Worksheet 11-22 MAC-2311 Fall 2016 Name:

1. A plane flying horizontally with a speed of $300 \mathrm{ft} / \mathrm{s}$ at an elevation of 9600 ft over flat ground releases an emergency probe. Imagine the probe looks like a small arrow. The trajectory of the probe is given by the parametric curve

$$
x(t)=300 t, \quad y(t)=-16 t^{2}+9600, \quad \text { for } t \geq 0,
$$

where the origin is the point on the ground directly beneath the plane at the moment of the release, and t is the time in seconds since the moment of release.
(a) Graph the trajectory of the probe and find the coordinates of the point where the probe lands.
(b) Find $d x / d t, d y / d t$. Explain their practical meaning and explain why the formulas you get for each of them make sense.
(c) At what angle does the probe hit the ground?

