Name: _

Worksheet week 4

Spring 2016

Panther ID: _____

1. Find, if possible, a value for the constant k which will make the function g(x) continuous everywhere.

Calculus I

$$g(x) = \begin{cases} \frac{1 - \cos(kx)}{x^2} & \text{if } x < 0\\ 1 + \sin(3x) & \text{if } x \ge 0 \end{cases},$$

2. (a) Use IVT to show that the equation $x^3 = 3x - 1$ has a solution in the interval [0, 1].

(b) Approximate the solution in part (a) with an accuracy of 0.25; that is find an interval of length 1/4 which contains the solution.

(c) Use again IVT to show that the equation $x^3 = 3x - 1$ has three real solutions and find intervals of length 1 containing each solution.

3. Use the $\epsilon\text{-}\delta$ definition of limit to prove that $\lim_{x\to 5}(2x+3)=13$.

4. True or False questions. Answer and briefly justify your answer in each case.

(a) If $|f(x)+7|\leq 3|x+2|$ for all real x, then $\lim_{x\rightarrow -2}f(x)=-7$.

(b) If f(x) is continuous at x = 2 and f(2) = 5, then for x sufficiently close to 2, f(x) > 4.95.