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     1   Several hypotheses exist concerning how information is processed and how
GARCH (generalized autoregressive conditional heteoscedasticity) effects develop in
high frequency intraday data for a single series.  One hypothesis is that the amount or
quality of information reaches the marketplace in clusters.  A second hypothesis is that
the time it takes traders to process the information causes trading in clusters.  See
Diebold and Nerlove (1989) and Gallant, Hsieh, and Tauchen (1989).   See Bollerslev,
Chou and Kroner (1990) for an extensive review of the literature.

Information Dispersal: A Microstructure Analysis

 of Stock Index Futures Volatility Patterns

Abstract

The relationship between information and volatility has received considerable attention in the
literature.  This paper studies information by apply ing a different methodology, cross-spectral
analysis, to the transmission of vola tility between markets.  Cross-spectral analyzes the
strength of the relationships and the lead-lag characteristics between stock index futures
volatility measures for high frequency intraday futures volatility data.  The use of futures avoids
the difficulties inherent in cash index values, as well as providing reliable microstructure data
for volatility measures.  Open, high, low, and closing prices for each three minute time interval
are employed to calculate Garman-Klass volatility values for the S&P 500, MMI, and NYSE
futures contracts in order to examine the transmission of volatility.  Three theories concerning
the transmission of information  are examined with this data: the dominant market theory, the
pure information theory, and the independent markets theory.  The results show an information
transfer in volatility between the futu res instruments such that the dominant market  theory is
valid for a large number of cases.  

I. Introduction

Volatility  is an important measure of the flow  of information.  Mo dels by  Ross (1 989) and

Bookstaber and Pomerantz (1989) show that the  information-vola tility rela tionship is  more importa nt

than the information-price change relationship.  In addition, option prices, portfolio insurance

strategies, and other financial models are directly related to volatility, while the direction of

information flow and market volatility across marke ts is of interest to trade rs of due to possible lead-

lag volatility relationships.

The examination of the time series properties of volatility within a single financial market

series has rece ived atte ntion via the  application of GARCH.1  Another approach is to study volatili ty

transmission between locations (particula rly for currencies and  international stock indices) and

between stock index futures and cash indices.  For example, Engle, Ito and Lin (1990) examine

currency volatility transmission by applying GARCH methodology to the daily open and close

yen/dollar spot rate  in Tokyo, London, and New York.  They conclude that volatility is transmitted

from one location to another (volatility acts like a "meteor shower"), rather than volatility only

occurring  in one location (a "heat wave").  Najand, Rahman, and Yung (1992) use daily currency



     2  Other articles of interest concerning the degree of interrelatedness of international
equity markets on a daily basis, as well as the direction and magnitude of the
transmission of these market movements, include Fisher and Palasvirta (1990),
Philippatos, Christofi and Christofi (1983), and Hilliard (1979).

     3  Thus, while futures price changes lead cash changes, Chan, Chan and Karolyi
(1991) and Kawaller, Koch, and Koch (1990) show that the volatility relationship can go
in either direction.
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futures data to show that vo latility i n one currency fu tures contract is transmitted to other currency

futures, although the pattern is  very diverse.  

Studies of the transmission of volati lity among internati onal stock markets exam ine vola tility

spillovers  from one  marke t to another.  Eun and Shim (1989) use daily prices, Hamao, Masuli s, and

Ng (1990) a nd Lin, Eng le and Ito (1 994) use  daily open and closing  prices, and King and Wadhwani

(1990) use hourly prices around the 1987 crash to validate volatility spillovers among these

markets.2

Stock index futures versus cash index volatility  provide higher frequency da ta to exam ine

volatil ity transmission.  Cheung and Ng (1990) use 15  minute quo tes for the S&P 500 contrac t to

find that futures volatility leads cash market volatility in the first 15 minutes of trading.  Chan, Chan

and Karolyi (1991) use 5 minute  prices fo r the S&P  500 and  MMI contracts and find that vo latility

changes in the respective futures (cash) market predict changes in the cash (futures) market i.e.

