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Abstract

In this paper we prove new Lp estimates for Gegenbauer polynomials P
(s)
n (x). We let

dµs(x) = (1 − x2)s− 1
2 dx be the measure in (−1, 1) which makes the polynomials P (s)

n (x)
orthogonal, and we compare the Lp(dµs) norm of P (s)

n (x) with that of xn. We also prove
new Lp(dµs) estimates of the restriction of these polynomials to the intervals [0, zn] and
[zn, 1] where zn denotes the largest zero of P (s)

n (x).

1. Introduction

In this paper we will prove new Lp estimates for Gegenbauer, (or ultraspherical), polynomials.
The Gegenbauer polynomial of order s and degree n, P (s)

n (x), can be defined, for exam-
ple, as the coefficients of ωn in the expansion of the generating function (1 − 2xω + w2)−s =
∞∑

n=0

ωnP (s)
n n(x). Gegenbauer polynomials are orthogonal in L2(−1, 1) with the measure dµs(x) =

(1− x2)s− 1
2dx. Other properties of these polynomials are listed in the next Section.

In this paper we aim to estimate the Lp(dµs) norm of Gegenbauer polynomials and the
Lp(dµs) norm of their restrictions to certain intervals of [−1, 1] in terms of the Lp(dµs) norm of
xn.

This choice is motivated by the fact that lim
s→∞

P̃ (s)
n (x) = xn. This is easy to prove using e.g.

the explicit representation (2.2). In [DC] the sharp inequality

|P (s)
n (x)| ≤ P (s)

n (1)
(
|x|n +

n− 1
2s+ 1

(1− |x|n)
)

(1.1)

has been proved for Gegenbauer polynomials of order s ≥ n
1 +

√
5

4
.

A pointwise comparison between P̃ (s)
n (x) =

P
(s)
n (x)

P
(s)
n (1)

and xn is meaningful only when s is

much larger that n.
Gegenbauer polynomials of large degree behave like Bessel functions, in the sense that

lim
n→∞

P
(s)
n
(
cos z

n

)
P

(s)
n (1)

= Γ
(
s+

1
2

)(
z

2

)−s+ 1
2

Js− 1
2
(z). (1.2)

(1.2) easily follows from a well known Mehler-Heine type asymptotic formula for general Jacobi
polynomials, (see [Sz], pg. 167).

However, P̃ (s)
n (x) and xn have the same L∞ norm for every s > 0 and every n ≥ 0 is. Indeed,

sup
x∈[−1,1]

∣∣∣P̃ (s)
n (x)

∣∣∣ = sup
x∈[−1,1]

|xn| = 1
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because |P (s)
n (x)| ≤ P

(s)
n (1), (see the next Section).

Also the ratio between the L2(dµs) norm of P̃ (s)
n (x) and the L2(dµs) norm of xn can be

estimated for every n and s.
We prove the following

Proposition 1.1 The function N2(n, s) =
||P̃ (s)

n ||L2(dµs)

||xn||L2(dµs)
is decreasing with s, and

2−
n
2

√πΓ(n+ 1)

Γ
(
n+ 1

2

)
 1

2

= lim
s→∞

N2(n, s) < N2(n, s) ≤ lim
s→0

N2(n, s) =

√πΓ(n+ 1)

2Γ
(
n+ 1

2

)
 1

2

. (1.3)

Thus,
2−

n
2 π

1
4n

1
4 < N2(n, s) < n

1
4 . (1.4)

It is interesting to observe that N2(n, 1
2) = 1. This follows from the explicit formula for

N2(n, s) in Section 2. By Proposition 1.1, N2(n, s) = 1 if and only if s = 1
2 .

Proposition 1.1 shows that while it is true that lim
s→∞

P̃ (s)
n (x) = xn, and lim

s→∞
||P̃ (s)

n (x)||L∞(dµs) =

||xn||L∞(dµs), it is not true in general that lim
s→∞

||P̃ (s)
n ||L2(dµs) = ||xn||L2(dµs).

These consideration suggested us to investigate the ratio of the Lr(dµs) norms of P̃ (s)
n (x)

and xn for other values of r. We let

Nr(n, s) =
||P̃ (s)

n ||Lr(dµs)

||xn||Lr(dµs)
, 1 ≤ r ≤ ∞.

Our next Lemma suggests that Nr(n, s) can be bounded above by a power of N2(n, s).

