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          THE EFFECT OF ADDITIVE RATE SHOCKS ON DURATION AND

                  IMMUNIZATION: EXAMINING THE THEORY

                               ABSTRACT

This paper examines the Macaulay, Hicks, and continuous time

formulations of duration by analyzing the term structure dynamics that

are necessary to derive these mathematical models.  The results

presented help to explain the true effects of interest rate risk upon

the values of fixed-income securities, as well as provide a rationale

for the development of duration models in a general equilibrium

framework.  In particular, we show that the Hicksian formulation of

duration is derived from a uniform infinitesimal additive shock to all

yields to maturity on a flat yield curve, while the Macaulay duration

is derived from a uniform infinitesimal additive shock to all spot

rates.  In addition, the Macaulay duration is shown to be inconsistent

with a uniform infinitesimal additive shock to any single period spot

or forward rate spanning a period less than the maturity of the

security.  The continuous time representation of duration is examined

to show the immunizing condition and how this result is related to the

Macaulay and Hicksian durations through the phenomenon of post-shift

convexity of investment value.  The appendices provide more detailed

proofs of the critical concepts discussed in this paper. 
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INTRODUCTION

By analyzing the effects of additive rate shocks to the term

structure it is possible to determine the theoretical limitations of

the Macaulay, Hicks, and continuous time formulations of duration, as

well as to develop the phenomenon of disequilibrium resulting from the

post-shift convexity of investment value.  Moreover, these results

help to explain both the true effects of interest rate risk upon the

values of fixed income securities and the effects of the limiting

assumptions on the derived theoretical models.  The discussion and

analysis presented here begins by examining the measure of duration

formulated within the traditional yield to maturity or "internal rate

of return" framework.  We then allow the term structure to take on

unique rates of return for each discounting period and analyze the

implications of uniform and single period additive shocks upon

duration and immunization strategies.

                               DURATION

Introduction

In his seminal study on interest rates and bond yields, Macaulay

(1938, p. 44)  developed several measures of "the time element of a

loan".  He named these measures "duration".  After rejecting a future

value weighting model as inappropriate, Macaulay found that weighting

each time period by the proportion of each payment, in present value

terms, to the present value of the total payment stream resulted in a

measure of duration exhibiting the desired properties.  In particular,

while the maturity of a loan only considers when the final payment

occurs, duration assigns weights to the time periods when each cash

payment occurs thereby considering the timing and size of the
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payments.  This property of duration is important because it measures

the effective life of a payment stream rather than the maturity of the

stream.  In this way, Macaulay's duration can be considered as

expressing the "time element of a loan" more precisely than does

maturity. 

   Given a set of certain payments X(t), t=1,2,...,n, where n is the

maturity of the payment stream, and a present value function P(t),

where P(t) gives the present value of one dollar to be received at

time t, the Macaulay formulation of duration can be expressed as:

                    D1 = EttX(t)P(t)/EtX(t)P(t)                  

(1)

The present value function P(t) is inferred from the entire term

structure of interest rates, therefore the analysis of D1 requires an

assumption about the term structure behavior.  The analysis of

duration measures and the associated behavior assumptions will be

examined below.  

When the discount rate implicit in the present value function

P(t) is the constant and continuous "internal rate of return" or yield

to maturity "r" then (1) simplifies to:

                 D2 = EttX(t)exp[-rt]/EtX(t)exp[-rt]             

(2)

The yield to maturity, r, can be determined by simply knowing the cash

flow stream to be received and the present value of this stream.

Since the latter are generally easier to obtain than the present value

function P(t), D2 provides a simplified function that is employed in

most duration analysis. 

Hicksian "Average Period"

In his classic study of value and capital, Hicks (1939, p.186)
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derives a measure which is equivalent to D2, referring to this measure

as the "average period".  One can develop this concept by finding the

change in the present value of a certain payment stream with respect

to the change in the yield to maturity r.  Specifically, let V equal

the present value of the certain future payments X(t), t=1,2,...,n,

where n is the maturity of the payment stream.1

                          V = EtX(t)exp[-rt]                     

(3)

By taking the derivative of V with respect to r one obtains an expres-

sion for an infinitesimal change in V resulting from an infinitesimal

change in the yield r.

