

# CHM3400 Resources

Chapter 3: The Second Law of Thermodynamics FLORIDA INTERNATIONAL UNIVERSITY









# The Second Law of Thermodynamics

- Entropy always increases!
- This may require us to include both the system and the surroundings.
- -In some cases, the entropy of the system decreases, which requires that the entropy of the surroundings increase.

$$H_2O_{(l)} \rightarrow H_2O_{(s)}$$

Entropy is Higher here

Entropy is Lower Here

This reaction is spontaneous because it is exothermic  $(\Delta S_{system} + \Delta S_{surroundings}) > 0$ 

5

# Entropy Effects on Efficiency

- Imagine a heat source that is used to convert heat into work.
- •As heat is transferred, work is done. The conversion of heat into work does not affect the entropy of the system.
- •This transfer of heat however reduces the entropy of the heat source  $(S = \frac{dq}{T})$ .
- In order for there to be a net increase in entropy, a cold source is created. -AKA a cold sink.

$$\Delta S = -\frac{q}{T_{hot}} + \frac{q'}{T_{cold}}$$

•This means that not all of the energy of the heat source is converted into work.



# **Entropy Effects on Changing Volume**

• Recall that if we allow a gas to expand isothermally, we can extract the maximum amount of work from the process. The internal energy of the system does not change, and therefore Q=W.

•This was expressed as:

$$W = -nRT \ln \frac{V_f}{V_i}$$

Using our equation for Entropy  $(S = \frac{dq}{T})$ , we can conclude that  $S = \frac{dw}{T}$ , therefore:

$$\Delta S = nR \ln \frac{V_f}{V_i}$$

If the gas is expanding,  $V_f > V_i$ , and therefore  $\Delta S > 0$ If the gas is compressed,  $V_f < V_i$ , and therefore  $\Delta S < 0$ 

This can also be expressed in terms of a pressure change:  $\Delta S = -nR \ln \frac{P_f}{P_f}$ 



## Entropy Effects on Changing Temperature

 $S = \frac{dq}{T}$ 

Integrating results in  $S = \frac{q}{T}$ .

• Recall that a transfer of heat can be expressed as  $q=C\Delta T$ , or q=CdTTherefore:

$$S = \frac{C}{T} dT$$

Integrating therefore yields:  $\Delta S = \int \frac{c}{\tau} dT$ 

$$\Delta S = C \ln \frac{T_f}{T_i}$$

 $\Delta S > 0$  when  $T_f > T_i$ 

# Entropy Effects on Phase Changes

• Recall that during a phase change, no work is done. All of the energy is transferred as heat. Therefore,  $\Delta H = q$ . Therefore:  $\Delta S = \frac{\Delta H_T}{T}$ 

This is true for boiling, freezing, melting, etc.

Vaporization is endothermic, therefore  $\Delta S > 0$ 

•Analogous relationships exist for other phase changes.

10



# Worked Example: Boiling Water

Calculate the entropy to heat water from 25  $^{\circ}\mathrm{C}$  to 100  $^{\circ}\mathrm{C}$ 

$$\Delta S = \frac{q}{T}$$
$$\Delta S = \frac{C}{T}$$
$$\Delta S = C \ln \frac{T_f}{T_i}$$
$$\Delta S = 75.29 \ln \frac{373 K}{298 K} kJ mol^{-1} K^{-1}$$
$$\Delta S = 0.0169 kJ mol^{-1} K^{-1}$$

Calculate the entropy of vaporization of water at 100 °C.

 $\Delta S = \frac{\Delta H_{vap}}{T}$  $\Delta S = \frac{40.7 \ kJ \ mol^{-1}}{373 \ K}$  $\Delta S = 0.11 \ kJ \ mol^{-1} K^{-1}$ 

| - |  |
|---|--|
|   |  |
|   |  |
|   |  |

# Worked Example: Boiling Water

Calculate the entropy to heat water from 25 °C to 100 °C  $\Delta S = \frac{q}{T}$   $\Delta S = \frac{C}{T}$   $\Delta S = C \ln \frac{T_f}{T_i}$   $\Delta S = 75.29 \ln \frac{373 K}{298 K} kJ mol^{-1}K^{-1}$   $\Delta S = 0.0169 kJ mol^{-1}K^{-1}$ Calculate the entropy of vaporization of water at 100 °C.  $\Delta S = \frac{\Delta H_{vap}}{T}$   $\Delta S = \frac{40.7 kJ mol^{-1}}{373 K}$   $\Delta S = 0.11 kJ mol^{-1}K^{-1}$ 

# Entropy

• How many different ways can you arrange the marbles in a line such that:

- A) All 3 red marbles are together
- B) 2 red marbles together
- C) No red marbles together

 $S = k \ln \omega$ 

- S Entropy
- k Boltzmann Constant
- $\omega$  number of microstates (the number ways the particles in a thermodynamic system can be arranged).



# Absolute Entropy

At T = 0 K, there is not thermal motion, and so there is no spatial disorder if the material is crystalline.

The conclusion therefore is that at 0 K all crystalline materials have the same entropy (0).

This is summarized by the Third Law of Thermodynamics

The entropies of all perfectly crystalline substances are the same at  $\mathbf{T}=\mathbf{0}$  K.

