\qquad

Worksheet week 4

1. (3 pts) Find, if possible, a value for the constant k which will make the function $g(x)$ continuous everywhere.

$$
g(x)=\left\{\begin{array}{ll}
\frac{1-\cos (k x)}{x^{2}} & \text { if } x<0 \\
1+\sin x & \text { if } x \geq 0
\end{array},\right.
$$

2. (4 pts) True or False. Answer and briefly justify your answer in each case.
(a) If $|f(x)+7| \leq 3|x+2|$ for all real x, then $\lim _{x \rightarrow-2} f(x)=-7$.
(b) If $f(x)$ is continuous at $x=2$ and $f(2)=5$, then for x sufficiently close to $2, f(x)>4.95$.
3. (4 pts) (a) Use IVT to show that the equation $x^{6}+5 x^{3}=1$ has a solution in the interval $(0,1)$.
(b) Use IVT to locate another interval of length 1 which contains a solution of the equation $x^{6}+5 x^{3}=1$.