                        dV = Et-tX(t)exp[-rt]dr                  

(4)

Dividing through by V one obtains the desired expression relating the

percentage change in V due to a change in the yield r.

                dV/V = Et-tX(t)exp[-rt]dr/EtX(t)exp[-rt]         

(5)

By substituting D2 from equation (2), the above expression simplifies

to:

                             dV/V = -D2dr.                         (6)

Thus, for a given infinitesimal change in the yield, dr, the percent-

age change in the present value of a certain payment stream, dV/V, is

proportional to the Hicksian "average period".  This relationship

underlies the basic notion that duration is a proxy for the riskiness

of a fixed income security.2  As a practical matter, in order for D2

to be a simplification of D1, dr should be uniform (equivalent) for

all certain payment streams; without the uniform condition one would

need to determine the relationship between the yields of different
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securities in order to specify the relative interest rate risk between

the securities.  This concept is easily demonstrated by an example.

Consider two default-free bonds with different maturities but possess-

ing equivalent durations, as given by (6).  If one bond receives a

larger shock to its yield than the other bond, then by (6) the first

security will exhibit a greater percentage change in value than the

latter security.  In this example, D2 can not be an appropriate

measure of the relative risk between the two securities unless the

relationship between the change in the two yields is known.  Thus,

when dr is not uniform for all securities it is necessary to know the

relationship between the change in the yields of the different secur-

ities and, in this case, D2 will no longer be a practical simplifica-

tion of D1.

To demonstrate formally the theoretical limitation of the uni-

formity of dr for the Hicksian "average period", Ingersoll, Skelton

and Weil (ISW) (1978, p. 631) prove the following theorem:

"Yields to maturity on all assets with known fixed payments can

change by the same amount if and only if the yield curve is flat

(yields to maturity on pure discount bonds of all maturities are

the same) and makes a parallel shift."

The significant result of this theorem is that the yield curve must be

flat in order for dr to be uniform for all payment streams.  This

condition is a severe restriction to place on the term structure and

is obviously contradictory to observed behavior.3

In order to prove this theorem ISW analyze a change in the value

of a portfolio consisting of two pure discount bonds following a

uniform infinitesimal additive shock to the term structure.  Specifi-

cally, let the present value of one dollar to be received in ti years
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be expressed as V = exp[R(ti)ti] where R(ti) is the implicit spot rate

for ti years.  When the yield curve is flat then R(ti) = r and all

spot rates will equal the yield to maturity, r, before the term

structure shift, and will equal r+dr after the shift, due to the

dynamics of the assumed term structure shock.  Therefore, the above

specifications are sufficient conditions for the theorem to hold.  The

necessary condition that the yield curve is flat and makes a parallel

shift, following ISW, is proven by contradiction.  Assume the yield

curve is not flat and all yields and spot rates undergo a uniform

infinitesimal additive shock.  Consider a portfolio of two pure

discount bonds paying one dollar with certainty at times t1 and t2,

where t1=/t2 and R(t1)=/R(t2).  (Note that assuming R(t1)=/R(t2) causes

r=/R(ti), i=1,2.)  The present value of the portfolio can be expressed

in two equivalent formulations since the interest rate can be measured

by either the spot rates or the yield.

                    V = exp[-R(t1)t1] + exp[-R(t2)t2]             (7a)

                      = exp[-rt1] + exp[-rt2]                     (7b)

The assumed shift in the yield curve (all yields to maturity and all

spot rates receive a uniform infinitesimal additive shock) implies

that dr=dR(t1)=dR(t2).  Given the assumed yield curve shift, the

change in the value of the portfolio can be found by taking the

derivative of V with respect to the rate of interest.

         dV = -{t1exp[-R(t1
)t1]dR(t1

) + t2exp[-R(t2
)t2]dR(t2

)}    (8a)

            = -{t1exp[-rt1
]dr + t2exp[-rt2

]dr}                    (8b)

Multiplying V in (7a,b) by t1 and adding dV/dr from (8a,b), remember-

ing that dr=dR(t1)=dR(t2
) from the assumed dynamics of the term

structure shock, results in the expression:

       t1V + dV/dr = (t1-t2)exp[-R(t2)t2] = (t1-t2)exp[-rt2]       (9)
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since the remaining terms with the factor t1 cancel.  The above

equality will hold if and only if R(t2) = r which, of course, is a

contradiction.  Therefore, yields to maturity can make an identical

infinitesimal shift, dr=dR(t1)=dR(t2), only when all yields to

maturity are equal, r=R(t1)=R(t2), which can only occur when the yield

curve is flat and makes a parallel shift.

Consequently, it is apparent that the Hicksian "average period"

or D2 is not a general measure of a bond's risk, but rather is severe-

ly restricted by the assumption of a uniform infinitesimal shift of

all yields on a flat (parallel) yield curve.  The restrictive assump-

tions exist because the yield to maturity is adopted as the conven-

tional interest rate measure.

