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THE EFFECT OF ADDI TI VE RATE SHOCKS ON DURATI ON AND
| MVUNI ZATI ON: EXAM NI NG THE THEORY

ABSTRACT

This paper exanm nes the WMacaulay, Hicks, and continuous tine
formul ati ons of duration by analyzing the termstructure dynam cs that
are necessary to derive these nmathematical nodels. The results
presented help to explain the true effects of interest rate risk upon
the values of fixed-inconme securities, as well as provide a rationale
for the developnent of duration nodels in a general equilibrium
f ramewor k. In particular, we show that the Hi cksian fornulation of
duration is derived froma uniforminfinitesinml additive shock to al
yields to maturity on a flat yield curve, while the Macaul ay duration
is derived from a uniform infinitesimal additive shock to all spot
rates. In addition, the Macaulay duration is shown to be inconsistent
with a uniforminfinitesinmal additive shock to any single period spot
or forward rate spanning a period less than the maturity of the
security. The continuous tinme representation of duration is exam ned
to show the i mmuni zing condition and how this result is related to the
Macaul ay and Hi cksian durations through the phenonmenon of post-shift
convexity of investnent val ue. The appendi ces provide nore detail ed

proofs of the critical concepts discussed in this paper.



| NTRODUCT| ON

By analyzing the effects of additive rate shocks to the term
structure it is possible to determne the theoretical limtations of
t he Macaul ay, Hicks, and continuous tine fornulations of duration, as
wel |l as to devel op the phenonenon of disequilibriumresulting fromthe
post-shift convexity of investnent val ue. Mor eover, these results
help to explain both the true effects of interest rate risk upon the
values of fixed incone securities and the effects of the limting
assunptions on the derived theoretical nodels. The di scussion and
anal ysis presented here begins by exam ning the neasure of duration
formulated within the traditional yield to maturity or "internal rate
of return"” framework. W then allow the term structure to take on
unique rates of return for each discounting period and analyze the
inplications of wuniform and single period additive shocks upon

duration and i nmmuni zation strategies.

DURATI ON

| nt r oducti on

In his semnal study on interest rates and bond yields, Macaul ay
(1938, p. 44) devel oped several neasures of "the tinme elenment of a
| oan". He named these neasures "duration". After rejecting a future
val ue wei ghting nodel as inappropriate, Macaulay found that weighting
each time period by the proportion of each paynment, in present val ue
terms, to the present value of the total paynent streamresulted in a
measure of duration exhibiting the desired properties. |In particular,
while the maturity of a loan only considers when the final paynent
occurs, duration assigns weights to the time periods when each cash

paynent occurs thereby considering the timng and size of the
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paynents. This property of duration is inportant because it neasures
the effective Iife of a paynment streamrather than the maturity of the
stream In this way, Macaulay's duration can be considered as
expressing the "tinme elenent of a loan" nore precisely than does
maturity.

G ven a set of certain paynents X(t), t=1,2,...,n, where n is the
maturity of the paynent stream and a present value function P(t),
where P(t) gives the present value of one dollar to be received at
time t, the Macaul ay formul ati on of duration can be expressed as:

D, = zttX(t)P(t)/ti(t)P(t)
(1)
The present value function P(t) is inferred from the entire term
structure of interest rates, therefore the analysis of D, requires an
assunption about the term structure behavior. The analysis of
duration neasures and the associated behavior assunptions wll be
exam ned bel ow.

When the discount rate inplicit in the present value function
P(t) is the constant and continuous "internal rate of return” or yield
to maturity "r" then (1) sinplifies to:

D, = zttX(t)exp[-rt]/ti(t)exp[-rt]
(2)
The yield to maturity, r, can be determ ned by sinply know ng the cash
flow stream to be received and the present value of this stream
Since the latter are generally easier to obtain than the present val ue
function P(t), Db provides a sinplified function that is enployed in
nost duration anal ysis.

Hi cksi an "Aver age Peri od"

In his classic study of value and capital, Hi cks (1939, p.186)



5
derives a neasure which is equivalent to D2, referring to this neasure
as the "average period". One can develop this concept by finding the
change in the present value of a certain paynment stream with respect
to the change in the yield to maturity r. Specifically, let V equa
the present value of the certain future paynments X(t), t=1,2,...,n,
where n is the maturity of the paynent stream1

V = ti(t)exp[-rt]
(3)
By taking the derivative of V with respect to r one obtains an expres-
sion for an infinitesimal change in V resulting froman infinitesimal
change in the yield r.

dv = 3, -tX(t)exp[-rt]dr
(4)
D viding through by V one obtains the desired expression relating the
percentage change in V due to a change in the yield r.
dv/iVv = zt-tX(t)exp[-rt]dr/ti(t)exp[-rt]

