## Panther ID:

$\qquad$

## Worksheet week 4

1. Find, if possible, a value for the constant $k$ which will make the function $g(x)$ continuous everywhere.

$$
g(x)=\left\{\begin{array}{cl}
\frac{1-\cos (k x)}{x^{2}} & \text { if } x<0 \\
1+\sin (3 x) & \text { if } x \geq 0
\end{array},\right.
$$

2. (a) Use IVT to show that the equation $x^{3}=3 x-1$ has a solution in the interval $[0,1]$.
(b) Approximate the solution in part (a) with an accuracy of 0.25 ; that is find an interval of length $1 / 4$ which contains the solution.
(c) Use again IVT to show that the equation $x^{3}=3 x-1$ has three real solutions and find intervals of length 1 containing each solution.
3. Use the $\epsilon-\delta$ definition of limit to prove that $\lim _{x \rightarrow 5}(2 x+3)=13$.
4. True or False questions. Answer and briefly justify your answer in each case.
(a) If $|f(x)+7| \leq 3|x+2|$ for all real $x$, then $\lim _{x \rightarrow-2} f(x)=-7$.
(b) If $f(x)$ is continuous at $x=2$ and $f(2)=5$, then for $x$ sufficiently close to $2, f(x)>4.95$.
