\qquad
\qquad

Worksheet week 2 - MAC 2312, Fall 2014

1. (Problem 62, section 5.4 textbook)
(a) Find a simple closed form for the sum $\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\ldots+\frac{1}{n(n+1)}$

Hint: Check that $\frac{1}{k(k+1)}=\frac{1}{k}-\frac{1}{k+1}$ and, using this, observe that you get a telescopic sum .
(b) Use the result in part (a) to find

$$
\lim _{n \rightarrow+\infty} \sum_{k=1}^{n} \frac{1}{k(k+1)} \quad \text { Note: This limit is the definition of the infinite series } \sum_{k=1}^{+\infty} \frac{1}{k(k+1)} .
$$

2. (a) For any $r \neq 1$, prove the identity $1+r+r^{2}+r^{3}+\ldots+r^{n}=\frac{1-r^{n+1}}{1-r}$
(b) Use part (a) to find the values of r for which the limit below exists and is finite and compute the limit

$$
\lim _{n \rightarrow+\infty} \sum_{k=0}^{n} r^{k} \quad \text { Note: This limit represents the geometric series } \sum_{k=0}^{+\infty} r^{k}
$$

(c) Use part (b) to compute the infinite sum $1 / 2+1 / 4+1 / 8+1 / 16+\ldots$
(d) Use part (b) to express as a fraction the number 0.377777...
3. (Pb .53 section 5.4 textbook) (a) Use the right-end point Riemann sum to show that the area under the graph of $f(x)=x^{3}$ and over the interval $[0, b]$ is $b^{4} / 4$.
(b) Use part (a) to find the area under the graph of $f(x)=x^{3}$ and over the interval $[a, b]$, where $0 \leq a \leq b$.