the relationship goes in both directions.  Kawaller, Koch, and  Koch (19 90) calculate 30 -minute

volatil ity measures based on m inute-to-m inute price  changes fo r the S&P  500 futures and cash

markets.  They find no robust systematic pattern of futures volatility  leading  cash market vo latility,

or vice-versa, by using Granger causa lity tests.  T herefore, sometimes futures lead cash vola tility,

while other times cash lead futures or no lead relationship exists.3

Overall, the currency and international stock market studies show that volatility does spill

over from one m arket to another.  However, the lack o f high-frequency intrada y data and the

differing trading hours among the various spot currency and inte rnational s tock markets c reate

difficulties in examining volatility lead-lag structures and the process of information transfer.  The

stock index futures/cash market studies do provide intraday evidence of volatility transmission

between these markets, but the direction and streng th of this relationship changes.  Moreover, the

stale prices inherent in cash index data makes definitive conclusions difficult.



     4  One minute time intervals often have few transactions per minute for the lower
liquidity stock index contracts.  This problem with liquidity created difficulty for the
measure of volatility employed, therefore three minute intervals are used here. 
Originally the Value Line contract also was examined.  However, a lack of liquidity for
most of the months analyzed adversely affected the interpretation of the results.

     5 Spot indices impound serial correlation into the data due to less frequent trading of
smaller capitalization issues.  This serial correlation from the smoothing effect of using
"old" prices results in downwardly biased volatility estimates for the cash indices.  Thus,
the futures transactions data provide a more accurate high frequency measure of
volatility than available for the cash indices.   Cheung and Ng (1990), Herbst and
Maberly (1987), Herbst, McCormack and West (1987), and Kawaller, Koch, and Koch
(1987),  among others, show that futures price changes lead cash stock indices price
changes by 15 to 30 minutes. 
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The purpose of this paper is to apply a different methodology, cross-spectral  analysi s, to the

study of the transmissio n of volati lity betw een markets.  This  is accomplished by examining  the

strength of the relationship and the lead-lag characteristics of the information proce ssing

relationships by employing cross-spectral analysis between three stock index futures contracts for

three minute interval measures of vo latility.4  The three stock index futures studied here are the S&P

500, MMI, and NYSE contracts.  U sing futures m arkets avoids the  non-trading  difficulties with cash

indices, since futures trade prices immediately reflect market sentiment.  Moreover, the number of

trades available for futures contracts allow the high-frequency measures of volatili ty, which provides

more precise analysis than other studies which employ 15 and 30 minute intervals.5  While the MMI

contract currently has  very low  volume , this contrac t had sufficient transactions  during the period

of analys is to obta in valid c onclusions concerning the transm ission o f volatili ty.

The empirical evidence in this paper shows that information flow from one market to

another, as evidenced in volatility measures, does occur between stock index futures for a large

majo rity of cases.  Hence, the dominant market theory, i.e. where information initially becomes

known in one market and then passed  to other markets, is  strongly supported  by the evidence. 

II. Methodology

Cross-spectral analysi s allow s an exam ination of the  existence , strength, and lead-lag

relationships between tim e series whe n the time interval identifying the cycle or the lead-lag



     6  Identification of volatility cycles and the transmission of futures price volatility may
be indicative of the physical characteristics of information creation and dispersal as well
as the rates at which electronic information queues can be loaded and unloaded when
constrained by human factors.  Therefore, regular waves in volatility need not imply
exploitable market inefficiency, particularly if the amplitude of the waves is small relative
to random price movements in the price.  Alternatively, relationships may not be
apparent on normal market days, but may become evident in active periods.  Although
the exchanges that trade the index futures contracts in this study are in different
physical locations, modern electronic communications diminish the adverse effects of
location as a factor in information transfer.  The choice of three minute intervals for this
study is based on the belief that information is transmitted quickly.

     7  See the following for discussions of information theory and informed trader models:
Admati (1991), Admati and Pfleiderer (1988-89), Bookstaber and Pomerantz (1989),
French and Roll (1986), Kyle (1985), and Ross (1989).

