Errata

Preface

Page xix, line 10: “Chrisope” should be “Christophe”.

Chapter 2

Page 56, paragraph 1: The last sentence of the paragraph should read:

When \(E \) is a Banach space with norm dual \(E' \), we refer to \(\sigma(E, E') \) as the weak topology on \(E \), and \(\sigma(E', E) \) as the weak* topology on \(E' \).

Chapter 3

Page 99, line 4: Should start

\[
\begin{aligned}
[y + e^{\nu(0)}/(1 - e^{\nu(0)})]e^{-\nu(c)} - 1/(1 - e^{\nu(0)}).
\end{aligned}
\]

Page 103, line 15: Should start

\[
W(c, 0) = c^j / \rho
\]

Chapter 4

Page 125, condition (2): Should read “\(x \in \mathbb{R}_+^{m+1} \), not “\(k \in \mathbb{R}_+^{m+1} \).

Page 126, line 5: Should read

\[
\sum_{j=0}^m \ell^j \leq 1 \text{ and } \ell^j, a^{ij} \geq 0 \text{ for all } i, j.
\]

Page 128, line 11: The definition of \(G \) should be:

\[
G(x, \epsilon, N) = \{ z \in s^m : |x_t - z_t| < \epsilon \text{ for } t = 1, \ldots, N \}.
\]

Page 152, line 8: Should have “\(D_i W_1(c_i^*, J(S^i e^*)) \)” instead of “\(W_1(c_i^*, J(S^i e^*)) \)”.
Chapter 5

Page 159, displayed equation: Should read:

\[1 + R(S^i e) = \frac{U_1(S^i e)}{U_2(S^i e)} = \frac{W_1(c_1, U(S^i e))}{W_2(c_1, U(S^i e))W_1(c_{i+1}, U(S^{i+1} e))} \]

Chapter 8

Page 293, lines 14-15: Should read:

a net trade \(x \) is \(c = ((x_0^0 + 1, x_1^0 + k), (x_0^1 + 1, x_1^1), \ldots) \). The consumer supplies labor inelastically, and has utility \(U(c) = U(x^1 + k, x_1^1, x_1^2, \ldots) \).

Page 293, beginning of paragraph 4 and display: Should read:

For (J3), suppose \(x \in X, y \in Y \) and \(\delta > 0 \) are given. Choose \(\alpha \leq 1 \) with \(\delta \geq \alpha b^1 \). Now

\[(-1, 0) + (-\delta, -\delta) + \alpha (1/\gamma, k/\gamma) = (-1 - \delta + \alpha /\gamma, -\delta + \alpha k /\gamma) \leq \alpha ((1 - \gamma)/\gamma, (k - \gamma b^1)/\gamma). \]

Page 299, line 16: Should have “(\(x^1, \ldots, x^H \))” instead of “(\(x_1, \ldots, x_H \))”.

Page 365, line -8: Should end with “\(\delta \| p \|_1 = \delta p e \leq -p \mathbf{x} \leq 0 \)”.