Lemma 1.2 For every s > 0, n ≥ 1, and r ≥ 2,

Nr(n, s) ≤ N2(n, s)
2
r

(
r

2

) 1
r (s+ 1

2)
, (1.5)

and

Nr(n, s) ≤ n
1
2r

(
r

2

) 1
r (s+ 1

2)
. (1.6)

When s → 0 this upper bound is sharp, in the sense that the power of n in (1.6) cannot be
replaced by a smaller power.

The proof of the Lemma is in Section 3.

Numerical evidence suggests that Nr(n, s) ≤ N2(n, s)
2
r when s ≥ 1

2 and 1 ≤ r ≤ ∞. When
0 ≤ s < 1

2 we conjecture instead that Nr(n, s) ≥ N2(n, s)
2
r .

The upper bound in Lemma 1.2 can be improved if we restrict P̃ (s)
n (x) to the intervals

{1 ≤ |x| ≤ zn} and (−zn, zn), where zn denotes the largest positive zero of P (s)
n (x).

Our main result is the following.
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Theorem 1.3 For every n > 2, s > 0, and r ≥ 1,

sin
2
r

(
π

n+ 1

)
(1− z2

n)
1
r (s+ 1

2) ≤
||P̃ (s)

n ||Lr({1≤|x|≤zn}, dµs)

||xn||Lr(dµs)
≤ p(n, s)

(s+ 1
2
) 1

[ n+1
2 ]r , (1.7)

where p(n, s) =
n∏

j=1

(1− zj) =
Γ(s) Γ(n+ 2 s)

2n Γ(2 s) Γ(n+ s)
is as in (2.15).

Using Stirling’s formula, it is possible to prove that lim
s→∞

p(n, s)s+ 1
2 = e−

n(n−1)
4 , and thus

lim
s→∞

||P̃ (s)
n ||Lr({1≤|x|≤zn}, dµs)

||xn||Lr(dµs)
≤ lim

s→∞
p(n, s)(s+

1
2
) 2

nr = e−
n−1
2r .

We have recalled in the next Section that zn < cos
(

π

n+ 1

)√
(n− 1)(n+ 2s− 2)

(n+ s− 2)(n+ s− 1)
, (see

(2.12)), and so

lim
s→∞

sin
2
r

(
π

n+ 1

)
(1− z2

n)s+ 1
2

> sin
2
r

(
π

n+ 1

)
lim

s→∞

1−
(n− 1)(n+ 2s− 2) cos2

(
π

n+1

)
(n+ s− 2)(n+ s− 1)

s+ 1
2

= sin
2
r

(
π

n+ 1

)
e−

2
r
(n−1) cos2( π

n+1).

From the inequalities above and (1.7) follows that

sin
2
r

(
π

n+ 1

)
e−

2
r
(n−1) cos2( π

n+1) < lim
s→∞

||P̃ (s)
n ||Lr({1≤|x|≤zn}, dµs)

||xn||Lr(dµs)
< e−

n−1
2r . (1.8)

This upper bound is not sharp; in fact we have proved in Proposition 1.1 that lim
s→∞

N2(n, s) =

(πn)
1
4 2−

n
2 , while Lemma 1.3 yields lim

s→∞

||P̃ (s)
n ||Lr({1≤|x|≤zn}, dµs)

||xn||Lr(dµs)
≤ e−

n−1
4 , and e−

n−1
4 > (πn)

1
4 2−

n
2

for every n ≥ 2. However, Theorem (1.3) is interesting because it provides an upper and lower
bound for the Lr({1 ≤ |x| ≤ zn}, dµs) norm of P̃ (s)

n (x) and is valid for every r ≥ 1.
Since lim

s→∞
zn = 0, (see the next Section), it is natural to conjecture that Nr(n, s) is bounded

above by a constant independent of s. In order to prove this conjecture we should prove that
also the ratio of the Lr(dµs) norm of P̃ (s)

n (x) in (−zn, zn) and ||xn||Lr(dµs) is a bounded function
of s.

In the next Theorem we estimate the Lr(dµs) norm of P̃ (s)
n (x) in (−zn, zn) through interpo-

lation.