(5)
By substituting D2 from equation (2), the above expression sinplifies
to:

dV/V = - D,dr. (6)
Thus, for a given infinitesiml change in the yield, dr, the percent-
age change in the present value of a certain paynent stream dV/V, is
proportional to the Hicksian "average period". This relationship
underlies the basic notion that duration is a proxy for the riskiness

2

of a fixed inconme security. As a practical matter, in order for D2

to be a sinplification of Dl’ dr should be uniform (equivalent) for
all certain paynment streans; w thout the uniform condition one would

need to determine the relationship between the yields of different
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securities in order to specify the relative interest rate risk between
the securities. This concept is easily denonstrated by an exanple.
Consi der two default-free bonds with different maturities but possess-
i ng equivalent durations, as given by (6). |f one bond receives a
| arger shock to its yield than the other bond, then by (6) the first
security will exhibit a greater percentage change in value than the
latter security. In this exanple, Eb can not be an appropriate
measure of the relative risk between the two securities unless the
rel ati onship between the change in the two yields is known. Thus,
when dr is not uniformfor all securities it is necessary to know the

rel ati onship between the change in the yields of the different secur-

ities and, in this case, D2 will no Ionger be a practical sinplifica-
tion of Eﬁ.

To denonstrate formally the theoretical limtation of the uni-
formty of dr for the Hicksian "average period", Ingersoll, Skelton

and Weil (ISW (1978, p. 631) prove the follow ng theorem
"Yields to maturity on all assets with known fixed paynents can
change by the sanme amount if and only if the yield curve is flat
(yields to maturity on pure discount bonds of all maturities are
t he sane) and nekes a parallel shift."”
The significant result of this theoremis that the yield curve nust be
flat in order for dr to be uniform for all paynent streans. Thi s
condition is a severe restriction to place on the term structure and
is obviously contradictory to observed behavior.3
In order to prove this theorem | SW anal yze a change in the val ue
of a portfolio consisting of two pure discount bonds following a

uniforminfinitesinmal additive shock to the term structure. Specifi-

cally, let the present value of one dollar to be received in t, years
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be expressed as V = exp[R(ti)ti] wher e R(ti) is the inplicit spot rate

for t, years. Wien the yield curve is flat then R(ti) = r and all
spot rates will equal the yield to maturity, r, before the term
structure shift, and wll equal r+dr after the shift, due to the

dynami cs of the assumed term structure shock. Therefore, the above
specifications are sufficient conditions for the theoremto hold. The
necessary condition that the yield curve is flat and nakes a parall el
shift, following ISW is proven by contradiction. Assune the yield
curve is not flat and all yields and spot rates undergo a uniform
infinitesimal additive shock. Consider a portfolio of two pure
di scount bonds paying one dollar with certainty at tines ty and t,
wher e tll:t2 and R(tl)#R(tz). (Note that assum ng R(tl)#R(tz) causes
r#R(ti), 1=1,2.) The present value of the portfolio can be expressed
in two equivalent formulations since the interest rate can be neasured
by either the spot rates or the yield.

exp[-R(t1)t;] + exp[-R(t,)t,)] (7a)
exp[-rtl] + exp[-rtz] (7b)

V

The assuned shift in the yield curve (all yields to maturity and al
spot rates receive a uniform infinitesimal additive shock) inplies
t hat dr:dR(tl):dR(tZ). Gven the assuned yield curve shift, the
change in the value of the portfolio can be found by taking the
derivative of V with respect to the rate of interest.
dv = -{tlexp[-R(tl)tl]dR(tl) + tzexp[-R(tZ)tZ]dR(tZ)} (8a)
= -{tlexp[-rtl]dr + tzexp[-rtz]dr} (8b)

Multiplying Vin (7a,b) by t. and adding dV/dr from (8a,b), renenber-

1
ing that dr:thl):m%tz) from the assuned dynamics of the term

structure shock, results in the expression:

tlv + dv/idr = (tl-tz)exp[-R(tZ)tz] = (tl-tz)exp[-rtz] (9)
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since the remaining ternms with the factor ty cancel . The above
equality will hold if and only if R(tz) = r which, of course, is a
contradi ction. Therefore, yields to maturity can nmke an identica
infinitesimal shift, dr:dR(tl):dR(tz), only when all yields to
maturity are equal, r:R(tl):R(tz), whi ch can only occur when the yield
curve is flat and nakes a parallel shift.

Consequently, it is apparent that the Hi cksian "average period"
or D2 Is not a general neasure of a bond's risk, but rather is severe-
ly restricted by the assunption of a uniform infinitesiml shift of
all yields on a flat (parallel) yield curve. The restrictive assunp-
tions exist because the yield to maturity is adopted as the conven-

tional interest rate nmeasure.