     8  An example of a dominant market is shown by Blume, MacKinlay and Terker
(1989), who found that the S&P 500 stocks fell 7% more than non-S&P 500 stocks on
October 19, 1987.  They attributed the difference to order imbalances.  Another factor
affecting volatility relationships is the composition of the underlying stock indices (the
Blume, MacKinlay and Terker findings are related to this composition issue).  Hence,
institutional interest in the S&P 500 contract, and the resultant transmission of
information via arbitrage and program trading activity (in association with the liquidity of
the S&P 500 futures) would make this contract a dominant market. 
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component is not known a priori.6  In turn, high-frequency, liquid futures volatility data allow

examination of the patte rn of information flow.  Three theories co ncerning information flow are

examined here:7

! Dominant market theory: inform ation initia lly flows into the market that reacts the fastest to news.

Thus, a market with the g reatest li quidity  and lowest transactions costs, including the lowest bid-ask

spreads, can be a dominant market.  Alternatively, a market where certain traders have asymmetric

information causes tha t marke t to be more sens itive to info rmation, creating a  dominant market.

The S&P 500 futures contract has substantial liquidity and lower bid-ask spreads than other

stock index futures markets.  This liquidity also attracts program  trading.  Volatility would

then flow to the other markets.  Alternatively, asymmetric  information and knowledg e of the

activity of major stocks could have a greater initial effect on the MMI futures.8

! Pure inform ation theory : information is reflected in all markets at the same time, as traders use

all markets immediately upon receiving market information in order to maximize profits.

All public information reaches each trading floor at the same time via electronic news and/or

traders placing orders.  Ederington and Lee (1993) show that economic news is the major



     9  Spectral analysis decomposes the data into Fourier series.  Fourier coefficients
bear a strict relationship to the sample variance of the original series.  Thus, the use of
the Fourier series allows a type of analysis of variance of the original series.

     10  Terminology differs among those who explain/use spectral analysis.  For example,
our definition of coherence is called squared coherence by others.  Coherency is also
employed as a synonym for coherence.  Therefore, the values reported here would be
larger if the term coherence was used as the equivalent of correlation and coherence
squared was used as the equivalent of the coefficient of determination.
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factor affecting vo latility spikes i n interest rate  and currency futures contracts.  Such

macroeconomic news could then be transmitted instantaneously to all futures  marke ts, with

trades instituted by speculators, floor traders, and program traders.

! Independent markets theory : volatili ty in one futures  marke t is independent of the  volatili ty in other

markets.  This theory is consistent with the "noise" aspect of trading discussed in Adma ti and

Pfleiderer (1988-89), F rench and R oll (198 6), and Ky le (1985).  

Speculators  and hedgers in the individual futures markets dominate the volatility  behavior

of each market, such tha t information (volatility) is not passed from one market to another.

Cross-spectral analysis provides measures of time-dependent relationships between time

series.  While spectral anal ysis pro vides a  frequency  doma in analog to autocorrelation, cross-

spectral analysis provides an analog to cross-correlation analysis in the time domain.  The single

series spectrum reveals any regular rhythms, pulses, or cycles contained in the data, with the cross-

spectrum  disclosing such w ave propagation between time series data.9  

The principal measures of relevance in cross-spectral analysis are coherence, phase, and

gain; these measures are formally defined in the Appendix.  Coherence measures the relationship

between cycles of the same frequency in two time series.  Thus, coherence is interpreted as a

coefficient of determination.10  Zero coherences at all frequencies, as tested statistically, means  no

association between the two time series exists.  Phase measures the shift of a cycle of a given

frequency in one series vis-à-vis the second ser ies, and consequently reveals the lead-lag

relationship for that particular frequency.  The phase N(") of a cycle ranges from -B to B degrees.

If a complete cycle (period ) is 10 m inutes in leng th then a phase  of N(") = .5B means that the first

series leads the  second b y approximatel y 2 1/2 minutes, i .e. (1/2) x 10  x .5B/B.  For N(") = -.5B then

the second series leads the first by 2 1/2 minutes (negative values refer to a lead by the second



     11  The computer implementation of the spectral methodology works in the frequency
domain, which is the normal realm of communications engineers and scientists.  The
time dimension is more appropriate for financial economics data.