Theorem 1.4 For every r ≥ 2, s > 0 and n ≥ 2,

||P̃ (s)
n ||Lr((−zn, zn), dµs)

||xn||Lr(dµs)
≤ N2(n, s)

2
r

(
n(n+ 2s)

2s+ 1

)1− 2
r

(
z2
n

nr
2 + s+ 1
n− 1

2

)n( 1
2
− 1

r
)
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where zn denotes the largest zero of P (s)
n . Furthermore,

lim
s→∞

||P̃ (s)
n ||Lr((−zn, zn), dµs)

||xn||Lr(dµs)
≤ n1− 2

r 2n( 1
2
− 1

r
)N2(n, s)

2
r .

From Theorems 1.3 and 1.4 and Proposition 1.1 we can easily prove the following

Corollary 1.5 For every n ≥ 2 and every r ≥ 2, lim
s→∞

Nr(n, s) is finite. If r < 4 this limit is
bounded above by a constant that does not depend on n.

2. Preliminaries

Let us briefly review the main properties of the ultraspherical polynomials. For more details we
refer to [Sz]. The ultraspherical polynomials can be defined through Rodriguez’ formula

(1− x2)s− 1
2P (s)

n (x) =
(−1)nΓ(s+ 1

2)Γ(n+ 2s)
Γ(2s)Γ(n+ s+ 1

2)Γ(n+ 1)2n

(
d

dx

)n

(1− x2)n+s− 1
2 . (2.1)

When s > 0 we have the following explicit expression

P (s)
n (x) =

[n
2 ]∑

m=0

(−1)m Γ(n−m+ s)
Γ(s)Γ(m+ 1)Γ(n− 2m+ 1)

(2x)n−2m. (2.2)

Note that P (s)
n (x) is either even or odd.

The ultraspherical polynomials or order s = 0 are related to the Tchebicheff polynomials
Tn(x) = cos(n cos−1(x)) by the following limit relation.

lim
s→0

s−1P (s)
n (x) =

2
n
Tn(x). (2.3)

The L2 norm of P (s)
n (x) with respect to the measure dµs(x) = (1− x2)s− 1

2dx in (−1, 1) can be
explicitly computed. It is

||P (s)
n ||2L2(dµs)

=
∫ 1

−1
|P (s)

n (x)|2(1− x2)s− 1
2dx =

π21−2sΓ(n+ 2s)
(n+ s)(Γ(s))2Γ(n+ 1)

. (2.4)

When s > 0 the maximum of of P (s)
n (x) in [−1, 1] can be explicitly computed. We have:

sup
−1≤x≤1

|P (s)
n (x)| = P (s)

n (1) =
Γ(n+ 2s)

Γ(n+ 1)Γ(2s)
, s > 0. (2.5)

N2(n, s) can be explicitly computed as well. Indeed, the Lr(dµs) norm of xn is

||xn||Lr(dµs) =
(∫ 1

−1
xnr(1− x2)s− 1

2dx

) 1
r

= β
1
r

(
1
2
(nr + 1), s+

1
2

)
=

Γ
(

1
2(nr + 1)

)
Γ
(
s+ 1

2

)
Γ
(

nr
2 + s+ 1

)


1
r

, (2.6)
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where β(a, b) is the standard Beta function. Thus,

N2(n, s) =

2−n√πΓ(n+ 1)Γ
(
s+ 1

2

)
Γ(n+ s)

Γ
(
n+ 1

2

)
Γ
(

n
2 + s

)
Γ
(

n
2 + s+ 1

2

)


1
2

. (2.7)

This expression has been simplified with the aid of the well known duplication formula for the

Gamma function
Γ(2x)

Γ(x)Γ
(
x+ 1

2

) =
22x−1

√
π

. It is interesting to note that N2(n, 1
2) ≡ 1.

The derivatives of ultraspherical polynomials are constant multiples of ultraspherical poly-
nomials. From (2.2) easily follows that

d

dx
P (s)

n (x) = 2sP (s+1)
n−1 (x), (2.8)

and if we let P̃ (s)
n (x) = P

(s)
n (x)

P
(s)
n (1)

, from (2.8) and 2.5 follows that

d

dx
P̃ (s)

n (x) =
n(n+ 2s)

1 + 2s
P̃

(s+1)
n−1 (x) (2.9)

d2

d2x
P̃ (s)

n (x) =
n(n− 1)(n+ 2s)(n+ 2s+ 1)

(1 + 2s)(3 + 2s)
P̃

(s+2)
n−2 (x). (2.10)

P
(s)
n (x) satisfies the following differential equation:

(1− x2)y′′ − (2s+ 1)xy′ + n(n+ 2s)y = 0. (2.11)

The zeros of ultraspherical polynomials have important and well studied properties. The
literature on the subject is extensive and we will not attempt to survey it. We refer to [E] and
the references cited there.