Macaul ay' s Duration

The know edge of distinct spot discount rates provides additional
information enabling the financial econonmst to value fixed incone
securities without relying on the yield to maturity as a neasure of
the rate of interest. The Macaulay fornulation of duration, Dl'
i ncorporates information of the distinct spot or forward rates within
the nodel by defining individual discount functions for each future
time period. Therefore, the Macaul ay D1 formul ati on may prove to be
nore useful than the Hicksian D2 formul ation, since the latter nust be
derived under restrictive term structure assunptions. However, here
we show that Macaulay's duration is not a panacea for dealing wth
interest rate risk, as it is also subject to |imting assunptions in
its derivation. This section begins by deriving an expression for the
Macaul ay duration. The analysis continues by exam ning a non-uniform

shock to the term structure which is inconsistent with the derivation

of Dl’ and then considers a specific uniformtermstructure shock that



is consistent with D, -
Consi der the present value of a pure discount bond paying one
dollar with certainty at tine T:
V = exp[-R(t)t]
where R(t) is the spot rate inplied by the term structure conti nuum
and is therefore defined for each discounting period t, t=[0,T]. The
expression exp[-R(t)t] is a distinct discount function defined for
each discounting period inplied by the initial term structure and is
t hus anal ogous to the present value function, P(t), expressed in (1).
Taking the derivative of V with respect to R(t) results in an expres-
sion relating the change in V due to a change in the spot rate R(t):
dV = -t exp[-R(t)t]dR(t) (10)
D viding through by V one obtains an expression relating the percent-
age change in Vresulting froma change in the spot rate R(t):
dV/IV = -t exp[-R(t)t]dR(t)/exp[-R(t)t] (11)
Substituting for D1 t he above expression sinplifies to:
dv/V = -D,dR(t) (12)
Thus Macaul ay's durati on, Dl’
in V. As previously noted, the R(t) values are defined by the term

is proportional to the percentage change

structure for each tine period t, t=(0,~]. To understand the theoret-
ical limtations of D1 it is necessary to examne the effect of
specific termstructure shocks upon its derivation.

The condition where only a single spot rate change occurs will be
anal yzed to show explicitly a sinple non-uniformterm structure shock
that is inconsistent with the derivation of Dl' In their paper on
duration and the neasurenent of basis risk, Cox, Ingersoll and Ross
(AR (1979, p. 52) prove the foll ow ng theorem

"a bond with a long duration will not necessarily be affected
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proportionally nore than a bond of a short duration by a given
change in the spot rateiofterest...".

To wunderstand the developnment of this theorem consider a pure
di scount bond expressed as a function of the single period spot rate
plus a geonetric series of the inplied forward rates. Let the present
value of a pure discount bond V paying one dollar at tinme T be
expressed as

VvV = (1+r1)'1 ni(1+r/\i)'1
(13)

N
where the initial one period spot rate is ry and the r i val ues are

the inplied forward rates for the tinme periods i-1to i, i=2,3,...,T.
Taking the derivative of V wth respect to M thereby treating all
forward rates as if unchanged, results in the expression:
-2 AN
dvV = -(1+4r) “dry m (1+r )
(14)
= -Vdr1/(1+r1) (15)

Thus, the percentage price change in the pure discount bond, assum ng
that only a single additive shock to the initial spot rate occurs, is:

dV/V = -dr,/(1+r) (16)
This shows that the percentage change of the bond is independent of
the duration and maturity, and in fact is equivalent for all pure

di scount bonds regardl ess of duration, rather than being proportional

to the duration. Note that this result is not contradictory to the
previ ous derivation of D, . That is, the percentage change in the
value of a pure discount bond wll be proportional to duration given

that the spot rate defined for the entire period of the bond is the
rate that undergoes the infinitesiml change.

The above clearly shows that D, can not be derived froma single
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change in the one period spot rate or, for that matter, the change in
any one period forward rate. The question then arises as to what, if
any, termstructure behavior is consistent with the derivation of Dl'

| SW (1978, p.631) exam ne the above problem by show ng that D1 S
proportional to the percentage change of a certain paynent stream
when:

“"the yield curve (the continuously conpounded yield-to-maturity

R(t) on pure discount bonds) wundergoes a wuniform additive
di spl acenment dR(t) = dR for all t."4

| SW begin their analysis by considering the ratio of the
durations of two pure discount bonds, which is mathenmatically propor-
tional to the ratio of the percentage changes in the values of the two
bonds. Consider the relationship between the ratio of the percentage
changes in the price of the two pure discount bonds with maturities ty

and th, ty E ts, and the ratio of the respective derivatives shown in

the foll owi ng expression:

dV,/V, -t dR(t,) (17
= 17

A necessary condition for Mcaul ay's duration, Dl' to be proportional
to the percentage change in the value of a pure discount bond is that
dR(tl) = dR(tz). The above expression mnmust equal t1/t2 in order for
Macaul ay's duration to be proportional to the percentage change in the
value of a pure discount bond since the ratio of the percentage
changes in the values of the two bonds nust be proportional to the
ratio of the durations of the two bonds. Thus, the above expression
wi || equal tl/t2 if and only if dR(tl) = dR(t2), whi ch can occur only
when the term structure undergoes a uniform infinitesimal additive

di splacenent. It is inmportant to realize that this result is obtained
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wi t hout maki ng any assunptions concerning the |evel of any spot rate
inplied by the initial or post-shift term structures. Consequent |y,
D1 is derived under nore general conditions than is D2, since to
derive D2 one nust assune that the initial and post-shift term struc-
tures are both flat.

Post-Shift Convexity Inplies Arbitrage

The above di scussion shows that the duration neasures D1 and D2
are both derived by assunming a uniform infinitesimal additive dis-
pl acement of all spot and forward rates inplied by the initial term
structure.5 This section analyzes the consequences of relaxing this
assunption by allowing the term structure to receive a non-
infinitesimal wuniform additive shock. By analyzing these term
structure dynamics it can be shown that the functional form of the
post-shift investnent value is convex. The functional form referred
to here is a ratio of the post-shift values of two different paynent
streans, where both streams have the sane initial durations and the
same initial values. The ratio, first derived by Fisher and Wil
(1971), is forned by dividing the post-shift value of a multiple
paynent stream by the post-shift value of a single pure discount bond.
The value of the Fisher-Wil ratio can show how well a portfolio of
pure di scount bonds replicates the price behavior of the pure discount
bond following a shock to the term structure.

In their analysis of post-shift convexity, [|SW contend that
convexity is inconsistent with a general equilibrium behavior of the
term structure; by definition a general equilibrium condition would
precl ude any arbitrage opportunity. |SWshow that a non-infinitesina
shock to the term structure inplies just such an arbitrage oppor-

tunity, thus the term structure can not behave solely in this manner
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and at the same tinme remain in equilibrium The inportance of this
concept is that [H_ and D2 are not theoretically consistent with a
uni form non-infinitesimal additive shock to the term structure, even

t hough uniform infinitesiml additive shocks are consistent with the

derivation of Dy and D,.

| SW (1978) develop their arbitrage argunent by analyzing the
first and second order conditions of the Fisher-Wil ratio. First and
second order conditions were first derived under equival ent specifica-
tions using forward rates of interest by Fisher and Wil (1971).
Fisher and Wil also showed the post-shift value of investnment to be
convex wWith respect to the term structure shock. By applying the
arbitrage argunment that follows, [|ISW contend that uniform non-
infinitesimal additive shifts can not be the only manner in which the
term structure behaves.

Let V‘=exp[-R‘(ti)ti], be the post-shift value of a pure
di scount bond paying one dollar with certainty at tine t; followi ng a
uni form non-infinitesiml additive shock, &, where R'(ti)=R(ti)+6 is
the post-shift spot rate. The Fisher-Weil ratio, Q is derived in
Appendi x A by incorporating the post-shift spot rate R (ti). The
ratio is constructed by dividing the post-shift value of the single
pure di scount bond, V, maturing at tinme T into the post-shift val ue of
a portfolio consisting of two pure discount bonds, V, QV /exp|-
R(T)T].

Q = {(tyMexp[(T-t1)] + (T-tpexp[a(T-ty)]} 1 (tyty)

(18)
By evaluating Q we can determne the relative effects of a uniform
addi tive displacenent of the term structure, &, upon the values of

the investnment alternatives. Wwen & = 0, Qwll be equal to one or
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the pre-shift value. The first and second derivatives of Q wth
respect to & are, respectively,

dQ ds = K {exp[5(T-t1)] - exp[5(T-t,)]}
(19)
d?Qds? = K {(T-ty)exp[s(T-t))] + (t,-T)exp[s(T-t,)]}

(20)

where K = (t2-T)(T-t1)/(t2-t1). Examining (19) and (20) we see that
the post-shift value Q=1 is a unique m ninumvalue for Q since dQ ds
”<0 when 5°<0 and d2C¥d62 > 0 for all values of &  The relationship
between Q and & is shown in Figure |

Figure | about here

It is apparent that the post-shift value of the bond portfolio
will never be less than the value of the pure discount bond maturing
at time T. In fact, the greater the absolute value of & the greater
will be the profit realized by buying the bond portfolio and selling
the pure discount bond V. Therefore, when & is non-infinitesimnal
the post-shift value of the bond portfolio will be greater than that
of the pure discount bond maturing at tine T. | SW contend that the
termstructure can not behave only in this nmanner (all spot or forward
rates change by the anpbunt &, a constant) since, if it did, investors
woul d hold portfolios of perpetual and instantaneous short-term pure
di scount bonds and sell bonds of internediate nmaturities, thereby
realizing a sure profit after the termstructure shock. This obvious-
|y does not occur, therefore the term structure nust behave in sone
manner other than only uniform additive non-infinitesiml displace-

ment s.