Macaulay's Duration

The knowledge of distinct spot discount rates provides additional

information enabling the financial economist to value fixed income

securities without relying on the yield to maturity as a measure of

the rate of interest.  The Macaulay formulation of duration, D1,

incorporates information of the distinct spot or forward rates within

the model by defining individual discount functions for each future

time period.  Therefore, the Macaulay D1 formulation may prove to be

more useful than the Hicksian D2 formulation, since the latter must be

derived under restrictive term structure assumptions.  However, here

we show that Macaulay's duration is not a panacea for dealing with

interest rate risk, as it is also subject to limiting assumptions in

its derivation.  This section begins by deriving an expression for the

Macaulay duration.  The analysis continues by examining a non-uniform

shock to the term structure which is inconsistent with the derivation

of D1, and then considers a specific uniform term structure shock that



                                                                 9 

is consistent with D1. 

Consider the present value of a pure discount bond paying one

dollar with certainty at time T: 

                            V = exp[-R(t)t]                       

where R(t) is the spot rate implied by the term structure continuum

and is therefore defined for each discounting period t, t=[0,T].  The

expression exp[-R(t)t] is a distinct discount function defined for

each discounting period implied by the initial term structure and is

thus analogous to the present value function, P(t), expressed in (1).

Taking the derivative of V with respect to R(t) results in an expres-

sion relating the change in V due to a change in the spot rate R(t):

                        dV = -t exp[-R(t)t]dR(t)                  (10)

Dividing through by V one obtains an expression relating the percent-

age change in V resulting from a change in the spot rate R(t):

                   dV/V = -t exp[-R(t)t]dR(t)/exp[-R(t)t]         (11)

Substituting for D1 the above expression simplifies to:

                            dV/V = -D1dR(t)                       (12)

Thus Macaulay's duration, D1, is proportional to the percentage change

in V.  As previously noted, the R(t) values are defined by the term

structure for each time period t, t=(0,4].  To understand the theoret-

ical limitations of D1 it is necessary to examine the effect of

specific term structure shocks upon its derivation.

The condition where only a single spot rate change occurs will be

analyzed to show explicitly a simple non-uniform term structure shock

that is inconsistent with the derivation of D1.  In their paper on

duration and the measurement of basis risk, Cox, Ingersoll and Ross

(CIR) (1979, p. 52) prove the following theorem:

"a bond with a long duration will not necessarily be affected
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proportionally more than a bond of a short duration by a given

change in the spot rate of interest...".

To understand the development of this theorem, consider a pure

discount bond expressed as a function of the single period spot rate

plus a geometric series of the implied forward rates.  Let the present

value of a pure discount bond V paying one dollar at time T be

expressed as

                       V = (1+r1)
-1 Bi(1+r

^
i)

-1                  

(13)

where the initial one period spot rate is r1 and the r
^
i values are

the implied forward rates for the time periods i-1 to i, i=2,3,...,T.

Taking the derivative of V with respect to r1, thereby treating all

forward rates as if unchanged, results in the expression:

                     dV = -(1+r1)
-2dr1 Bi(1+r

^
i)

-1               

(14)

                        = -Vdr1/(1+r1)                            (15)

Thus, the percentage price change in the pure discount bond, assuming

that only a single additive shock to the initial spot rate occurs, is:

                          dV/V = -dr1/(1+r1)                      (16)

This shows that the percentage change of the bond is independent of

the duration and maturity, and in fact is equivalent for all pure

discount bonds regardless of duration, rather than being proportional

to the duration.  Note that this result is not contradictory to the

previous derivation of D1.  That is, the percentage change in the

value of a pure discount bond will be proportional to duration given

that the spot rate defined for the entire period of the bond is the

rate that undergoes the infinitesimal change.

The above clearly shows that D1 can not be derived from a single
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change in the one period spot rate or, for that matter, the change in

any one period forward rate.  The question then arises as to what, if

any, term structure behavior is consistent with the derivation of D1.

ISW (1978, p.631) examine the above problem by showing that D1 is

proportional to the percentage change of a certain payment stream

when:

"the yield curve (the continuously compounded yield-to-maturity

R(t) on pure discount bonds) undergoes a uniform additive

displacement dR(t) = dR for all t."4

ISW begin their analysis by considering the ratio of the

durations of two pure discount bonds, which is mathematically propor-

tional to the ratio of the percentage changes in the values of the two

bonds.  Consider the relationship between the ratio of the percentage

changes in the price of the two pure discount bonds with maturities t1

and t2, t1 =/ t2, and the ratio of the respective derivatives shown in

the following expression:

  
                        dV1/V1  =  

-t1 dR(t1)                     (17)                        dV2/V2     -t2 dR(t2)