15

# **FIU** Absolute Entropy

At low temperatures, the heat capacity of a substance is a function of temperature such that:  $C(T) = aT^3$ 

Therefore, entropy at low temperature can be defined by:

$$S(T_f) - S(T_i) = \int \frac{C}{T} dT$$

$$S(T) - S(0) = \int \frac{aT^3}{T} dT$$

$$S(T) - 0 = a \int T^2 dT$$

$$S = \frac{1}{3}aT^3$$

$$S = \frac{1}{3}C(T)$$

| FIU Absolute Entropy                                    |                                                              |                                                        |
|---------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------|
| Substance                                               | $S_{\rm m}^{\Theta}$ /(J K <sup>-1</sup> mol <sup>-1</sup> ) |                                                        |
| Gases                                                   |                                                              | •Unsurprisingly molecules that are prope to a great    |
| Ammonia, NH <sub>3</sub>                                | 192.5                                                        | ensurprisingly, indice une prone to a great            |
| Carbon dioxide, CO <sub>2</sub>                         | 213.7                                                        | deal of disorder have higher absolute entropy values   |
| Helium, He                                              | 126.2                                                        | deal of disorder have ingher absolute entropy values.  |
| Hydrogen, H <sub>2</sub>                                | 130.7                                                        |                                                        |
| Neon, Ne                                                | 146.3                                                        |                                                        |
| Nitrogen, N <sub>2</sub>                                | 191.6                                                        |                                                        |
| Jxygen, O <sub>2</sub>                                  | 205.1                                                        | •Those that are highly ordered (crystalline) have much |
| water vapour, H <sub>2</sub> O                          | 188.8                                                        | i nose that are nighty ordered (crystanne) have much   |
| Liquids                                                 |                                                              | lower walnes                                           |
| Benzene, C <sub>6</sub> H <sub>6</sub>                  | 173.3                                                        | lower values.                                          |
| Ethanol, CH <sub>3</sub> CH <sub>2</sub> OH             | 160.7                                                        |                                                        |
| Nater, H <sub>2</sub> O                                 | 69.9                                                         |                                                        |
| Solids                                                  |                                                              |                                                        |
| Calcium oxide, CaO                                      | 39.8                                                         |                                                        |
| Calcium carbonate, CaCO <sub>3</sub>                    | 92.9                                                         |                                                        |
| copper, Cu                                              | 33.2                                                         |                                                        |
| Diamond, C                                              | 2.4                                                          |                                                        |
| Graphite, C                                             | 5.7                                                          |                                                        |
| ead, Pb                                                 | 64.8                                                         |                                                        |
| Magnesium carbonate, MgCO <sub>3</sub>                  | 65.7                                                         |                                                        |
| lagnesium oxide, MgO                                    | 26.9                                                         |                                                        |
| odium chloride, NaCl                                    | 72.1                                                         |                                                        |
| ucrose, C <sub>12</sub> H <sub>22</sub> O <sub>11</sub> | 360.2                                                        |                                                        |
| in, Sn (white)                                          | 51.6                                                         |                                                        |
| Sn (grey)                                               | 44.1                                                         |                                                        |



**Residual Entropy Worked Example** 

The entropy of  $FClO_3$  at 0 K is approximately 12 kJ/mol. How many different states are possible?

 $S = k \ln \omega$  $S = R \ln \omega$  $\ln \omega = \frac{S}{R}$  $\omega = e^{\frac{S}{R}}$  $\frac{12\frac{kJ}{mol K}}{\frac{kJ}{mol K}}$  $\omega = 4.23$  $\omega = 4$ 



# **Total Entropy and Gibbs Energy**

Recall that for a reaction to occur:  $\Delta S_{total} > 0$ 

Recall

$$\Delta S_{total} = \Delta S_{surr} + \Delta S_{sys}$$
  
also that  $\Delta S_{surr}$  can be expressed in terms of the enthalpy change of the  
system:  
$$\Delta S_{surr} = \frac{-\Delta H}{T}$$
  
$$\Delta S_{total} = \frac{-\Delta H}{T} + \Delta S_{sys}$$
  
$$T\Delta S_{total} = -\Delta H + T\Delta S_{sys}$$
  
$$-T\Delta S_{total} = \Delta H - T\Delta S_{sys}$$
  
$$\Delta G = \Delta H - T\Delta S_{sys}$$
  
Setting  $-T\Delta S_{total} = \Delta G$   
Where  $\Delta G$  is the Change in  
Gibbs Energy  
20

# **FIU** Gibbs Energy

• By defining the total entropy change at a given temperature as the change in Gibbs Energy

$$-T\Delta S_{total} = \Delta G$$
• We can expect that a reaction may spontaneously proceed to maximize the total entropy change.
Total Entropy
Progress of
Change
21

# Gibbs Energy and Non-expansion Work

- The value for  $\Delta G$  also provides a value for the maximum non-expansion work that can be extracted (at constant Temperature and Pressure).
- This includes any work other than that arising from expansion of the system.

-Electrical, mechanical, etc.

FII

U

$$\Delta G = w_{nonexp,max}$$

• This makes  $\Delta G$  very powerful as it can be used to calculate the maximum non-expansion work that can be harnessed from a reaction.

$$\Delta H_{rxn} = \sum_{\text{products}} vH_m - \sum_{\text{reactants}} vH_m \qquad \Delta_r S^{\circ} = \sum_{\text{products}} vS_m^{\circ} - \sum_{\text{reactants}} vS_m^{\circ} \\ \Delta G_{rxn} = \sum_{\text{products}} v\Delta G_f - \sum_{\text{reactants}} v\Delta G_f \\ 22$$

# • Summary the two probability of two probabi