Geometric series theorem:

Given a geometric series, $\sum_{k=0}^\infty cr^k, \text{ if } |r|<1$ the series converges to $\frac{c}{1-r}$.

If $|r| \ge 1$, the geometric series diverges.

Proof: We start from establishing the following identity:

$$1 - r^{n+1} = (1 - r)(1 + r + r^2 + \dots + r^n)$$

This is seen just by distributing the right hand-side and observing we get a telescopic pattern

$$(1-r)(1+r+r^{2}+\ldots+r^{n}) = (1-r)\cdot 1 + (1-r)r + (1-r)r^{2}+\ldots+(1-r)r^{n} = 1-r+r-r^{2}+r^{2}-r^{3}+\ldots+r^{n}-r^{n+1} = 1-r^{n+1}.$$

By definition, the convergence or divergence of the series is determined by the convergence or divergence of its sequence of partial sums:

$$S_n = \sum_{k=0}^n cr^k = c + cr + \dots + cr^n$$

If r = 1, $S_n = (n+1)c$, so for $c \neq 0$, the limit of S_n is infinite, so S_n and hence the series diverges. Next we treat the case $r \neq 1$. In the formula for S_n , factoring c and using the above identity, we get

$$S_n = c \frac{1 - r^{n+1}}{1 - r} \; .$$

We know that if |r| < 1, then

 $\lim_{n \to +\infty} r^{n+1} = 0, \text{ and thus } S_n \text{ converges and } \sum_{k=0}^{\infty} cr^k = \lim_{n \to +\infty} S_n = c \frac{1}{1-r} \ .$

If r > 1, $\lim_{n \to +\infty} r^{n+1} = +\infty$, so S_n and the series are divergent to $sign(c)\infty$. If $r \le -1$, $\lim_{n \to +\infty} r^{n+1}$ does not exist, so the limit of S_n does not exist.

Thus the series diverges if $r \leq -1$, or $r \geq 1$. All cases have been proved. QED