A necessary condition for Macaulay's duration, D1, to be proportional

to the percentage change in the value of a pure discount bond is that

dR(t1) = dR(t2
).  The above expression must equal t1/t2

 in order for

Macaulay's duration to be proportional to the percentage change in the

value of a pure discount bond since the ratio of the percentage

changes in the values of the two bonds must be proportional to the

ratio of the durations of the two bonds.  Thus, the above expression

will equal t1/t2
 if and only if dR(t1) = dR(t2

), which can occur only

when the term structure undergoes a uniform infinitesimal additive

displacement.  It is important to realize that this result is obtained
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without making any assumptions concerning the level of any spot rate

implied by the initial or post-shift term structures.  Consequently,

D1 is derived under more general conditions than is D2, since to

derive D2 one must assume that the initial and post-shift term struc-

tures are both flat. 

Post-Shift Convexity Implies Arbitrage

The above discussion shows that the duration measures D1 and D2

are both derived by assuming a uniform infinitesimal additive dis-

placement of all spot and forward rates implied by the initial term

structure.5  This section analyzes the consequences of relaxing this

assumption by allowing the term structure to receive a non-

infinitesimal uniform additive shock.  By analyzing these term

structure dynamics it can be shown that the functional form of the

post-shift investment value is convex.  The functional form referred

to here is a ratio of the post-shift values of two different payment

streams, where both streams have the same initial durations and the

same initial values.  The ratio, first derived by Fisher and Weil

(1971), is formed by dividing the post-shift value of a multiple

payment stream by the post-shift value of a single pure discount bond.

The value of the Fisher-Weil ratio can show how well a portfolio of

pure discount bonds replicates the price behavior of the pure discount

bond following a shock to the term structure.

In their analysis of post-shift convexity, ISW contend that

convexity is inconsistent with a general equilibrium behavior of the

term structure; by definition a general equilibrium condition would

preclude any arbitrage opportunity.  ISW show that a non-infinitesimal

shock to the term structure implies just such an arbitrage oppor-

tunity, thus the term structure can not behave solely in this manner
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and at the same time remain in equilibrium.  The importance of this

concept is that D1 and D2 are not theoretically consistent with a

uniform non-infinitesimal additive shock to the term structure, even

though uniform infinitesimal additive shocks are consistent with the

derivation of D1 and D2.

ISW (1978) develop their arbitrage argument by analyzing the

first and second order conditions of the Fisher-Weil ratio.  First and

second order conditions were first derived under equivalent specifica-

tions using forward rates of interest by Fisher and Weil (1971).

Fisher and Weil also showed the post-shift value of investment to be

convex with respect to the term structure shock.  By applying the

arbitrage argument that follows, ISW contend that uniform non-

infinitesimal additive shifts can not be the only manner in which the

term structure behaves.

Let V'=exp[-R'(ti)ti],  be the post-shift value of a pure

discount bond paying one dollar with certainty at time ti following a

uniform non-infinitesimal additive shock, *, where R'(ti)=R(ti)+* is

the post-shift spot rate.  The Fisher-Weil ratio, Q, is derived in

Appendix A by incorporating the post-shift spot rate R'(ti).  The

ratio is constructed by dividing the post-shift value of the single

pure discount bond, V, maturing at time T into the post-shift value of

a portfolio consisting of two pure discount bonds, V', Q=V'/exp[-

R'(T)T].

      Q = {(t2-T)exp[*(T-t1
)] + (T-t1)exp[*(T-t2

)]} 1/(t2-t1
)   

(18)

By evaluating Q we can determine the relative effects of a uniform

additive displacement of the term structure, *, upon the values of

the investment alternatives.  When * = 0, Q will be equal to one or
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the pre-shift value.  The first and second derivatives of Q with

respect to * are, respectively,

                dQ/d* = K {exp[*(T-t1)] - exp[*(T-t2
)]}         

(19)

         d2Q/d*2 = K {(T-t1)exp[*(T-t1)] + (t2-T)exp[*(T-t2)]}  

(20)

where K = (t2-T)(T-t1)/(t2-t1).  Examining (19) and (20) we see that

the post-shift value Q=1 is a unique minimum value for Q, since dQ/d*

><0 when *><0 and d2Q/d*2 > 0 for all values of *.  The relationship

between Q and * is shown in Figure I.  