The following properties are well known, and are shared also by other systems of orthogonal
polynomials.

All zeros of P (s)
n (x) are real and simple and lie in [−1, 1]. Since

d

dx
P (s)

n (x) = 2sP (s+1)
n−1 (x),

Rolle’s theorem implies that between any two zeros of P (s)
n (x) there is a zero of P (s+1)

n−1 (x).
We will denote by zn, k(s), k = 1, ... , n, the zeros of P (s)

n (x) enumerated in increasing order.
That is, −1 < zn,1(s) < ... < zn,n(s) < 1. When there is no risk of confusion, we will just let
zn,j(s) = zj .

To the best of our knowledge, the best available upper bound for zn is in [ADGR].

zn <

√
(n− 1)(n+ 2s− 2)

(n+ s− 2)(n+ s− 1)
cos

(
π

n+ 1

)
, n ≥ 1. (2.12)

The inequality (2.12) improves the following inequality due to Elbert, (see [E]).

zn <

√
(n− 1)(n+ 2s+ 1)

n+ s
=

√
1−

(
s+ 1
n+ s

)2

. (2.13)
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2.1 Four useful Lemmas

Lemma 2.1 Let z1 ... zn be the zeros of P (s)
n (x) arranged in increasing order. Then

P (s)
n (x) =

n∏
k=

[n+1]
2

x2 − z2
k

1− z2
k

, (2.14)

and
n∏

k=
[n+1]

2

(1− z2
k) =

n∏
k=1

(1− zk) =
Γ(s) Γ(n+ 2 s)

2n Γ(2 s) Γ(n+ s)
. (2.15)

Furthermore
P (s)

n (x) ≤ xnfor x ≥ zn (2.16)

Proof. We have already observed that the zeros of P (s)
n (x) are symmetric with respect to x = 0.

When n is odd, P (s)
n (x) vanishes also at x = 0. Therefore, if we let M(n, s) =

2n Γ(n+ s)
Γ(1 + n) Γ(s)

be

the coefficient of xn in the explicit expression (2.2) we can factorize P (s)
n (x) as follows:

P (s)
n (x) = M(n, s)

n∏
k=1

(x− zk) = M(n, s)



n∏
k=n

2

(x2 − z2
k) if n is even,

x
n∏

k=n−1
2

(x2 − z2
k) if n is odd.

(2.17)

Thus,

P̃ (s)
n (x) =

P
(s)
n (x)

P
(s)
n (1)

=



n∏
k=n

2

x2 − z2
k

1− z2
k

if n is even,

x
n∏

k=n−1
2

x2 − z2
k

1− z2
k

if n is odd

which is (2.14).

Since x2−z2
k

1−z2
k
≤ x2, (2.16) follows.

Let p(n, s) =
n∏

k=1

(1− zk). Note that p(n, s) =
P

(s)
n (1)

M(n, s)
, and since P (s)

n (1) is as in (2.5),

p(n, s) =
Γ(s) Γ(n+ 2 s)

2n Γ(2 s) Γ(n+ s)

as required.

The inequality (2.16) can also be proved from the following Lemma.

Lemma 2.2 for every n > 1 and s > 0, P̃ (s)
n (x) ≤ xP̃

(s+1)
n−1 (x) in [zn, 1].
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Proof. Our key tool is the differential equation (2.11). That is,

n(n+ 2s)y = (2s+ 1)xy′ − (1− x2)y′′, (2.18)

where y = P
(s)
n (x).

We divide both sides of (2.18) by P (s)
n (1) and recall that, by (2.9) and (2.10),

d

dx
P̃ (s)

n (x) =

n(n+ 2s)
1 + 2s

P̃
(s+1)
n−1 (x) and

d2

d2x
P̃ (s)

n (x) =
n(n− 1)(n+ 2s)(n+ 2s+ 1)

(1 + 2s)(3 + 2s)
P̃

(s+2)
n−2 (x). We obtain the

following three term relation.

(n− 1)(n+ 2s+ 1)
(1 + 2s)(3 + 2s)

(1− x2)P̃ (s+2)
n−2 (x)− xP̃

(s+1)
n−1 (x) + P̃ (s)

n (x) = 0,

and since P̃ (s+2)
n−2 (x) is positive in [zn, 1], we gather

P̃ (s)
n (x) < xP̃

(s+1)
n−1 (x),

as required.