15

In summary, we first derived expressions for the Macaulay and
H cksian formulations of duration, and then exam ned the theoretica
inplications of additive term structure shocks upon the derivation of
t hese nodels. The Hicksian formnulation of D, is shown to be consis-
tent with a uniforminfinitesinmal additive shock (parallel shift) to a
flat yield curve. The Macaulay formnul ation of D1 Is shown to derive
froma uniform infinitesimal additive shock to all spot or forward
rates, and D1 is shown to be inconsistent with a noninfinitesim
additive shock to any spot or forward rate defined for a period |ess
than the maturity of a bond. The Fisher/Wil ratio is then exam ned
to show t he post-shift convexity of investnment val ue contradicts a no-
arbitrage argunent; thus, |SW show that the term structure can not
behave with only uniform non-infinitesimal additive shifts. These
results prove that the Macaul ay and Hicksian fornul ations of duration
can not be a conplete neasure of interest rate risk inherent in fixed
i ncome securities, and that these formul ations of duration can only be
considered as static neasures of risk resulting from unique term

structure dynam cs.

I MVUNI ZATI ON

Early Devel opnent

A basic underlying principle of the immnization strategy is
di scussed by Samuel son (1945) in his analysis of interest rate risk
and its effect upon the value of a fund with two distinct cash flow
streans, one stream consisting of cash in-flows while the other stream
only has cash out-fl ows. Taking the derivative of the fund' s val ue
Wth respect to the "interest rate per annum averaged over tinme",

Samuel son (1945, p. 19) devel ops, except for an inconsequential error,
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a neasure equivalent to the H cksian formulation of duration and
concl udes:

"Increased interest rates wll help any organization whose

(wei ghted) average tine period of disbursenents is greater than

the average tinme period of its receipts.”
This result mght mslead one to conclude that interest rate risk can
be elimnated by equating the duration of the receipts with the
duration of the disbursenents. However, if either the receipts or the
di sbursenents consist of a nmultiple paynent stream then one nust
consider the effect that the behavior of the term structure may have
upon the results of applying any duration nmeasure to achi eve a bal ance
bet ween cash in-flows and cash out-fl ows.

Redi ngton (1952 p. 289) was the first to define and use the term
i mmuni zation in the context of investnent valuation. He defines
I mmuni zati on as:

"the investnent of the assets in such a way that the existing

business is imune to a general change in the rate of interest."”
Redi ngton's goal in witing for an actuarial audience was to equate
the future value of an investnent to future liability. I n general
the objective of an imunization strategy is to invest current funds
in such a manner that a future liability can be paid regardless of the
subsequent behavior of interest rates. Wthout an imrunizing
techni que, the paynent stream earned prior to the dispensing of the
outstanding liability will be subject to a stochastic reinvestnent
rate. Therefore, when only nultiple paynment streans are available it
is uncertain how to initially invest ones funds to neet a future
liability. Thus, an inmmunization strategy is intended to overcone the

interest rate and price risk i nherent when one makes a current invest-
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ment, such that this investnent will grow over time to equal a future
liability.

As shown in the duration analysis above, an assumed term struc-
ture behavior inplies a specific duration neasure. Thus, the ability
of any neasure of duration to describe the price behavior of fixed-
i ncome securities will depend upon the appropriateness of the term
structure shock assuned in the derivation of the duration nmeasure. In
particul ar, Redi ngton obtained a conclusion simlar to Fisher and Wi
and | SWregardi ng the convexity of the post-shift value of investnent,
since Redington choose to sinplify his analysis by adopting a neasure

of duration equivalent to the Hicksian fornulation.6

Mor eover,

several of the discussants of Redington's paper comented on his
result of post-shift convexity and it is clear that the discussants
were aware that Redington's result was "too good" to be accepted
wi t hout question. Never-the-less, it was not until financia

theorists developed a general theory of equilibrium and arbitrage
argunents that the post-shift convexity of investnment value was
understood to be a direct result of an assumed shock to the term
structure inconsistent with general equilibrium dynamcs of the term

structure.