---------------------------------------------------------------------

                       Figure I about here

---------------------------------------------------------------------

It is apparent that the post-shift value of the bond portfolio

will never be less than the value of the pure discount bond maturing

at time T.  In fact, the greater the absolute value of * the greater

will be the profit realized by buying the bond portfolio and selling

the pure discount bond V.  Therefore, when * is non-infinitesimal,

the post-shift value of the bond portfolio will be greater than that

of the pure discount bond maturing at time T.  ISW contend that the

term structure can not behave only in this manner (all spot or forward

rates change by the amount *, a constant) since, if it did, investors

would hold portfolios of perpetual and instantaneous short-term pure

discount bonds and sell bonds of intermediate maturities, thereby

realizing a sure profit after the term structure shock.  This obvious-

ly does not occur, therefore the term structure must behave in some

manner other than only uniform additive non-infinitesimal displace-

ments.
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In summary, we first derived expressions for the Macaulay and

Hicksian formulations of duration, and then examined the theoretical

implications of additive term structure shocks upon the derivation of

these models.  The Hicksian formulation of D2 is shown to be consis-

tent with a uniform infinitesimal additive shock (parallel shift) to a

flat yield curve.  The Macaulay formulation of D1 is shown to derive

from a uniform infinitesimal additive shock to all spot or forward

rates, and  D1 is shown to be inconsistent with a noninfinitesimal

additive shock to any spot or forward rate defined for a period less

than the maturity of a bond.  The Fisher/Weil ratio is then examined

to show the post-shift convexity of investment value contradicts a no-

arbitrage argument; thus, ISW show that the term structure can not

behave with only uniform non-infinitesimal additive shifts.  These

results prove that the Macaulay and Hicksian formulations of duration

can not be a complete measure of interest rate risk inherent in fixed

income securities, and that these formulations of duration can only be

considered as static measures of risk resulting from unique term

structure dynamics.

                             IMMUNIZATION

Early Development

A basic underlying principle of the immunization strategy is

discussed by Samuelson (1945) in his analysis of interest rate risk

and its effect upon the value of a fund with two distinct cash flow

streams, one stream consisting of cash in-flows while the other stream

only has cash out-flows.  Taking the derivative of the fund's value

with respect to the "interest rate per annum averaged over time",

Samuelson (1945, p. 19) develops, except for an inconsequential error,
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a measure equivalent to the Hicksian formulation of duration and

concludes:

"Increased interest rates will help any organization whose

(weighted) average time period of disbursements is greater than

the average time period of its receipts."

This result might mislead one to conclude that interest rate risk can

be eliminated by equating the duration of the receipts with the

duration of the disbursements.  However, if either the receipts or the

disbursements consist of a multiple payment stream then one must

consider the effect that the behavior of the term structure may have

upon the results of applying any duration measure to achieve a balance

between cash in-flows and cash out-flows.

Redington (1952 p. 289) was the first to define and use the term

immunization in the context of investment valuation.  He defines

immunization as: 

"the investment of the assets in such a way that the existing

business is immune to a general change in the rate of interest."

Redington's goal in writing for an actuarial audience was to equate

the future value of an investment to future liability.  In general,

the objective of an immunization strategy is to invest current funds

in such a manner that a future liability can be paid regardless of the

subsequent behavior of interest rates.  Without an immunizing

technique, the payment stream earned prior to the dispensing of the

outstanding liability will be subject to a stochastic reinvestment

rate.  Therefore, when only multiple payment streams are available it

is uncertain how to initially invest ones funds to meet a future

liability.  Thus, an immunization strategy is intended to overcome the

interest rate and price risk inherent when one makes a current invest-
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ment, such that this investment will grow over time to equal a future

liability.

As shown in the duration analysis above, an assumed term struc-

ture behavior implies a specific duration measure.  Thus, the ability

of any measure of duration to describe the price behavior of fixed-

income securities will depend upon the appropriateness of the term

structure shock assumed in the derivation of the duration measure.  In

particular, Redington obtained a conclusion similar to Fisher and Weil

and ISW regarding the convexity of the post-shift value of investment,

since Redington choose to simplify his analysis by adopting a measure

of duration equivalent to the Hicksian formulation.6  Moreover,

several of the discussants of Redington's paper commented on his

result of post-shift convexity and it is clear that the discussants

were aware that Redington's result was "too good" to be accepted

without question.  Never-the-less, it was not until financial

theorists developed a general theory of equilibrium and arbitrage

arguments that the post-shift convexity of investment value was

understood to be a direct result of an assumed shock to the term

structure inconsistent with general equilibrium dynamics of the term

structure.

