Group nr.

\qquad

MAC 2311: Worksheet 7/02/2018 (Rules II, Derivatives of Trig. Functions)
LECTURE INTRO: Compute derivative of $\sin (x)$ and give the one for $\cos (x)$. (Mention that x is in radians.) Derive the product law and give the quotient law.

1) Compute the following derivatives:
a) $\frac{d}{d x}\left(x^{3} \sin (x)\right)$
b) $\frac{d}{d x}\left(3 \sin ^{2}(x)\right)$
c) $\frac{d}{d x}\left(\sqrt{x}\left(x^{2}-7 x\right)\right)$
d) $\frac{d}{d x}\left(\frac{x^{2}+1}{\sqrt{x}+3}\right)$
2) Using your knowledge of the derivatives of $\sin (x)$ and $\cos (x)$ and of the product and quotient laws, compute the following derivatives:
a) $(\tan (x))^{\prime}$
b) $(\cot (x))^{\prime}$
c) $(\sec (x))^{\prime}$
d) $(\csc (x))^{\prime}$
3) Compute the following derivatives:
a) $\frac{d}{d x}\left(5+\frac{1}{\tan (x)}\right)$
b) $\frac{d}{d \theta}\left(\frac{\sec (\theta)}{1+\sec (\theta)}\right)$
c) $\frac{d}{d t}((\sin (t)+\cos (t)) \csc (t))$
4) Show that $y=x \sin x$ is a solution to the differential equation $y^{\prime \prime}+y=2 \cos x$.
5) The curve $y=\frac{x}{1+x^{2}}$ is sometimes called a "serpentine" (you can check the graph on a graphing calculator or on wolframalpha.com to see why).
(a) Find the equation of the tangent line to the curve at $x=0$.
(b) Find the coordinates of the points where the tangent line to the serpentine is horizontal.
6) The following provides a proof for the quotient rule from the product rule.

Let $q(x)=\frac{f(x)}{g(x)}$, be the quotient of two functions $f(x)$ and $g(x)$.
The goal is to get a formula for $q^{\prime}(x)$ in terms of $f^{\prime}(x), g^{\prime}(x), f(x), g(x)$. Proceed as follows:

Start from $q(x) \cdot g(x)=f(x)$. (Why is this true?)
Take the derivative of both sides of the above and use product rule on the left side. Then solve for $q^{\prime}(x)$ and do a bit of algebra to eventually get the familiar quotient rule formula.

