\qquad

1. In each case, find the general antiderivative:
(a) $\int\left(\sec ^{2} x+\frac{3}{\sqrt{x}}-5\right) d x$
(b) $\int \frac{x^{2}-3}{2 x} d x$
2. Solve the following initial value problems:
(a) $\frac{d y}{d x}=\sqrt{x}(6+5 x), \quad y(1)=10$
(b) $\frac{d^{2} y}{d t^{2}}=\cos t+\sin t, \quad y(0)=3, y^{\prime}(0)=4$
3. (This problems helps you find on your own the proof of MVT) Recall MVT: Assume that $f(x)$ is a continuous function on a closed interval $[a, b]$ and assume that f is differentiable for all $x \in(a, b)$. Then there exists (at least) a point $c \in(a, b)$ so that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Do the following steps to prove MVT.
(a) Draw a picture to illustrate MVT geometrically.
(b) Write the equation of the secant line connecting the points $(a, f(a))$ and $(b, f(b))$.
(c) Find a formula for the function $h(x)$ which measures the vertical distance between the y coordinate of the point on the secant line and the y coordinate of the point on the graph of f for an arbitrary value $x \in[a, b]$.
(d) Show that the function $h(x)$ satisfies the assumptions of Rolle's theorem for $x \in[a, b]$.
(e) Write the conclusion of Rolle's theorem applied to h and show that it translates exactly in the conclusion of MVT for f.