Bierwag's Analysis

Bierwag (1978) helped to develop a deeper understanding of the

concept of immunization by examining duration within a continuous time

framework.  Integrating over all spot rates on the term structure

continuum permits the identification of the value of the security at

any instant of time prior to maturity, given that the term structure

is known.  His research analyzes the post-shift value of a fixed

income security with a certain payment stream following a uniform
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additive shock to the term structure.  Following Bierwag's notation we

adopt a continuous discount model with the cash flow stream being paid

continuously throughout the life of the security.  Let the value of

such a security be expressed as:

                  V = 0
n C(t)exp[-h(0,t)t]dt                     (21)

where n is maturity, h(0,t) is the rate of growth of an investment

over the time period 0 to t, and C(t) is the continuously paid cash

flow stream.  

The term structure is assumed to begin at an equilibrium state

and there is assumed to be no interest rate uncertainty:

              h(0,t1)t1 = h(0,t0)t0 + h(t0,t1)(t1-t0)             (22)

where 0<t0<t1 and h(t0,t1)(t1-t0) is the implied forward rate over the

time period t0 to t1.  If (22) does not hold then it would be possible

to borrow and lend over different time periods and earn a return

greater than h(0,t1)t1 over the time period t1.  This is easily shown

by example.  Assume that the forward rate h(t0,t1) is such that:

              h(0,t1)t1 - h(0,t0)t0 < h(t0,t1)(t1-t0)             (23)

In this case, one could borrow at the rate h(0,t1) for the period t1

and invest those funds for a period of t0 at the rate h(0,t1) and then

at time t0 reinvest the proceeds at h(t0,t1) until time t1.  This

strategy would ensure a profit since the interest earned on the

borrowed funds will exceed the borrowing cost, h(0,t1)t1.  In a

complete and competitive market this opportunity can not exist,

therefore (22) must hold if the term structure is in equilibrium.

In order to introduce interest rate uncertainty into the model,

Bierwag explicitly assumes a uniform infinitesimal additive shock

occurring instantly after the purchase of the security.  Equilibrium

once again prevails after the initial shock and the new equilibrium
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condition remains until the security matures.  Thus, the equilibrium

condition given by (22) is assumed to hold for both the pre-shift and

post-shift state of the term structure.  The analysis continues by

considering separately the post-shift values of the reinvestment

returns of the cash flow stream and the present value of the remaining

cash flow payments at some instant of time after the term structure

shock.  Allowing the time following the term structure shock to vary

permits one to identify the "average period" where the security is

immunized with respect to a pure discount bond.

The next step is to isolate a time period m after the term

structure shock where m<n and n is the time remaining until maturity

when the term structure shock occurs.  In Appendix B expressions

representing the present value of the remaining cash flow stream at

time m, T, and the post-shift value of the reinvested cash flow stream

at time m, Q, are derived.  These expressions are, respectively:

      T(2) = exp[h(o,m)m] m
n C(t)exp[-h(o,t)t]exp[-(t-m)2]dt     (24)

      Q(2) = exp[h(o,m)m] 0
m C(t)exp[-h(o,t)t]exp[(m-t)2]dt      (25)

where 2 is the term structure shock.  The derivative of T(2), m<t<n,

and Q(2), t<m, with respect to the additive shock 2 are,

respectively:

 T'(2) = exp[h(0,m)m] m
n C(t)exp[-h(0,t)t]{-(t-m)exp[-(t-m)2]}dt (26)

with T'(2) <0 since t-m>0, and

  Q'(2) = exp[h(0,m)m] 0
m C(t)exp[-h(0,t)t]{(m-t)exp[(m-t)2]}dt  (27)

with Q'(2) >0 since m-t>0.  

It follows that Q''(2) >0 and T''(2) >0.  Figure II shows the

relationship between T(2), Q(2) and 2.  The reinvested cash flows,

Q(2), which occur until time m, increase in value as the additive

shock to the term structure increases.  The opposite occurs with the
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value of all remaining cash flows, T(2), since T(2) increases as the

additive shock decreases.  The result is similar to Redington, Fisher

and Weil, and ISW, since the above condition results in a minimum

value for T(2)+Q(2) when 2=0, while when 2 is non-infinitesimal the

curve is convex.  The difference in Bierwag's analysis from that of

Redington, Fisher and Weil, and ISW is: (1) the consideration of

duration within a continuous time framework, and (2) the distinction

between reinvested cash flows and the present value of the payment

stream remaining.  The second distinction allows the analysis to be

extended to show the immunized condition.

