Integration by parts formula:

$$
\int(d u) v=u v-\int u(d v)
$$

Proof: Given differentiable functions $u(x), v(x)$, the product rule gives

$$
(u(x) v(x))^{\prime}=u^{\prime}(x) v(x)+u(x) v^{\prime}(x)
$$

We integrate both sides:

$$
\int(u(x) v(x))^{\prime} d x=\int\left(u^{\prime}(x) v(x)+u(x) v^{\prime}(x)\right) d x
$$

The left term is just $u(x) v(x)$. Splitting the right term in a sum of two integrals, we get

$$
u(x) v(x)=\int u^{\prime}(x) v(x) d x+\int u(x) v^{\prime}(x) d x
$$

As $d u=u^{\prime}(x) d x$ and $d v=v^{\prime}(x) d x$, and omitting the dependence of x, the above relation can be written as

$$
u v=\int(d u) v+\int u(d v)
$$

This is just the integration of parts formula, up to rearranging terms. QED

