

Theorem 17.9.1. Let f : U → R be a C
2 function defined on an subset U ⊂ R

m.
Suppose x∗ ∈ U0 is a local max or min. Then x∗ is a critical point of f, and:

1. If x∗ is a local maximizer, the Hessian D2f(x∗) is negative semidefinite.
2. If x∗ is a local minimizer, the Hessian D2f(x∗) is positive semidefinite.

Proof. That x∗ is a critical point of f is Theorem 17.2.2. Since x∗ is a critical point,
(17.3.2) holds:

f(x) − f(x∗) =
1

2
(x− x∗)T

[

D2f(y)
]

(x− x∗). (17.3.2)

where y is a point in ℓ(x∗, x).
If x∗ is a local max, we can take ε > 0 so that f(x) ≤ f(x∗) for x ∈ Bε(x∗). Then

0 ≥ f(x) − f(x∗) =
1

2
(x− x∗)T

[

D2f(y)
]

(x− x∗)

for all x ∈ Bε(x∗). Dividing by ‖x− x∗‖2, we obtain

0 ≥

(

(x− x∗)

‖x− x∗‖

)T
[

D2f(y)
]

(

(x− x∗)

‖x− x∗‖

)

Let u be any unit vector and define xn = x∗ + (1/n)u, so xn − x∗ = (1/n)u. For n
large, xn ∈ Bε(x∗) and

0 ≥

(

(xn − x∗)

‖xn − x∗‖

)T
[

D2f(yn)
]

(

(xn − x∗)

‖xn − x∗‖

)

≥ uT
[

D2f(yn)
]

u

where yn ∈ ℓ(xn, x
∗). Letting n → ∞, yn → x∗ and we obtain

0 ≥ uT
[

D2f(x∗)
]

u.

since D2f is continuous. Since this is true for any unit vector, D2f(x∗) is negative
semidefinite.

The case where x∗ is a local max is similar.
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17.10 Local Optima and Hessian Minors

As with the theorem on global optima, we can use the Definite and Semidefinite
Matrices Theorems to restate Theorems 17.8.1 and 17.9.1.

Theorem 17.8.1 Restated. Let f : U → R be a C
2 function defined on an subset U ⊂

R
m. Suppose x∗ is a critical point of f in the interior of U.

1. If the leading principal minors of the Hessian H = D2f(x∗) obey

(−1)k detHk > 0 for all k = 1, . . . ,m

then x∗ is a strict local maximizer of f.
2. If the leading principal minors of the Hessian H = D2f(x∗) obey

detHk > 0 for all k = 1, . . . ,m

then x∗ is a strict local minimizer of f.

Theorem 17.9.1 Restated. Let f : U → R be a C
2 function defined on an subset U ⊂

R
m. Suppose x∗ ∈ U0 is a local max or min. Then x∗ is a critical point of f, and:

1. If x∗ is a local maximizer, the even order principal minors of the Hessian D2f(x∗)
are non-negative and the odd order principal minors are non-positive.

2. If x∗ is a local minimizer, every principal minor of the Hessian D2f(x∗) is non-
negative.
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