     12  Each data series is "padded" to a length of 8192 and "tapered" to achieve both
maximum computational efficiency and comparative uniformity of the results.  Padding is
necessary because the fast Fourier transform (FFT) algorithm used to analyze the data
is most efficient when the data series contains a number of observations that is an
integer power of 2 (213 is 8192).  Padding is accomplished by appending zeros to the
end of the data series.  Tapering is performed in order to reduce bias in the spectral
estimates whenever padding is done and is a standard adjustment for spectral analysis. 
Since the cross-spectral analysis examines relationships across markets for adjacent
time intervals, and each series is comprised of an equivalent number of non-zero
observations for any given month, the important criteria is that the data match in the
timing of their observations.  Thus, adding additional observations for padding purposes
does not affect this timing relationship nor does it adversely affect the results.  Brillinger
(1975) explains both techniques in depth, and the BMDP Statistical Software Manual,
Vol. 2 (1990) summarizes the procedure for tapering.  For the sake of brevity, and
because it is not central to this research, that material is not repeated here.
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series).  More generally, the lead of a series is computed as (.5 period X phase)/B.  Gain measures

the strength of a  cycle o f the same period in the dep endent se ries rela tive to the independent

series, that is, whether the strength is amplifie d or diminished.  The gain corresponds  to the

coefficient of the X variable in regression analysis.

Spectrum  estima tes are converted  to time doma in measures for reader convenience. A

frequency of 0.1 cycles per minute in the frequency domain translates to a period of 10 minutes in

the time domain.11  Spectral and cross-spectra l analysis are best applied to stationary time series

data.  If the data a re nonstationary then the high power results are concentrated at the lower

frequencies (longer time periods), while no power appears at the higher frequencies (shorter time

periods).   The data in this study are detrended and a high pass  filter techniq ue is em ployed  to

remove any emphasis on the longer time pe riods ca used by  nonstationa rity.  The resul ts bear out

the success of this standard technique.12 

Statistical hypotheses which associate  the cross-spectra l results to  the theories  relating

informa tion flow  to volati lity are as follow s: 

!  Hypothesis 1: A high coherence with a significant phase supports the dominant information

theory.

!  Hypothesis 2: A high coherence with a zero phase (no lead-lag effect) supports the pure

information theory.



     13   The most active futures contracts are employed in the analysis.  The most active
contract for the S&P 500 and NYSE contracts was always the nearby expiration, except
the December 1987 contact when the first deferred became the most active for five
trading days before the nearby expired.  The MMI nearby expires each month.  The
nearby MMI contract is most active up to and including the last day it is traded;
therefore, the current nearby MMI contract is always employed in the analysis.  The
choice of the months employed, especially the two average volatility months, was
constrained by the requirement that the Major Market Index was liquid.  August 1984
was the fourth most volatile month, but the MMI contract was not active.  The MMI also
became less active starting in the 1990s.  Also, prior to padding (explained above), the
number of actual time intervals varies because several days are missing from the
database, the market closed early after the October 1987 crash (which carried into
November 1987), and the number of trading days varies across months.  The first 15
minutes of the MMI contract, which trades before the cash markets open, is omitted from
the data.

     14  Wiggins (1992) shows that the Garman-Klass estimator is only slightly
downwardly biased, and is significantly more efficient than using close-to-close data.  
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!  Hypothesis  3: Insignificant coherence s support the independent marke ts theory.

III. Data

The five mo st volati le months since the  initiation of stock index futures, namely April,

October, November, and December 1987, and January 1988 are selected to exam ine vola tility

transmission across stock index futures.  For comparison, the two average volatility months of July

and Novem ber 198 6 are chosen from the  months with median volatil ity during the same time

period.13  

Three minute time intervals are gene rated from  the time and sales records of the S&P 500,

MMI,  and NYS E futures contracts for each day of the seven months chosen.  Each time interval

employs its open, high, low, and close price for each contract to generate Garman-Klass (1980)

volatil ity measures.  This measure is seven times more efficient than using the typical close-to-close

between intervals.14  The Garman-Klass volatility measure is defined by:

Var(GK)  =  1 /2 [ln(High)  -  ln(Low)] 2  -  [2 ln(2)  -  1]  [ln(Open)  -  ln(Clo se)]2  (1)

Table 1 provides summary statis tics on the data by m onth - including  the means of the time

interval Garman-Klass volatilities, the standard deviations of the volatili ty measures, the m aximum

values of the volatilities, and the means of the number of ticks (price changes) per time interval.