----------------------------------------------------------------------

                     Figure II about here

----------------------------------------------------------------------

In appendix B the post-shift value of the continuous payment

stream at time m, T(2)+Q(2), following a uniform additive shock to

the term structure, is derived.  In Appendix C, T'(2)+Q'(2) is

evaluated at 2=0, resulting in:

                T'(0) + Q'(0) = V(m-D3)exp[h(0,m)m]               (28)

where D3 is the continuous time representation of Macaulay's duration

defined as:

                   D3 =  1/V 0
n tC(t)exp[-h(0,t)t]dt             (29)

It is apparent from (28) that an immunizing condition exists when m=D3

since Q'(0) + T'(0) will then equal zero; that is the change in the

values of the reinvested payment stream and the remaining unpaid

future receipts, at time m, will be equal but opposite in sign,

therefore canceling with one another.  The net effect of equating the

investment horizon to D3 is the value at time m of the continuous

payment stream is known to be at least as much as a pure discount bond
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maturing at time m.

The above discussion on immunization began by relating the early

developments of post-shift convexity by Redington to the later contri-

butions made by Fisher and Weil and ISW.  Bierwag's continuous time

representation of duration is then examined to show the immunization

of a continuous payment stream against a uniform infinitesimal

additive shock to the term structure.  Moreover, the continuous time

representation of the post-shift value of a continuous payment stream

is shown to be a convex function similar to the Fisher-Weil ratio.

CONCLUSION

This paper examines a body of literature published in the late

1970's which has become an important foundation of modern duration and

immunization theory.  This literature was the forerunner to a major

thrust of modern duration and immunization theory that examines

duration measures derived under general equilibrium conditions of the

term structure.  In fact, the same individuals who show us the funda-

mentals of modern duration and immunization theory examined in this

paper are the same theorists who have initiated the analysis of

duration measures derived under general equilibrium conditions.7  With

this foundation, financial economists may some day develop a complete

integration of investment valuation and term structure theory.
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APPENDICES

These appendices are provided as an extension of the proofs

appearing in the papers cited.  The original proofs omit a number of

steps, causing readers to find these proofs to be abstruse.  The

mathematical analysis that follows has been "simplified" from the

original form to include the steps which had been originally omitted

for brevity.  A "*" indicates an equation that does not appear in the

original paper.

APPENDIX A 

This appendix develops the result of post-shift convexity by

deriving the Fisher-Weil ratio, Q, of the post-shift value of a

portfolio of two pure discount bonds to the post-shift value of a

single pure discount bond.  The notation adopted is that of ISW (1979)

and explicitly shows the result of a uniform non-infinitesimal

additive shock to the term structure.

The initial values of these alternatives are assumed to be equal:

                       V = n1V1 + n2V2                           (A-1)

where nk is the proportion of the portfolio invested in bond k.  Also,

one assumes that the durations of the alternative investments are

equal:

                  t1n1V1/V + t2n2V2/V = T                        (A-2)

Solving (A-1) for n2V2
 and substituting into (A-2) results in:

*                 n1V1
t1 + (V-n1

V1)t2
 = VT                       (A-3)

Rearranging terms one obtains:

                  n1V1
 = V(t2-T)/(t2

-t1)                         (A-4)

The post-shift value of Vi is given by the expression:

*                  V'i = exp[-R'(ti)ti]                          (A-5)
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where R'(ti)=R(ti)+*.  Expanding R'(ti), V'i becomes

*                  V'i = exp-[R(ti)+*]ti                         (A-

6)

*                      = exp[-R(ti)ti] exp[-*ti]                 (A-

7)

                       = Vi exp[-*ti
]                            (A-

8)

The post-shift value of the portfolio is then:

                    V' = n1V'1 + n2V'2                           (A-9)

                       = n1V1exp[-*t1] + n2V2exp[-*t2]          (A-

10)

Substituting (A-4) and a similarly derived expression for n2V2 into

(A-10) results in the expression:

*   V' = V(t2-T) exp[-*t1]/(t2-t1) + V(t1-T) exp[-*t2]/(t1-t2)  (A-

11)

      V' =  { (t2-T)exp[-*t1] + (T-t1)exp[-*t2] } V/(t2-t1)     (A-

12)

We can compare the post-shift values of the alternative investments by

analyzing the ratio, Q, of the post-shift values of the portfolio to

the pure discount bond maturing at time T.

                 Q = V'/exp[-R'(T)T]                            (A-13)

*                  = V'/exp[-R(T)T]exp[-*T]                     (A-

14)

                   = V'exp[*T]/V.                               (A-

15)

Substituting (A-12) into the above expression for Q results in

equation (18) in the text:

      Q = { (t2-T)exp[*(T-t1)] + (T-t1)exp[*(T-t2)] } 1/(t2-t1) (A-
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16)

Appendix B

This appendix, following Bierwag (1978), develops the post-shift

values at time m of both the reinvested payment stream and the payment

stream to be received after time m.  