The following Lemma improves a Lemma in [DC]

Lemma 2.3 For every 0 ≤ |x| ≤ zk, s > 0 and n ≥ 2,

|P̃ (s)
n (x)| ≤ n(n+ 2s)

2s+ 1
ξn−1
n−1zn. (2.19)

Proof. It is well known, (see e.g. [Sz]), that the local maxima of |P (s)
n (x)| are increasing. The

critical points of P (s)
n (x) are the zeros of P (s+1)

n−1 (x), and hence |P (s)
n (x)|, restricted to the interval

[0, zn], attains its maximum at the largest zero of P (s+1)
n−1 (x), which we can denote by ξn−1. Thus,

for every x ∈ [−zn, zn], P̃ (s)
n (x) ≤ P̃

(s)
n (ξn−1).

By the mean value theorem,

P̃ (s)
n (zn)− P̃ (s)

n (ξn−1) = (zn − ξn−1)
∂

∂x
P̃ (s)

n (ξ)

where ξn−1 < ξ < zn. By (2.9),

−P̃ (s)
n (ξn−1) = (zn − ξn−1)

n(n+ 2s)
2s+ 1

P̃
(s+1)
n−1 (ξ)

and since P̃ (s+1)
n−1 (x) ≤ xn−1 in [ξn−1, 1] and −P̃ (s)

n (ξn−1) = |P̃ (s)
n (ξn−1)|, we can infer that

P̃ (s)
n (x) ≤ ξn−1(zn − ξn−1)

n(n+ 2s)
2s+ 1

< ξn−1
n−1zn

n(n+ 2s)
2s+ 1

,

as required.

The following Lemma concerns the monotonicity of ratios of Gamma functions.
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Lemma 2.4 a) The function

x→ Γ (x)xy

Γ(x+ y)
, x > 0,

is decreasing when 0 < y ≤ 1 and is increasing when y > 1. Therefore,

Γ (x)xy

Γ(x+ y)
≤ lim

x→∞
Γ (x)xy

Γ(x+ y)
= 1 (2.20)

when y > 1, and the inequality reverses when y < 1.

b) The function

x→ Γ (x) (x+ y)y

Γ(x+ y)
, x > 0,

is decreasing for every y > 0, and

Γ (x)xy

Γ(x+ y)
≥ lim

x→∞
Γ (x)xy

Γ(x+ y)
= 1. (2.21)

Proof. We prove only a) since the proof of b) is almost the same. Let gy(x) =
Γ (x)xy

Γ(x+ y)
. When

y = 0 and y = 1, then gy(x) ≡ 1, so we assume either y > 1 or 0 < y < 1.
To investigate the monotonicity of gy(x) we study the sign of the derivative of

ln gy(x) = y lnx+ ln(Γ(x))− ln(Γ(x+ y)).

The logarithmic derivative of Γ(z) is

Γ′(z)
Γ(z)

= γ − 1
z
−

∞∑
m=1

(
1

z +m
− 1
m

)
where γ is Euler’s constant. Therefore,

(ln gy(x))′ =
y

x
−

∞∑
m=0

1
x+m

− 1
x+ y +m

= y

(
1
x
−

∞∑
m=0

1
(x+m)(x+m+ y)

)
.

Note that
1
x

=
∞∑

m=0

1
x+m

− 1
x+m+ 1

=
∞∑

m=0

1
(x+m)(x+m+ 1)

.

Thus,

(ln gy(x))′ = y

( ∞∑
m=0

1
(x+m)(x+m+ 1)

−
∞∑

m=0

1
(x+m)(x+m+ y)

)

= y
∞∑

m=0

y − 1
(x+m+ 1)(x+m+ y)

. (2.22)

When y > 1 the function in (2.22) is positive and when y < 1 it is negative. Therefore, ln gy(x)
is increasing whenever y > 1 and is decreasing whenever 0 ≤ y < 1, as required.

