\qquad

Spring 2017 -- MAC 2311- Exam 1 - Version B

There are 8 problems for a total of 110 points. Show your work; an answer alone, even correct, may get no credit. An illegible solution will not be graded. Calculators are not allowed.

Problem 1. (12pts) The graph of a function f is given below. Use the graph to answer the questions that follow.

(i) (7 pts) Find the following limits. You don't have to show any work for these, but specify if a limit is infinite or does not exist.

$$
\begin{array}{ccc}
\lim _{x \rightarrow-3^{-}} f(x)= & \lim _{x \rightarrow-3^{+}} f(x)= & \lim _{x \rightarrow-3} f(x)= \\
\lim _{x \rightarrow 4} f(x)= & \lim _{x \rightarrow 0} f(x)= \\
\lim _{x \rightarrow-\infty} f(x)= & \lim _{x \rightarrow+\infty} f(x)=
\end{array}
$$

(ii) (3 pts) Is f continuous everywhere? If not, give x value(s) at which f has a discontinuity. Specify if any of the discontinuities is removable.
(iii) (2 pts) Identify any point(s) x, where the function is continuous, but it is not differentiable. Specify if there is no such point x.

Problem 2. (30 pts) Find the following limits. Specify if a limit is infinite or does not exist. Show all work and explain clearly (5 pts each).
a) $\lim _{x \rightarrow 1^{+}} \frac{5 x-1}{1-x}=$
b) $\lim _{x \rightarrow-2} \frac{2 x^{2}-8}{x^{2}-x-6}=$
c) $\lim _{x \rightarrow 6} \frac{\sqrt{2 x+4}-4}{x-6}=$
d) $\lim _{x \rightarrow+\infty} \cos \left(\frac{2 \pi x}{3 x+1}\right)=$
e) $\lim _{x \rightarrow 0} \frac{x \sin (6 x)}{\tan ^{2}(3 x)}=$
f) $\lim _{t \rightarrow-\infty} \frac{\sqrt{3 t^{2}-t+1}}{2 t}=$

Problem 3. (12 pts) These are true or false questions. Answer (1pt) and give brief justification (2pts). Graph can serve as a justification.
(a) If a function f is continuous at $x=0$, then f is differentiable at $x=0 . \quad$ True False
Justification:
(b) If $f(x), g(x)$ are continuous everywhere then $\frac{f(x)}{g(x)}$ is continuous everywhere. True False

Justification:

(c) A function can never cross its horizontal asymptote. True False Justification:
(d) If a function satisfies $|f(x)-7| \leq 5|x-3|$ for all real numbers x, then $\lim _{x \rightarrow 3} f(x)=7$.

True False Justification:

Problem 4. (10 pts) Use the limit definition of the derivative to compute $f^{\prime}(x)$ for $f(x)=1 / x$.

Problem 5. (12 pts) A stone is thrown straight up from the ground. Its position $s(t)$ in feet above the ground after t seconds is given by $s(t)=48 t-16 t^{2}$.
(a) (2 pts) When does the stone land back on the ground?
(b) (4 pts) Find the average velocity of the stone in the time interval [1,3] seconds.
(c)(6 pts) Use a limit to find the instantaneous velocity of the stone at $t=1$ second.

Problem 6. (12 pts) (a) (2pts) Write the definition for a function $f(x)$ to be continuous at $x=a$.
(b) (5pts) Use this definition to determine whether or not the following function is continuous at $x=0$.
$f(x)= \begin{cases}\frac{2 x^{2}+5}{x^{2}+1} & \text {, if } x \leq 0 \\ \frac{\sin (3 x)}{x} & \text {,if } x>0\end{cases}$
(b) (5pts) List all asymptotes, vertical or horizontal (if any), of the function $f(x)$ from part (b). Justify your answer with limits.

Problem 7. (12 pts) (a) (6 pts) Use the Intermediate Value Theorem to show that the equation $x^{3}-6 x+2=0$ has three distinct real roots. Explain thoroughly.
(b) (6 pts) Use the method of bisection to approximate one of the roots of the equation $x^{3}-6 x+2=0$ to within 0.25 . Explain thoroughly.

Problem 8. (10 pts) Choose ONE of the following. Only ONE will be graded.
(A) Use geometry to prove the inequality $\sin x \leq x \leq \tan x$ for any $\in\left[0, \frac{\pi}{2}\right)$.
(B) Write the general (ε, δ) definition for $\lim _{x \rightarrow a} f(x)=L$
(C)
and then use this definition to prove that $\lim _{x \rightarrow 5}(20 x-3)=97$
(D)