Note that the S&P  500 contract has a (measured) me an volati lity that is typicall y greate r than the



     15  In each case there are 172 frequencies (periods) for which the cross-spectral
measures are computed.  The number of frequencies is a function of the bandwidth,
which is explained below, and the number of observations.  The narrower the
bandwidth, the greater the number of frequencies.  The fewer the observations, the less
the number of frequencies.  Spectral methods are robust to outliers (see Reinmuth and
Geurts (1977)).  The October 1987 data possess outliers for the volatility measure.
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  (2)

other contracts, b ut the S&P 500 often has a low er standa rd deviation of vo latility.  The S&P 500

contract also has a much la rger numb er of ticks , showing  it to be the m ost active contrac t.  The

smaller number of ticks for the other contracts suggests that the high and low prices are biased

toward the mean, creating a  small er mea n volatili ty for these contracts than would be measured

if a larger number of ticks were available.

One minute time intervals also were examined for cross-spectral relationships. However,

36.5% of the MMI one-minute intervals and 27.7% of the NYSE intervals only had 0 or 1 tick (price

change).  Moreover, three months of the MMI contract had over 50% of the intervals with only 0 or

1 tick.  Since the Garman-Klass measure needs at least two observations to generate a positive

measure of vola tility, the one minute time interval was inappropriate for our purpose.

[SEE TABLE 1]

IV. Coherence and Phase Results

Table 2 shows the peak coherences and the associated F-values, and  periods, using "All

Periods" (frequencies) and fo r "Period s Less tha n 20 Minutes."15  Hypotheses 1 to 3 from Part II can

be tested by examining whether the peak coherences are statistically different from zero for each

of the seven contract m onths and the three contract pairings.  Thus, testing the peak coherences

determines whether a volatility relationship exists between the stock index futures contracts.

Fisher and Palasv irta (1990) employ a simulation procedure to show that testing the peak

coherence does not create biased results.  Moreover, the confidence interval results reported below

support the significance of the p eak coherences .  To test the significance of the peak coherences

one employs the  test statis tic, Y, which is calculated as: 



     16  The proper choice of the bandwidth filters out most of the spurious effects of
random shocks; specifically, it determines the width of the window for computing the
average of the periodogram for the frequency of the spectral analysis.  The bandwidth
was selected by using the narrowest bandwidth for which the spectral functions ceased
being smooth, a standard procedure termed "window closing" that is recommended by
Jenkins and Watts (1968).

     17  See Jenkins and Watts (1968, p. 437).
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where U represents the coherence between series X and series Y at frequency ", and m denotes

the window width; m = N BW /B, with N equaling the number of observations, and BW  is the

bandwidth used, B W  = 0.0171.  Acco rding to Brockwell and Davis (1991), the coherence is

distributed as the square of the multiple correlation coefficient, and thus Y - F(2, 4m ) under the

hypothesis *UXY(")* = 0.16 

[SEE TABLE 2]

The resultant F-values from (2) in Table 2 strongly reject Hypothesis 3, since the null

hypothesis that the peak  coherence equals zero at the 0.005 level is rejected for 41 of the 42

cases.  Moreover, these coherences are consistently high, typically over .60.  These strong results

exist both for the "All Periods" and "Less than 20 Minutes" colum ns, showing that the results a re

not dependent on synchronization o f cycles  in the "longer-term."