(2.20) follows by Stirling’s formula.
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3 Most of the proofs

Proof of Theorem 1.3. We use the factorization in (2.14). Suppose that n is even, since the
proof is similar in the other case. By Hölder inequality,

||P̃ (s)
n ||Lr((zn, 1), dµs) =

∫ 1

zn

n∏
j=n

2

(
t2 − z2

j

1− z2
j

)r

(1− t2)s− 1
2

 1
r

≤
n∏

j=n
2

∫ 1

zn

(
t2 − z2

j

1− z2
j

)nr
2

(1− t2)s− 1
2

 2
nr

=
n∏

j=n
2

J(zj),

where we have let J(zj) =

∫ 1

zn

(
t2 − z2

j

1− z2
j

)nr
2

(1− t2)s− 1
2dt

 2
nr

.

In order to compare J(zj) with ||xn||Lr(dµs) we let
t2 − z2

j

1− z2
j

= x2, so that t =
√
x2(1− z2

j ) + z2
j

and dt =
x(1− z2

j )√
x2(1− z2

j ) + z2
j

dx. Note that x ≤ x√
x2(1− z2

j ) + z2
j

≤ 1.

With this substitution, (1− t2)s− 1
2 =

(
(1− z2

j )(1− x2)
)s− 1

2 , and

J(zj)
nr
2 = (1− z2

j )s+ 1
2

∫ 1

z2
n−z2

j

1−z2
j

xnr(1− x2)s− 1
2

xdx√
x2(1− z2

j ) + z2
j

≤ (1− z2
j )s+ 1

2

∫ 1

0
xnr(1− x2)s− 1

2dx = (1− z2
j )s+ 1

2 ||xn||rLr(dµs)

and

||P̃ (s)
n ||Lr((zn, 1), dµs) ≤

n
2∏

j=1

J(zj)

≤ ||xn||Lr(dµs)

n∏
j=n

2

(
(1− z2

j )s+ 1
2

) 2
nr = ||xn||Lr(dµs)p(n, s)

(s+ 1
2
) 2

nr ,

as required.

To prove the other inequality we observe that

x2 − z2
j

1− z2
j

≥ x2 − z2
n

1− z2
n

whenever j ≤ n
2 . Therefore,

||P̃ (s)
n ||Lr((zn, 1), dµs) ≥

∫ 1

zn

(
t2 − z2

n

1− z2
n

)nr
2

dµs(t)

 1
r

.
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We use again the substitution
t2 − z2

n

1− z2
n

= x2, so that and

||P̃ (s)
n ||rLr((zn, 1), dµs)

≥ (1− z2
n)s+ 1

2

∫ 1

0

xnr+1√
x2(1− z2

n) + z2
n

(1− x2)s− 1
2dx

= (1− z2
n)s+ 1

2

∫ 1

0
xnrψ(x, z2

n)(1− x2)s− 1
2dx, (3.23)

where we have let ψ(x, t) =
x√

x2(1− t) + t
.

The easy inequality ψ(x, t) ≥ x is not enough to prove (1.7). We use the elementary inequality
a2 + b2 − 2ab ≥ 0, with a = ψ(x, t)

1
2 and b ∈ R, to infer that

ψ(x, t) ≥ 2b(ψ(x, t))
1
2 − b2 ≥ 0 for every b ∈ R. From (3.23) follows that

(1− z2
n)−(s+ 1

2
)||P̃ (s)

n ||rLr((zn, 1), dµs)

≥
(∫ 1

0
2b (ψ(x, zn2))

1
2xnr(1− x2)s− 1

2dx− b2||xn||Lr(dµs)

)
. (3.24)

Our next task is to choose b so to maximize the function in (3.24).
It is easy to verify that (ψ(x, t))

1
2 is a convex whenever −1 < x < 1, and thus, by Taylor

formula,

ψ
1
2 (x, t) ≥ (ψ(x, 0))

1
2 + t

∂

∂t
(ψ(x, 0))

1
2 = 1− t

1− x2

2x2
,

and
||P̃ (s)

n ||rLr((zn, 1), dµs)
(1− z2

n)−(s+ 1
2
)

≥ 2b
∫ 1

0

(
1− zn

2 1− x2

2x2

)
xnr(1− x2)s− 1

2dx− b2||xn||rLr(dµs)

= ||xn||rLr(dµs)

(
2b− b2 − b zn

2

∫ 1
0 x

nr−2(1− x2)s− 1
2dx

||xn||rLr(dµs)

)

= b

(
2− b− zn

2
(

2s+ 1
2(nr − 1)

))
||xn||rLr(dµs)

.