Bi erwaqg' s Anal ysi s

Bierwag (1978) helped to develop a deeper understanding of the
concept of inmunization by exam ning duration within a continuous tine
f ramewor k. Integrating over all spot rates on the term structure
continuum pernmts the identification of the value of the security at
any instant of tine prior to maturity, given that the term structure
I's known. H's research analyzes the post-shift value of a fixed

income security with a certain paynment stream following a uniform
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additive shock to the termstructure. Follow ng Bierwag's notation we
adopt a continuous di scount nodel with the cash flow stream being paid
continuously throughout the |ife of the security. Let the value of
such a security be expressed as:

V= " C(t)exp[-h(0,t)t]dt (21)
where n is maturity, h(O0,t) is the rate of growth of an investnent
over the tinme period O to t, and C(t) is the continuously paid cash
flow stream

The term structure is assuned to begin at an equilibrium state
and there is assuned to be no interest rate uncertainty:

h(0,t )ty = h(0,tg)ty + h(ty ty)(t -ty) (22)
wher e O<to<t1 and h(to,tl)(tl-to) is the inplied forward rate over the
time period tg to ty. If (22) does not hold then it woul d be possible
to borrow and lend over different tinme periods and earn a return
greater than h(O,tl)t1 over the tine period tl. This is easily shown
by exanple. Assune that the forward rate h(to,tl) is such that:

h(0,t )ty - h(0,t)ty < h(ty ty)(ty-ty) (23)
In this case, one could borrow at the rate h(O,tl) for the period ty
and i nvest those funds for a period of ty at the rate h(O,tl) and t hen
at tine tO reinvest the proceeds at h(to,tl) until time ty- Thi s
strategy would ensure a profit since the interest earned on the
borrowed funds wll exceed the borrowi ng cost, h(O,tl)tl. In a
conplete and conpetitive market this opportunity can not exist,
therefore (22) nust hold if the termstructure is in equilibrium

In order to introduce interest rate uncertainty into the nodel
Bierwag explicitly assumes a uniform infinitesimal additive shock
occurring instantly after the purchase of the security. Equi i brium

once again prevails after the initial shock and the new equilibrium
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condition remains until the security matures. Thus, the equilibrium
condition given by (22) is assuned to hold for both the pre-shift and
post-shift state of the term structure. The anal ysis continues by
considering separately the post-shift values of the reinvestnent
returns of the cash flow stream and the present val ue of the remaining
cash flow paynents at sone instant of time after the term structure
shock. Allowing the tinme followng the term structure shock to vary
permts one to identify the "average period" where the security is
i mmuni zed with respect to a pure di scount bond.

The next step is to isolate a tine period m after the term
structure shock where nkn and n is the tinme remaining until maturity
when the term structure shock occurs. In Appendi x B expressions
representing the present value of the remaining cash flow stream at
time m T, and the post-shift value of the reinvested cash flow stream
at time m Q are derived. These expressions are, respectively:

T(6) = exp[h(o, mMn mn C(t)exp[-h(o,t)t]exp[-(t-m6]dt (24)

Q6) = exp[h(o,mmM OmC(t)exp[-h(o,t)t]exp[(mt)e]dt (25)
where 6 is the term structure shock. The derivative of T(6), nxt<n,
and Q6), t<m with respect to the additive shock 6 are,
respectively:

T (6) = exp[h(0,mn mn C(t)exp[-h(0,t)t]{-(t-mexp[-(t-m6]}dt (26)
with T'(6) <0 since t-np0, and

Q (6) = exp[h(0, mn OmC(t)tEXIO[-h(O,t)t]{(ﬂ“rt)eXIO[(mt)9]}dt (27)
with Q (6) >0 since mt>0.

It follows that Q' (6) >0 and T '(6) >0. Figure Il shows the
rel ati onship between T(6), Q®6) and 6. The reinvested cash flows,
Q 6), which occur until time m increase in value as the additive

shock to the term structure increases. The opposite occurs with the
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value of all remaining cash flows, T(6), since T(©6) increases as the
addi tive shock decreases. The result is simlar to Redington, Fisher
and Weil, and ISW since the above condition results in a mninmm
value for T(6)+Q 6) when ©6=0, while when 6 is non-infinitesiml the
curve is convex. The difference in Bierwag's analysis from that of
Redi ngton, Fisher and Wil, and ISW is: (1) the consideration of
duration within a continuous tine framework, and (2) the distinction
between reinvested cash flows and the present value of the paynent
stream remai ni ng. The second distinction allows the analysis to be
extended to show the imuni zed condition.

