Prerequisite Test – Calculus 1 - Fall 2014

NAME: ____

1. (6 pts) Fill in the exact values:

$$\cos(\frac{\pi}{4}) = \sin(\frac{7\pi}{2}) = \sin^{-1}(\frac{\sqrt{3}}{2}) =$$

$$\left(\frac{4}{9}\right)^{-1/2} = \log_2 32 = \log_{10}(0.001) =$$

2. (4 pts) Circle the correct answer (assume that $x \neq 0$):

(a) The expression
$$\frac{2x^2}{x^4 + 2x^2}$$
 is equivalent with:
(i) $\frac{1}{x^4 + 1}$ (ii) $\frac{2}{x^2} + 1$ (iii) $\frac{2}{x^2 + 2}$ (iv) $\frac{1}{x^2 + 1}$ (v) $\frac{2}{3x^2}$

- (b) The expression $\frac{x^2}{\sqrt[3]{x^2}}$ is equivalent with: (i) \sqrt{x} (ii) 1 (iii) $x\sqrt[3]{x}$ (iv) $x^{-1/3}$ (v) none of the above
- **3.** (4 pts) Find the domain of each of the following functions. Write your answer in interval form. (a) $f(x) = \sqrt{x+1} - \sqrt{6-2x}$ (b) $g(x) = \frac{x}{x^2 + x - 6}$

4. (6 pts) Sketch the graph of each of the following functions and mark the coordinates of axis intercepts.

(a)
$$f(x) = 2x - x^2$$
 (b) $g(x) = \begin{cases} 2x + 3 & \text{if } x \le 0 \\ \sqrt{x} & \text{if } x > 0 \end{cases}$

5. (4 pts) True or False? Assume x, y are positive real numbers. Circle "True" if the equality holds for all x, y. Otherwise, circle "False".

$\sqrt{x^2 + y^2} = x + y$	True False
$(x+y)^{-1} = x^{-1} + y^{-1}$	True False
$\log(x^2 + y^2) = 2\log x + 2\log y$	True False
$\sin(\frac{\pi}{2} - x - y) = \cos(x + y)$	True False

6. (3 pts) Sketch the graph of $y = 2\cos(3x)$ and label the coordinates of at least two of the maximum points (that is, points where y is maximum).

7. (3 pts) Write an equation of the line that contains the points (-2, -13) and (1, 2).

8. (6 pts) Compute and simplify the following expressions:

(a)
$$\frac{f(3+h) - f(3)}{h}$$
 if $f(x) = 2x - x^2$ (b) $\frac{g(x) - g(a)}{x - a}$ if $g(x) = \frac{2}{1 + x}$

- 9. (8 pts) Find all real solutions of the following equations (2 pts each):
- (a) $x^4 5x^2 + 4 = 0$
- (b) $3 \cdot (5^{2x}) = 7$ Leave your answer as a logarithm for this one.
- (c) $\sin^2 x = \cos^2 x$ OK to find all solutions $x \in [0, 2\pi]$ for this one.
- (d) $ax^2+bx+c=0$ I want to check you know the quadratic formula.
- 10. (6 pts) For a 16:9 TV, the ratio (width of screen)/(height of screen) is 16/9.
- (a) For a 16:9 TV, find a function expressing the area of the screen, A, in terms of its diagonal length d.

(b) For a 16:9 TV, what is the angle that the diagonal is making with the horizontal? Leave your answer as an inverse trigonometric function.