An additive uniform displacement, 2, of all continuous discount

rates can be written as h'(0,t) = h(0,t)+2.  After the term structure

shock the new equilibrium condition becomes:

               h'(0,m)m = h'(0,t)t + h'(t,m)(m-t)                (B-1)

for 0<t<m.  Rearranging terms:

*          h'(t,m)(m-t) = h(0,m)m - h(0,t)t + (m-t)2             (B-

2)

for 0<t<m.  For m<t<n the post-shift condition becomes:

              h'(0,t)t = h'(0,m)m + h'(m,t)(t-m)                 (B-3)

and by rearranging terms:

*          h'(m,t)(t-m) = h(0,t)t - h(0,m)m + (t-m)2             (B-

4)

for m<t<n and the period of time remaining until maturity is n-t.  The

post-shift value, at time m, of the remaining certain cash flows to be

received after time m, where m<t<n, will be equal to:

              T(2) = m
n C(t)exp[-h'(m,t)(t-m)]dt                (B-5)

Substituting (B-4) into (B-5) obtains:

*      T(2) = m
n C(t)exp[h(0,m)m]exp[-h(0,t)t]exp[-(t-m)2]dt    (B-6)

The factor exp[h(0,m)m] is known at time m and therefore is a constant

which may be factored outside the integral to obtain (24) in the text:

       T(2) = exp[h(0,m)m] m
n C(t)exp[-h(0,t)t]exp[-(t-m)2]dt   (B-7)

The post-shift value of all reinvested cash flows at time m, where
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0<t<m, will be equal to:

               Q(2) = 0
m C(t)exp[h'(t,m)(m-t)]dt                (B-8)

Substituting (B-1) into (B-8) obtains:

*      Q(2) = 0
m C(t)exp[h(0,m)m]exp[-h(0,t)t]exp[(m-t)2]dt     (B-9)

The constant factor exp[h(0,m)m] may be factored outside the integral

sign to obtain equation (25) in the text:

       Q(2) = exp[h(0,m)m] 0
m C(t)exp[-h(0,t)t]exp[(m-t)2]dt   (B-10)

Appendix C

This appendix follows Bierwag's development of the continuous

time representation of duration showing the immunized condition.  The

change in the post-shift value of T(2) + Q(2) due to a change in 2 is

given by (26) and (27) in the text:

* Q'(2)+T'(2) = exp[h(0,m)m] { 0
m C(t)exp[-h(0,t)t](m-t)exp[(m-t)2]dt

                  + 0
m C(t)(m-t)exp[-h(0,t)t]exp[(m-t)2]dt }   (C-1)

When (C-1) is evaluated at 2=0 we can obtain the immunizing

condition:

*  Q'(0) + T'(0) = exp[h(0,m)m] 0
n C(t) { mexp[-h(0,t)t] -            

                               texp[-h(0,t)t] }dt   (C-2)

Define the continuous time representation of duration, D3, as:

               D3 = 1/V 0
n t C(t) exp[-h(0,t)t]dt               (C-3)

Now, since

*              mV = 0
n C(t) m exp[-h(0,t)t]dt                   (C-4)

expression (C-2) becomes, after substituting for D3V and mV:

           Q'(0) + T'(0) = (mV-D3V) exp[h(0,m)m]                 (C-5)

which is equivalent to (28) in the text.
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FOOTNOTES

1 In his original exposition, Hicks derives an equivalent result

using discrete compounding.  The continuous compounding convention

used here was first derived by L. Fisher (1966).

2 This paper does not analyze other elements of risk inherent in

fixed income securities, such as default and callability risk, by

assuming that the payment stream is known with certainty.  The models

developed in this paper are therefore better suited to analyze the

behavior of default free securities. 
3 The restriction may not be a severe problem for long maturity

bonds.  For example, Livingston and Jain (1982) show that par bond

yield curves will become flat for long maturities and Schaefer (1977)

shows that yield curves become asymptotically horizontal and will

approach the perpetuity yield curve at long maturities.

4 ISW develop a corollary to the above theorem that states D1 is

proportional to the percentage change in the present value of a

certain payment stream when the percentage change in the discount

function, dP(t)/P(t), is equivalent for all t.

5 ISW (1979) show that uniform infinitesimal additive shock to

the forward rate structure is equivalent to an identical shock to the

spot rate structure.

6 Both Fisher and Weil (1971) and ISW (1978) derive the post-

shift convexity result employing Macaulay's duration D1.  Their

analysis is more general but can be applied to the Hicksian measure,

D2, to obtain the same post-shift convexity result given in Redington

(1952).

7 For example, see Cox, Ingersoll and Ross (1979) and Bierwag,

Kaufman and Toevs (1982).
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