Table 3 provides the rela ted phases (in rad ians), leads (in m inutes), and gains for the three

minute intervals.  Leads are not given if the related coherence is insignificant.  A positive phase

means  that the first series leads, while a negative phase means the second series leads.  Equation

(3) provides the confidence interval for the phase:17

MXY(") ± arcsin {[(1 - UXY
2("))/UXY

2(")] [2F/(L-2)]}½ (3)

Where: MXY = the calculated phase between series X and Y (measured in degrees)

" = the frequency (period)

L = the degrees of freedom = N/P w here N is  the number of obse rvations

and P is  the period length

F2, L -2 = the F-value with 2 and L - 2 degrees of freedom.

[SEE TABLE 3]

Thirteen of the 21 cases for "All Pe riods" hav e signific ant phases, while 1 5 of the 20 phases

for "Less than 20 Minutes" are significant.  The resultant leads are less then 1.1 minutes in all



     18  In theory, the phases are transitive, i.e. if A leads B by three minutes and B leads
C by two minutes then A will lead C by five minutes.  The phase values in Table 3 are
not comparable since the periods of peak coherences differ from one pair to the next. 
Moreover, statistical fitting of the cycles also would affect the pure transitivity of the
results.
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cases, while the maximum possible lead for a 20 minute cycle would be 10 minutes.18  All results

are converted from  three minute periods to m inutes for ea sy com parison.  The results  in Tables 2

and 3 strongly reject the independent ma rkets theory, since the coherences are highl y significant.

The domina nt market theory receives the most support, since 75% of the shorter-period cases

possess signifi cant phase s. 

The gain, or "power" (as given in equation [A9]), is equivalent to a regression coefficient

between the independent se ries X and the dependent serie s Y using cycles of the  length of the

period of the cross-spec tral analysis.  Thus, the  gain dete rmines  the extent that Y magnifies the

effect of X.  If the stock index futures volatilities are similar for a given period, which is a plausible

assumption, then the gains  would be near one .  The actual gains  shown in Table 3 are relatively

close to one, with the exception of October 1987, supporting the use of the three minute time

interval as provid ing adeq uate inform ation on the re lative volatiliti es.  

IV. Coherence Diagrams

The purposes of cross-spectral analysis are to identify the periods (frequencie s) when the

two series have a high degree of association, i.e. coherence, and to identify any possible phase

shift of these series.  When significant relationships exist they typically will occur only at severa l

periods, not at the m ajority o f periods.  

Some applications have created confusion concerning the "typical" number of periods

possessing significant coherences.  In particular, employing cross-spectral coherence diagrams

involves a tradeoff between finding c learly i dentifiab le perio ds of peak coherences versus

generating "smooth" coherence diagrams.  The larger the size of the "window," the smoother the

coherence diagrams.  Some authors advocate windows using up to 40% of the observations to

produce a smoo th diagram.  Conversely, we employ  a narrow window to emphasize the peak

coherences, with the results that the coherence diagrams look more "choppy" than other spectral

applications in Finance and Business.  Thus, the ob jective  of our cross-spec tral analysis is to fi nd
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some periods possessing significant large coherences rather than many periods having lower

coherences.

V. Summary and Conclusions

This paper examines vola tility transm ission across stock index futures contra cts using

volatil ity measures for three  minute tim e interval s.  Employing liquid futures contracts creates fewer

difficulties than comparing stock index futures data to the "old" cash stock index value.  Cross-

spectral analysi s provid es a unique  technique to  examine  time based relationships between these

series.

The cross-spectral analysis of the three minute i ntervals p rovides very si gnificant

coherences with a large m ajority of significant phases.  The associated  leads are  typically less than

one minute.  The results support the dominant market theory of informati on transfer.  No support

is provided fo r the independent m arkets theory.  the short lead times associated with the shorter

time periods suggest that studies employ short interval or transactions data for volatility studies,

rather than the 15 to 30 minute inte rvals em ployed  in previous studies  on price c hanges.  To the

extent that some instability of the results does  exist, it is s imila r to the change in direc tion and

strength of the stock index/cash market lead-lag volatil ity relationships found by Kawaller, Koch, and

Koch (19 90) and o ther resea rchers.   