The function b→ b

(
2− zn

2
(

2s+ 1
2(nr − 1)

)
− b

)
attains its maximum when b =

1
2

(
2− zn

2 2s+ 1
2(nr − 1)

)
,

and so

||P̃ (s)
n ||rLr((zn, 1), dµs)

≥ (1− z2
n)s+ 1

2

(
1− zn

2 2s+ 1
4(nr − 1)

)2

||xn||rLr(dµs)
.

We are left to prove that

c(n, s, r) = 1− zn
2 2s+ 1

4(nr − 1)

is always positive. We use the upper bound for zn in (2.13), so to obtain

1− zn
2 2s+ 1

4(nr − 1)
≥ 1−

(n− 1)(2s+ 1)(n+ 2s− 2) cos2
(

π
n+1

)
4(nr − 1)(n+ s− 2)(n+ s− 1)
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≥ 1−
(n− 1)(2s+ 1)(n+ 2s− 2) cos2

(
π

n+1

)
4(n− 1)(n+ s− 2)(n+ s− 1)

.

It is easy to verify that the function above decreases with s and hence,

1− zn
2 2s+ 1

4(nr − 1)
≥ lim

s→∞
1−

(2s+ 1)(n+ 2s− 2) cos2
(

π
n+1

)
4(n+ s− 2)(n+ s− 1)

= 1− cos2
(

π

n+ 1

)
= sin2

(
π

n+ 1

)
and from that (1.7) follows.

Proof of Proposition 1.1 To prove that N2(n, s) decreases with s we study the function s →
log(N2(n, s)); N2(n, s) is decreasing in s if and only ∂

∂s log(N2(n, s)) is negative.

We recall that N2(n, s) =

2−n√πΓ(n+ 1)Γ
(
s+ 1

2

)
Γ(n+ s)

Γ
(
n+ 1

2

)
Γ
(

n
2 + s

)
Γ
(

n
2 + s+ 1

2

)


1
2

.

The partial derivative of log(N2(n, s)) with respect to s is

∂

∂s
log(N2(n, s)

=
1
2

∞∑
m=0

(
1

n
2 + s+m

+
1

n
2 + s+ 1

2 +m
− 1

1
2 + s+m

− 1
n+ s+m

)

= −n(n+ 1)
2

∞∑
m=0

4m+ 2n+ 4s+ 1
(m+ n+ s)(2m+ 2s+ 1)(2m+ n+ 2s)(2m+ n+ 2s+ 1)

which is negative, as required.
(1.4) follows by Stirling formula.

Proof of Lemma 1.2. We use Riesz interpolation theorem. When r ≥ 2,

||P (s)
n ||Lr(dµs) ≤ ||P

(s)
n ||

2
r

L2(dµs)
||P (s)

n ||1−
2
r

L∞(dµs)
,

or equivalently

||P̃ (s)
n ||Lr(dµs) ≤ ||P̃

(s)
n ||

2
r

L2(dµs)

since ||P̃ (s)
n ||L∞(dµs) = 1. From the inequality above follows that

||P̃ (s)
n ||Lr(dµs)

||xn||Lr(dµs)
≤

 ||P̃ (s)
n ||L2(dµs)

||xn||L2(dµs)

 2
r ||xn||

2
r

L2(dµs)

||xn||Lr(dµs)

= N2(n, s)
2
r

 Γ
(
n+ 1

2

)
Γ
(

nr
2 + s+ 1

)
Γ
(

1
2(nr + 1)

)
Γ(n+ s+ 1)


1
r

. (3.25)
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We can argue as in Lemma 1.1 to show that the function

n→
Γ
(
n+ 1

2

)
Γ
(

nr
2 + s+ 1

)
Γ
(

1
2(nr + 1)

)
Γ(n+ s+ 1)

is increasing, and is then bounded above by its limit at n→∞, which is
(
r

2

)s+ 1
2

.

(2.20) follows from Lemma 1.1.
We are left to prove that the upper bound in (2.21) is actually sharp when s = 0.

Recalling that lim
s→0

s−1P (s)
n (x) =

2
n

cos(nx), (see Section ), we can see that

lim
s→0

||P̃ (s)
n ||Lr(dµs) = lim

s→0

∫ 1

−1
|P̃ (s)

n (x)|r(1− x2)s− 1
2dx (3.26)

=
∫ π

0
| cos(nt)|rdt =

√
πΓ
(

r+1
2

)
Γ
(
1 + r

2

) .

