\qquad

Exam 3 - MAC 2311
Spring 2017
To receive credit you MUST SHOW ALL YOUR WORK. Answers which are not supported by work will not be considered.

1. (12 pts) Fill in the most appropriate words or symbols:
(a) A point x_{0} is a critical point for the function $f(x)$, if $f^{\prime}\left(x_{0}\right)$ is \qquad or \qquad .
(b) If $f^{\prime \prime}(x)<0$, for all $x \in(a, b)$, then on the interval (a, b) the function f is \qquad
(c) If $f^{\prime}\left(x_{0}\right)=0$ and $f^{\prime \prime}\left(x_{0}\right)>0$, then x_{0} is a \qquad for the function $f(x)$.
(d) If $f(x)$ is differentiable on the interval $[a, b]$ and $f^{\prime}(x)>0$ for all $x \in[a, b]$, then on the interval $[a, b]$, f has an absolute maximum at $x=$ \qquad -.
2. (12 pts) (a) (8 pts) Find the local linear approximation of the function $f(x)=\cot x$ at $x_{0}=\pi / 4$.
(b) (4 pts) Use part (a) to approximate $\cot 43^{\circ}$ without using a calculator. (It's OK if your answer contains π.)
3. (16 pts) Compute each of the following limits:
(a) $(6 \mathrm{pts}) \lim _{x \rightarrow 0} \frac{e^{5 x}-1}{\sin (3 x)}$
(b) (10 pts) $\lim _{x \rightarrow+\infty}\left(1-\frac{3}{x}\right)^{x}$
4. (24 pts) Find the indicated antiderivatives (6 pts each):
(a) $\int\left(\frac{3}{2}-3^{x}+\frac{1}{\sqrt{1-x^{2}}}\right) d x$
(b) $\int x \sec ^{2}\left(x^{2}\right) d x$
(c) $\int \sin ^{3}(3 x) \cos (3 x) d x$
(d) $\int \frac{t}{t^{4}+1} d t$
5. (12 pts) If $2400 \mathrm{~cm}^{2}$ of cardboard material is available to make a closed box with a square base, find the largest possible volume of the box. (Hint: You are given the surface area of the box and you need to maximize its volume.)
6. $(20+2 \mathrm{pts})$ The steps of this problem should lead you to a complete graph of the function $f(x)=x^{2} e^{-x}$. (a) (1 pts) The domain of this function is
(b) (3 pts) Find the derivative $f^{\prime}(x)$ and write it in factored form.
(c) $(3 \mathrm{pts})$ Find the critical points of f.
(d) (4 pts) Do a sign chart for f^{\prime} and specify the intervals where f is increasing, respectively decreasing.
(e) (4 pts) Determine the end behavior of the function $f(x)=x^{2} e^{-x}$ and any eventual horizontal asymptotes.
(f) (5 pts) Using all the previous steps, sketch the graph of $f(x)=x^{2} e^{-x}$. Label on the graph the coordinates of critical points and specify their type (relative/absolute min/max).

Bonus 2 pts: I did not ask you to do the analysis of the second derivative. Without computing the second derivative, how many inflection points do you expect?
7. (12 pts) On the moon the acceleration due to gravity is $g=-5 \mathrm{ft} / \mathrm{sec}^{2}$. An astronaut jumps up from the surface of the moon with an initial upward velocity of $10 \mathrm{ft} / \mathrm{sec}$.
(a) (6 pts) Find the formulas for the velocity $v(t)$ and the height above the ground $s(t)$ of the astronaut after t seconds since the start of its jump.
(b) (3 pts) How high does the astronaut go?
(c) (3 pts) How long does it take to get back on the ground?