Figure Il about here
In appendix B the post-shift value of the continuous paynent
stream at time m T(6)+Q6), following a uniform additive shock to
the term structure, is derived. In Appendix C, T (6)+Q (6) 1is
eval uated at 6=0, resulting in:

T (0) + Q(0) = V(m Dg)exp[h(0, mn (28)
wher e D3 is the continuous tinme representation of Macaul ay's duration
defined as:

Dy = 1/V 4" tC(t)exp[-h(0,t)t]dt (29)
It is apparent from (28) that an i muni zing condition exists when nFE@
since Q(0) + T (0) wll then equal zero; that is the change in the
values of the reinvested paynment stream and the renmining unpaid
future receipts, at time m wll be equal but opposite in sign,
therefore canceling with one another. The net effect of equating the

i nvestnent horizon to D3 is the value at time m of the conti nuous

paynent streamis known to be at | east as nuch as a pure di scount bond
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maturing at tine m

The above di scussion on inmunization began by relating the early
devel opnents of post-shift convexity by Redington to the later contri-
buti ons made by Fisher and Weil and ISW Bierwag' s continuous tine
representation of duration is then exam ned to show the inmunization
of a continuous paynent stream against a wuniform infinitesinal
addi tive shock to the term structure. Mor eover, the continuous tine
representation of the post-shift value of a continuous paynent stream

is shown to be a convex function simlar to the Fisher-Wil ratio.

CONCLUSI ON

This paper exam nes a body of literature published in the late
1970' s whi ch has becone an inportant foundation of nodern duration and
i mruni zation theory. This literature was the forerunner to a major
thrust of nodern duration and imrunization theory that exam nes
durati on neasures derived under general equilibrium conditions of the
termstructure. |In fact, the sane individuals who show us the funda-
mental s of nodern duration and imunization theory examned in this
paper are the same theorists who have initiated the analysis of
duration neasures derived under general equilibriumconditions.7 Wth

this foundation, financial econonm sts nmay sone day develop a conplete

integration of investnment valuation and term structure theory.
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APPENDI CES
These appendices are provided as an extension of the proofs
appearing in the papers cited. The original proofs omt a nunber of
steps, causing readers to find these proofs to be abstruse. The
mat hemati cal analysis that follows has been "sinplified' from the
original formto include the steps which had been originally omtted
for brevity. A "*" indicates an equation that does not appear in the

ori gi nal paper.

APPENDI X A

This appendi x develops the result of post-shift convexity by
deriving the Fisher-Wil ratio, @Q of the post-shift value of a
portfolio of two pure discount bonds to the post-shift value of a
single pure discount bond. The notation adopted is that of |ISW (1979)
and explicitly shows the result of a uniform non-infinitesina
additive shock to the termstructure.

The initial values of these alternatives are assuned to be equal:

V = nlv1 + n2V2 (A1)

wher e a is the proportion of the portfolio invested in bond k. Al so,

one assunes that the durations of the alternative investnents are

equal :

tlnlvllv + t2n2Vé/V =T (A-2)
Solving (A-1) for nZVé and substituting into (A-2) results in:
* n,Vitq + (V-nlvl)t2 = VT (A-3)

Rearrangi ng terns one obtains:
nyVy = \Ktz-T)/(tZ-tl) (A-4)
The post-shift val ue of Vi is given by the expression:

* V. = exp[-R(t;)t] (A-5)
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wher e R'(ti)=R(ti)+6. Expandi ng R'(ti), \/'i becones

* Vi = exp-[R(t;)+3]t; (A
6)
* = exp[-R(t;)t,] exp[-at;] (A
7)

= Vi exp[-éti] (A
8)

The post-shift value of the portfolio is then:
V= nl\/1 + n2\/2 (A-9)
nlvlexp[-ét 1] + n2V2exp[-6t 2] (A-
10)
Substituting (A-4) and a simlarly derived expression for n2V2 into
(A-10) results in the expression:
* Vo= V(t2-T) exp[-étl]/(tz-tl) + V(tl-T) exp[-6t2]/(t1-t2) (A
11)
Vi o= | (t2-T)exp[-6t1] + (T-tl)exp[-étz] } V/(t2-t1) (A
12)
We can conpare the post-shift values of the alternative investnents by

analyzing the ratio, Q of the post-shift values of the portfolio to

t he pure discount bond maturing at tinme T.