The results and conclusions here have implications for other markets.  Does information

(volatility) in the cash currency market move from one locati on to another in a sim ilar ma nner to

stock index futures volatility?  Does the  volatili ty flow from options marke ts to futures/ca sh markets

or vice-versa?  Is there an information flow between interest rate and stock index futures markets?

Further research in this area of information/volatility flow should provide interesting results.
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(A1)

(A2)

(A3)

(A4)

(A5)

APPENDIX

The Fourier tra nsform on which spectral analysis is based is defined in complex terms

(which is equivalent to an alternative definition using the cosine)  as 

where i is defined as i2 = –1, and  X(t), with t =  0, 1, 2, ... , T-1 denotes the time series to be

transformed, and where T is the frequency.

The transform yields real and imaginary parts for Z, denoted by A and B.

From the A and B terms of the transforms of two time series, X(t) and Y(t) the periodogram o f each,

and the cross-periodogram are defined by

The spectral density estima tes are estimated from the periodograms at frequency T by

smoo thing them with a weighting function spanning several frequencies, j, centered on frequency

"j.

The sum of the  weights  is unity.  A variety of weighting functions have been proposed.  For this
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(A6)

(A7)

(A8)

(A9)

paper we employed the BMDP procedure 1T, which uses a cosine shaped weighting function as

the default.  In the calculation of the weights a bandw idth parame ter $ is used w hich sets the

number of periodograms used for each estimate of the spectrum.

The spectrum of Y and the cross spectrum for X, Y are estimated similarly.

The coherence (called squared coherence by others) for frequency " is defined by

and the phase by

In cross-spectral applications, a regression coefficient, b, in the frequency domain is calculated,

relating  the independent variable X to the dependent variable Y, and that is used to  calcula te the

gain G XY("): 
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TABLE 1: SUMMARY STATISTICS FOR THREE MINUTE INTERVALS

                                           Mean of the Volatilities                                           
July 86 Nov 86 Apr 87 Oct 87 Nov 87 Dec 87 Jan 88

S&P 500  .00452 .00353 .00919 .17500 .01600 .00957 .01360
MMI  .00258 .00209 .00851 .18950 .01500 .00954 .01300
NYFE  .00416 .00328 .00867 .20060 .01400 .00811 .01260

                                   Standard Deviation of the Volatilities                                  
July 86 Nov 86 Apr 87 Oct 87 Nov 87 Dec 87 Jan 88

S&P 500  .0053 .0048 .0120   .7100  .0320  .0140 .0250
MMI  .0046 .0043 .0200 1.0500  .0550  .0180 .0420
NYFE  .0060 .0055 .0150   .9700  .0310  .0150 .0390

                                       Maximum Value of the Volatilities                                  
July 86 Nov 86 Apr 87 Oct 87 Nov 87 Dec 87 Jan 88

S&P 500   .065   .052   .246  17.90   .583   .217    .747
MMI   .077   .057   .449  37.50 1.812   .242  1.609
NYFE   .101   .071   .328  29.09   .565   .476  1.519

                                             Mean Numb er of Ticks                                          
July 86 Nov 86 Apr 87 Oct 87 Nov 87 Dec 87 Jan 88

S&P 500  17.28   15.14  24.61  19.85  20.07  17.99  22.70
MMI    7.94     5.94  14.53  13.71    5.73    6.09    8.31
NYFE    8.42     7.55  13.90  11.44    9.25    8.64  11.32
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TABLE 2: VO LATILITY PE AK CO HERE NCES 

