LECTURE: Definition and basic rules for computing anti-derivatives:

1) In each case, find the general antiderivative:

(a)
$$\int 3x^4 - 4\sqrt{x} + \frac{7}{x^2} dx$$
,
(b) $\int \frac{1}{x^2} dx$

(D)
$$\int \frac{1}{\sqrt{1-x^2}} dx$$

- (c) $\int \frac{1}{2x^3} + \csc x \cot x \, dx$
- (d) $\int (\sec^2 x + \frac{3}{\sqrt{x}} \pi) \, dx$

(e)
$$\int \frac{x^2-3}{2x} dx$$

(f)
$$\int \frac{x^2}{x^2+1} dx$$

2) In each case, find the most general form of f satisfying the given condition.

(a) f'(x) = x(3x+4)

(b)
$$f''(x) = \sqrt[3]{x} + 1$$

LECTURE BREAK: Initial value problems; Rectilinear motion.

- 3) Solve the following initial value problems:
 - (a) $\frac{dy}{dx} = 6e^x$, y(0) = 2
- (b) $\frac{dy}{dx} = \sqrt{x}(6+5x), \ y(1)$
- 4) A particle is moving on a straight line with the given data. Find the position s(t) of the particle at time t.
 - (a) v(t) = -32t + 100, s(0) = 20,
 - (b) $a(t) = 2\cos t + \sin t$, v(0) = 1, s(0) = 0.

- 5) A stone is dropped from the top of a tower 800 ft above the ground.
 - (a) Find the height s(t) of the stone above the ground at t seconds since it was dropped. Assume the initial velocity is 0 and assume constant acceleration during the motion $a = -32 ft/s^2$ (the gravitational acceleration, often denoted g).
 - (b) How long does it take the stone to reach the ground?
 - (c) With what velocity does it strike the ground?

6) Show that for motion in straight line with **constant** acceleration a, initial velocity v_0 and initial position s_0 , the velocity v(t) at time t and the position s(t) at time t are given by

$$v(t) = at + v_0,$$
 $s(t) = \frac{1}{2}at^2 + v_0t + s_0$

7) A car braked with constant deceleration of 16ft/s^2 , producing skid marks measuring 200ft before coming to a stop. How fast was the car traveling when the brakes were applied?