\qquad
\qquad

Worksheet week 2 - MAC 2312, Spring 2016

1. (a) Find a simple closed form for the sum $\frac{1}{2^{2}-1}+\frac{1}{3^{2}-1}+\frac{1}{4^{2}-1}+\ldots+\frac{1}{n^{2}-1}$

Hint: Check that $\frac{1}{k^{2}-1}=\frac{1}{(k-1)(k+1)}=\frac{1}{2}\left(\frac{1}{k-1}-\frac{1}{k+1}\right)$ and note that you get a telescopic sum.
(b) Use the result in part (a) to find

$$
\lim _{n \rightarrow+\infty} \sum_{k=2}^{n} \frac{1}{k^{2}-1} \quad \text { Note: This limit is, by definition, the series } \sum_{k=2}^{+\infty} \frac{1}{k^{2}-1} .
$$

Thus, you proved that the series above is convergent and you found its exact sum.

2. Applications of geometric series theorem.

(a) Find the sum of the series (if it exists) $2 / 3+4 / 9+8 / 27+16 / 81+\ldots$
(b) Find the sum of the series (if it exists) $\sum_{k=2}^{+\infty} \frac{(-3)^{k}}{2^{2 k+1}}$
(c) Express the number $0.37777777 \ldots$ as a ratio of two integers.
(d) Express the number 0.13131313... as a ratio of two integers.

Note: Generalizing the ideas from (c) and (d), one can prove that any periodic number (that is, any number whose decimal digits repeat) is, in fact, a rational number.