      SP vs. M MI           SP vs. NY            MMI vs. NY    

All
Periods

< 20
Minutes

All
Periods

< 20
Minutes

 All
Periods

< 20
Minutes

July 86 Period of Peak Coh erence (min.)  17.1 17.1  27.8 18.0 34.5 16.5

Peak Coherence .628 .628 .630 .578 .476 .429

F-value 19.15 19.15 19.35 14.75 8.61 6.67

Nov 86 Period of Peak Coh erence  (min.) 73.5 11.4 110.2 12.6 79.2 9.6

Peak Coherence .753 .708 .843 .772 .664 .581

F-value 38.50 29.55 72.21 43.37 23.18 14.98

Apr 87 Period of Peak Coh erence  (min.) 32.7 20 45 20 20 20

Peak Coherence .647 .624 .821 .791 .703 .703

F-value 21.17 18.75 60.80 49.14 28.73 28.73

Oct 87 Period of Peak Coh erence  (min.) 42.6 7.8 7.8 7.8 7.8 7.8

Peak Coherence .868 .808 .752 .752 .751 .751

F-value 89.83 55.29 38.26 38.26 38.03 38.03

Nov 87 Period of Peak Coh erence  (min.) 19.7 19.7 51.3 19.0 32.1 19.7

Peak Coherence .604 .604 .446 .414 .645 .461

F-value 16.89 16.89 7.30 6.08 20.94 7.93

Dec 87 Period of Peak Coh erence  (min.) 64 6.0 9.3 9.3 96 8.7

Peak Coherence .657 .588 .715 .715 .431 .275

F-value 22.33 15.51 30.75 30.75 6.71 2.41*

Jan 88 Period of Peak Coh erence  (min.) 9.6 9.6 62.1 9.0 18.6 18.6

Peak Coherence .620 .620 .856 .792 .816 .816

F-value 18.36 18.36 80.60 49.48 58.59 58.59

Null Hypothesis:  Absolute value of peak volatility coherence is equal to zero.
Alternative Hypothesis:  Absolute value of peak coherence is greater than zero.
F(2,4m):  F(2,4) for (.005) = 5.79
If Ftable > F(2,4m), then reject null hyp othesis;  m  =  14.7;  4m =  58.8
* Accepts null hypothesis H0 = absolute va lue of cohe rence is zero  at the .005 sign ificance level.  A ll unstarred valu es reject null
hypothesis.
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TABLE 3: VO LATILITY PHASES, LEADS AND GAINS

      SP vs. M MI           SP vs. NY            MMI vs. NY    

All
Periods

< 20
Minutes

All
Periods

< 20
Minutes

 All
Periods

< 20
Minutes

July 86 Phase at Peak Coherence -.128 -.128 -.302 -.197 .000* -.225

Lead (min.) -.35 -.56 -.59

Gain .872 .872 .739 .684 .752 .473

Nov 86 Phase at Peak Coherence .006* .121 -.187 .171 -.376 -.504

Lead (min.) .22 .34 -.77

Gain .721 .828 .996 1.067 .985 .914

Apr 87 Phase at Peak Coherence -.625 .087* -.290 -.236 -.249 -.249

Lead (min.) .28* -.75 -.79

Gain .857 1.169 1.238 1.298 .820 .820

Oct 87 Phase at Peak Coherence -.487 .250 .562 .562 .152 .152

Lead (min.) .31 .70 .19

Gain 1.987 1.163 17.596 17.596 15.699 15.699

Nov 87 Phase at Peak Coherence -.340 -.340 .070* .438 -.125* .040*

Lead (min.) -1.07 -.56 .13*

Gain 1.244 1.244 .509 .456 .501 .285

Dec 87 Phase at Peak Coherence .094* .000* .074 .074 -.423* CNS

Lead (min.) .00* .11 CNS

Gain 1.027 1.481 .950 .950 .618 -.361

Jan 88 Phase at Peak Coherence -.081* -.081* -.142 -.208 -.024* -.024*

Lead (min.) -.12* -.30 -.07*

Gain 2.715 2.715 1.220 .995 .471 .471

Based on all periods of the cross-spectral analysis for the "All Period" columns and 20 minutes or less for the "20 Minute" column.

A positive phase/lead means the "1st series" leads, while a negative phase/lead means the "2nd series leads"  (or equivalen tly, the 1st
series lags).  The "1st series" is the contract on  the top line of the table heading.  
CNS = coheren ce is not significant (therefore the phase a nd lead are not importan t values).
Blanks  are placed for the lead for the "All Periods" column since the longer pe riod cycles  tend to become synchro nized and therefore
the lead becomes meaningless.
* The phase, and therefore the lead, is not significant at the  .005 level.