Q= V/exp[-R(T)T] (A-13)
" = V' /exp[-R(T)T] exp[ - 5T] (A-
14)
= V exp[ 5T]/ V. (A
15)

Substituting (A-12) into the above expression for Q results in

equation (18) in the text:

Q= { (t,,Dexp[s(T-t)] + (T-t)exp[a(T-t,)] } 1U(t,ty) (A
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Appendi x B
Thi s appendi x, following Bierwag (1978), devel ops the post-shift

values at tinme mof both the reinvested paynent stream and the paynent
streamto be received after tine m

An additive uniform displacenent, ©, of all continuous discount
rates can be witten as h'(0,t) = h(0,t)+6. After the termstructure

shock the new equilibriumcondition becones:

h (0O,mMm= h"(0,t)t + h'(t,mM(mt) (B-1)
for O<t<m Rearranging terns:
* h" (t,M(mt) = h(0O,mMm- h(0,t)t + (mt)o (B-
2)

for O<t<m For nxt<n the post-shift condition becones:

h' (0,t)t = h"(0,mMm+ h"'(mt)(t-m (B-3)
and by rearrangi ng terns:
* h*(mt)(t-m) = h(0,t)t - h(O,mMm+ (t-mo6 (B-

4)
for nkt<n and the period of tine remaining until maturity is n-t. The

post-shift value, at time m of the remaining certain cash flows to be

received after time m where nxt<n, will be equal to:

T(6) = ' C(t)exp[-h' (mt)(t-m]dt (B-5)
Substituting (B-4) into (B-5) obtains:
* T(6) = n? C(t)exp[h(0, mMnlexp[-h(0,t)t]exp[-(t-n)6]dt (B-6)

The factor exp[h(O0,mMm is known at tine mand therefore is a constant
whi ch may be factored outside the integral to obtain (24) in the text:
T(6) = exp[h(0, mMmn mn C(t)exp[-h(0,t)t]exp[-(t-mo]dt  (B-7)

The post-shift value of all reinvested cash flows at tine m where
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O<t<m w Il be equal to:

QA 6) =omC(t)eXlO[h'(t,nr)(mt)]dt (B-8)
Substituting (B-1) into (B-8) obtains:
* Qo) = 0"]C(t)exp[h(O,n)n]exp[-h(O,t)t]exp[(n}t)e]dt (B-9)

The constant factor exp[h(0,mMmn] may be factored outside the integra

sign to obtain equation (25) in the text:

Qo) = exp[h(0O, MM 0”‘C(t)exp[-h(O,t)t]exp[(n}t)e]dt (B-10)

Appendi x C

This appendix follows Bierwag's devel opnent of the continuous
time representation of duration showing the imunized condition. The
change in the post-shift value of T(6) + Q©) due to a change in 6 is
given by (26) and (27) in the text:

* Q(0)+T (6) = exp[h(0, mn] { OmC(t)eXIO[-h(O,t)t](mt)eXIO[(mt)G]Olt
+ Om(Xt)(nwt)exp[-h(o,t)t]exp[(n}t)e]dt } (G
Wen (C1) is evaluated at ©6=0 we can obtain the inmunizing
condi tion:
* Q(0) + T (0) = exp[h(0,mn On (t) { mexp[-h(0,t)t] -
texp[-h(0,t)t] }dt (C2)

Define the continuous tine representation of duration, Dé, as:

Dy = 1/V 4" t C(t) exp[-h(0,t)t]dt (G 3)
Now, since
* mv = " C(t) mexp[-h(0,t)t]dt (C 4)

expression (C-2) becones, after substituting for D3V and nv:

Q(0) + T (0) = (mVv-DgV) exp[h(0, mn] (C5)
which is equivalent to (28) in the text.
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FOOTNOTES
1 In his original exposition, H cks derives an equival ent result
usi ng discrete conpoundi ng. The continuous conpoundi ng convention

used here was first derived by L. Fisher (1966).

2 Thi s paper does not anal yze other elenents of risk inherent in
fixed incone securities, such as default and callability risk, by
assum ng that the paynent streamis known with certainty. The nodels
developed in this paper are therefore better suited to analyze the

behavi or of default free securities.

3 The restriction may not be a severe problem for long maturity
bonds. For exanple, Livingston and Jain (1982) show that par bond
yield curves will beconme flat for long maturities and Schaefer (1977)
shows that yield curves becone asynptotically horizontal and wll
approach the perpetuity yield curve at long maturities.

4 | SWdevel op a corollary to the above theorem that states D, S
proportional to the percentage change in the present value of a
certain paynent stream when the percentage change in the discount
function, dP(t)/P(t), is equivalent for all t.

5 I SW (1979) show that uniform infinitesimal additive shock to
the forward rate structure is equivalent to an identical shock to the
spot rate structure.

6 Both Fisher and Wil (1971) and |ISW (1978) derive the post-
shift convexity result enploying Mcaulay's duration Eﬁ. Their
analysis is nore general but can be applied to the Hi cksian neasure,
D2, to obtain the sane post-shift convexity result given in Redington
(1952).

7 For exanple, see Cox, Ingersoll and Ross (1979) and Bierwag,

Kauf man and Toevs (1982).
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