We have used the change of variable x = cos t in the integral in (3.26). Therefore,

Nr(n, 0) = lim
s→0

||P̃ (s)
n ||Lr(dµs)

||xn||Lr(dµs)
=

 Γ
(

r+1
2

)
Γ
(

nr
2 + 1

)
Γ
(

r
2 + 1

)
Γ
(

1
2(nr + 1)

)


1
r

.

By Lemma 2.4, the function n−
1
2rNr(n, 0) is increasing, and its limit is


(

r
2

) 1
2 Γ

(
r+1
2

)
Γ
(

r
2 + 1

)


1
r

.

Proof of Theorem 1.4. We use Lemma 2.3 and interpolation. When r ≥ 2,

||P (s)
n ||Lr((−zn, zn) dµs) ≤ ||P

(s)
n ||

2
r

L2(dµs)
||P (s)

n ||1−
2
r

L∞(−zn, zn),

or equivalently

||P̃ (s)
n ||Lr((−zn, zn), dµs) ≤

(
n(n+ 2s)

2s+ 1
ξn−1
n−1zn)

)1− 2
r

||P̃ (s)
n ||

2
r

L2(dµs)
.

From the inequality above follows that

||P̃ (s)
n ||Lr((−zn, zn), dµs)

||xn||Lr(dµs)

≤
(
n(n+ 2s)

2s+ 1
ξn−1
n−1zn

)1− 2
r

 ||P̃ (s)
n ||L2(dµs)

||xn||L2(dµs)

 2
r ||xn||

2
p

L2(dµs)

||xn||Lr(dµs)
(3.27)

≤
(
n(n+ 2s)

2s+ 1
zn

n
)1− 2

r

N2(n, s)
2
r

 Γ
(
n+ 1

2

)
Γ
(

nr
2 + s+ 1

)
Γ
(

1
2(nr + 1)

)
Γ(n+ s+ 1)


1
r

.
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We use Lemma 2.4 to estimate the ratio of the Gamma functions in the inequality above.
First we apply the Lemma to the ratio

Γ
(
n+ 1

2

)
Γ
(

1
2(nr + 1)

) = (n− 1
2
)−

nr
2

+n−1
Γ
(
n− 1

2

)
(n− 1

2)
nr
2
−n+1

Γ
(

1
2(nr + 1)

) = (n− 1
2
)−

nr
2

+n Γ(x)xy

Γ(x+ y)

with x = n− 1
2 and y = nr

2 − n+ 1. Since y > 1,
Γ(x)xy

Γ(x+ y)
< 1.

Then we apply the Lemma to the ratio

Γ
(

nr
2 + s+ 1

)
Γ(n+ s+ 1)

=
(
nr

2
+ s+ 1

)nr
2
−n Γ (x+ y)

(x+ y)y Γ(x)

x = n + s + 1 and y = nr
2 − n. The ratio

Γ (x+ y)
(x+ y)y Γ(x)

is always increasing, and so it is < 1.

Therefore,  Γ
(
n+ 1

2

)
Γ
(

nr
2 + s+ 1

)
Γ
(

1
2(nr + 1)

)
Γ(n+ s+ 1)


1
r

≤
(

nr
2 + s+ 1
n− 1

2

)n( 1
2
− 1

r
)

,

and
||P̃ (s)

n ||Lr((−zn, zn), dµs)

||xn||Lr(dµs)
≤
(
n(n+ 2s)

2s+ 1

)1− 2
r

(
z2
n

nr
2 + s+ 1
n− 1

2

)n( 1
2
− 1

r
)

as required.

By (2.12), z2
n <

(n− 1)(n+ 2s− 2) cos2
(

π
n+1

)
(n+ s− 2)(n+ s− 1)

, and so

||P̃ (s)
n ||Lr((−zn, zn), dµs)

||xn||Lr(dµs)
≤
(
n(n+ 2s)

2s+ 1

)1− 2
r

(n− 1)(n+ 2s− 2) cos2
(

π
n+1

)
(n+ s− 2)(n+ s− 1)

×
nr
2 + s+ 1
n− 1

2

n( 1
2
− 1

r
)

When s → ∞ the right hand side tends to n1− 2
r

4(n− 1) cos2
(

π
n+1

)
2n− 1

n( 1
2
− 1

r
)

. It is easy to

prove that the function in parenthesis is an increasing function of n, and its limit is 2. This
concludes the proof of the Theorem.
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